For any real number $ x, [x] $ denotes the integer part of $ x $. $ \mathcal{F}_{1} $ denotes a class of multiplicative functions that are small in a numerical sense. In this paper, we study the distribution of the functions from $ \mathcal{F}_{1} $ in Piatetski-Shapiro sequences. In particular, we prove that for $ 1 < c < \frac{4}{3}, $
$ \sum\limits_{\stackrel{n\leq x}{f\in \mathcal{F}_{1}}} f([n^{c}]) = \int_{1}^{x^{c}} \gamma u^{\gamma-1} d\left( \sum\limits_{1\leq n\leq u} f(n)\right) +O(x^{1-\varepsilon}), $
where $ \gamma = \frac{1}{c} $ and $ [n^{c}] $ is the Piatetski-Shapiro sequence.
Citation: Haihong Fan. A class of small multiplicative functions in Piatetski-Shapiro sequences[J]. AIMS Mathematics, 2025, 10(12): 28514-28523. doi: 10.3934/math.20251255
For any real number $ x, [x] $ denotes the integer part of $ x $. $ \mathcal{F}_{1} $ denotes a class of multiplicative functions that are small in a numerical sense. In this paper, we study the distribution of the functions from $ \mathcal{F}_{1} $ in Piatetski-Shapiro sequences. In particular, we prove that for $ 1 < c < \frac{4}{3}, $
$ \sum\limits_{\stackrel{n\leq x}{f\in \mathcal{F}_{1}}} f([n^{c}]) = \int_{1}^{x^{c}} \gamma u^{\gamma-1} d\left( \sum\limits_{1\leq n\leq u} f(n)\right) +O(x^{1-\varepsilon}), $
where $ \gamma = \frac{1}{c} $ and $ [n^{c}] $ is the Piatetski-Shapiro sequence.
| [1] | I. I. Piatetski-Shapiro, On the distribution of prime numbers in sequences of the form $[ f (n)]$, Mat. Sb. (N.S.), 75 (1953), 559–566. |
| [2] | G. A. Kolesnik, The distribution of primes in sequences of the form $[n^{c}]$, Mat. Zametki., 2 (1967), 117–128. |
| [3] | D. R. Heath-Brown, The Pjatecki$\breve{1}$ -$\breve{S}$apiro prime number theorem, J. Number Theory, 16 (1983), 242–266. |
| [4] |
G. A. Kolesnik, Primes of the form $[n^{c}]$, Pac. J. Math., 118 (1985), 437–447. http://doi.org/10.2140/pjm.1985.118.437 doi: 10.2140/pjm.1985.118.437
|
| [5] |
H. Q. Liu, J. Rivat, On the Pjatecki$\breve{1}$-$\breve{S}$apiro prime number theorem, Bull. Lond. Math. Soc., 24 (1992), 143–147. https://doi.org/10.1112/blms/24.2.143 doi: 10.1112/blms/24.2.143
|
| [6] | C. H. Jia, On Pjatecki$\breve{1}$-$\breve{S}$apiro prime number theorem Ⅱ, Sci. China Ser. A., 36 (1993), 913–926. |
| [7] | C. H. Jia, On Pjatecki$\breve{1}$-$\breve{S}$apiro prime number theorem, Chin. Ann. Math. Ser. B., 15 (1994), 9–22. |
| [8] |
R. C. Baker, G. Harman, J. Rivat, Primes of the form $[n^{c}]$, J. Number Theory, 50 (1995), 261–277. http://doi.org/10.1006/jnth.1995.1020 doi: 10.1006/jnth.1995.1020
|
| [9] |
A. V. Kumchev, On the distribution of prime numbers of the form $[n^{c}]$, Glasg. Math. J., 41 (1999), 85–102. http://doi.org/10.1017/s0017089599970477 doi: 10.1017/s0017089599970477
|
| [10] |
J. Rivat, P. Sargos, Nombres premiers de la forme $\lfloor n^{c}\rfloor$, Canad. J. Math., 53 (2001), 414–433. https://doi.org/10.4153/CJM-2001-017-0 doi: 10.4153/CJM-2001-017-0
|
| [11] |
J. Rivat, J. Wu, Prime numbers of the form $[n^{c}]$, Glasg. Math. J., 43 (2001), 237–254. https://doi.org/10.1017/S0017089501020080 doi: 10.1017/S0017089501020080
|
| [12] | G. I. Arkhipov, Kh. M. Saliba, V. N. Chubarikov, On the sum of values of a multidimensional function of divisors on a sequence of type $[n^{c}]$, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, 28–35. |
| [13] | G. S. Lü, W. G. Zhai, The sum of multidimensional divisor functions on a special sequence, Adv. Math., 32 (2003), 660–664. |
| [14] |
H. Wang, Y. Zhang, On the divisor function over Piatetski-Shapiro sequences, Czechoslovak Math. J., 73 (2023), 613–620. http://doi.org/10.21136/CMJ.2023.0205-22 doi: 10.21136/CMJ.2023.0205-22
|
| [15] | I. E. Stux, Distribution of squarefree integers in non-linear sequences, Pac. J. Math., 59 (1975), 577–584. |
| [16] |
G. J. Rieger, Remark on a paper of Stux concerning squarefree numbers in non-linear sequences, Pac. J. Math., 78 (1978), 241–242. http://doi.org/10.2140/pjm.1978.78.241 doi: 10.2140/pjm.1978.78.241
|
| [17] | X. D. Cao, W. G. Zhai, The distribution of square-free numbers of the form $[n^{c}]$, J. Theor. Nombr. Bordx., 10 (1998), 287–299. |
| [18] |
X. D. Cao, W. G. Zhai, On the distribution of square-free numbers of the form $[n^{c}]$ (Ⅱ), Acta Math. Sin. (Chin. Ser.), 51 (2008), 1187–1194. https://doi.org/10.12386/A2008sxxb0138 doi: 10.12386/A2008sxxb0138
|
| [19] | S. I. Dimitrov, Square-free values of $[n^{c} \tan^\theta(\log n)]$, In: Exploring mathematical analysis, approximation theory, and optimization, Cham: Springer, 207 (2023), 33–43. https://doi.org/10.1007/978-3-031-46487-4_3 |
| [20] | S. I. Dimitrov, Cube-free values of $[n^{c} \tan^\theta(\log n)]$, In: Mathematical analysis, optimization, approximation and applications, 2025,217–226. https://doi.org/10.1142/9789811293009_0010 |
| [21] |
M. Zhang, J. J. Li, Distribution of cube-free numbers with form $[n^{c}]$, Front. Math. China, 12 (2017), 1515–1525. https://doi.org/10.1007/s11464-017-0652-1 doi: 10.1007/s11464-017-0652-1
|
| [22] | J. M. Deshouillers, A remark on cube-free numbers in Segal-Piatestki-Shapiro sequences, Hardy-Ramanujan J., 2019. https://doi.org/10.46298/hrj.2019.5114 |
| [23] |
T. Srichan, P. Tangsupphathawat, Square-full numbers in Piatetski-Shapiro sequences, Ann. Math. Qu$\acute{e}$bec, 44 (2020), 385–391. https://doi.org/10.1007/s40316-020-00132-8 doi: 10.1007/s40316-020-00132-8
|
| [24] | J. D. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. (N.S.), 12 (1985), 183–216. |
| [25] |
W. G. Zhai, X. D. Cao, On the number of coprime integer pairs within a circle, Acta Arith., 90 (1999), 1–16. http://doi.org/10.4064/aa-90-1-1-16 doi: 10.4064/aa-90-1-1-16
|
| [26] | S. W. Graham, G. Kolesnik, Van Der Corput's method of exponential sums, Cambridge University Press, 2010. https://doi.org/10.1017/CBO9780511661976 |