Research article

Nonuniform fast linear canonical transform based on low rank approximation

  • Received: 20 September 2025 Revised: 25 October 2025 Accepted: 11 November 2025 Published: 03 December 2025
  • MSC : 11F20, 11M20

  • The investigations of the discrete and fast linear canonical transform (LCT) are becoming one of the hottest research topics in modern signal processing and optics. Among them, the fast calculation of LCT for nonuniform data is one of the key problems. In this paper, two novel fast algorithms based on low-rank approximation are presented. First, we propose two methods for approximate nonuniform time-domain sampling with uniform sampling. Second, we utilize a low rank matrix to approximate the nonuniform LCT kernel, combined with the exponential function and Taylor series. Then, the fast algorithms for nonuniform sampling in the time domain are developed, which cost $ K $ FFTs. Finally, we extend the fast algorithm to nonuniform LCT in the frequency and transform domains. The effectiveness of the proposed algorithm is verified by simulations.

    Citation: Yannan Sun, Jing Liu. Nonuniform fast linear canonical transform based on low rank approximation[J]. AIMS Mathematics, 2025, 10(12): 28470-28487. doi: 10.3934/math.20251253

    Related Papers:

  • The investigations of the discrete and fast linear canonical transform (LCT) are becoming one of the hottest research topics in modern signal processing and optics. Among them, the fast calculation of LCT for nonuniform data is one of the key problems. In this paper, two novel fast algorithms based on low-rank approximation are presented. First, we propose two methods for approximate nonuniform time-domain sampling with uniform sampling. Second, we utilize a low rank matrix to approximate the nonuniform LCT kernel, combined with the exponential function and Taylor series. Then, the fast algorithms for nonuniform sampling in the time domain are developed, which cost $ K $ FFTs. Finally, we extend the fast algorithm to nonuniform LCT in the frequency and transform domains. The effectiveness of the proposed algorithm is verified by simulations.



    加载中


    [1] H. E. Tahir, X. B. Zou, Z. H. Li, J. Y. Shi, X. D. Zhai, S. Wang, et al., Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy, Food Chem., 226 (2017), 202–211. http://doi.org/10.1016/j.foodchem.2017.01.024 doi: 10.1016/j.foodchem.2017.01.024
    [2] Y. Y. Fu, J. Li, X. B. Li, S. Y. Wu, Damic event-triggered adaptive control for uncertain stochastic nonlinear systems, Appl. Math. Comput., 444 (2023), 127800. https://doi.org/10.1016/j.amc.2022.127800 doi: 10.1016/j.amc.2022.127800
    [3] S. A. Collins, Lens-system diffraction integral written in terms of matrix optics, Journal of the Optical Society of America, 60 (1970), 1168–1177. https://doi.org/10.1364/JOSA.60.001168 doi: 10.1364/JOSA.60.001168
    [4] M. Moshinsky, C. Quesne, Linear canonical transformations and their unitary representations, J. Math. Phys., 12 (1971), 1772–1780. https://doi.org/10.1063/1.1665805 doi: 10.1063/1.1665805
    [5] I. Daubechies, C. Heil, Ten lectures on wavelets, Comput. Phys., 6 (1992), 697. https://doi.org/10.1063/1.4823127
    [6] H. M. Ozaktas, Z. Zalevsky, M. A. Kutay, The fractional Fourier transform: with applications in optics and signal processing, New York: Wiley, 1995.
    [7] D. Y. Wei, Y.-M. Li, The dual extensions of sampling and series expansion theorems for the linear canonical transform, Optik, 126 (2015), 5163–5167. https://doi.org/10.1016/j.ijleo.2015.09.226 doi: 10.1016/j.ijleo.2015.09.226
    [8] J. J. Healy, M. A. Kutay, H. M. Ozaktas, J. T. Sheridan, Linear canonical transforms: theory and applications, New York: Springer, 2016. https://doi.org/10.1007/978-1-4939-3028-9
    [9] Y. Guo, B.-Z. Li, Bind image watermarking method based on linear canonical wavelet trans-form and qr decomposition, IET Image Process., 10 (2016), 773–786. https://doi.org/10.1049/iet-ipr.2015.0818 doi: 10.1049/iet-ipr.2015.0818
    [10] M. Kundu, A. Prasad, Convolution, correlation and spectrum of functions associated with linear canonical transform, Optik, 249 (2022), 168256. https://doi.org/10.1016/j.ijleo.2021.168256 doi: 10.1016/j.ijleo.2021.168256
    [11] Z. C. Zhang, Jittered sampling in linear canonical domain, IEEE Commun. Lett., 24 (2020), 1529–1533. https://doi.org/10.1109/LCOMM.2020.2988947 doi: 10.1109/LCOMM.2020.2988947
    [12] O. Ahmad, A. Achak, N. A. Sheikh, U. Warbhe, Uncertainty principles associated with multi-dimensional linear canonical transform, Int. J. Geom. Methods M., 19 (2022), 2250029. https://doi.org/10.1142/S0219887822500293 doi: 10.1142/S0219887822500293
    [13] A. Kumar, A. Prasad, Wigner-Ville distribution function in the framework of linear canoni-cal transform, J. Pseudo-Differ. Oper. Appl., 13 (2022), 38. https://doi.org/10.1007/s11868-022-00471-w doi: 10.1007/s11868-022-00471-w
    [14] D. Y. Wei, Y. J. Zhang, Y.-M. Li, Lnear canonical stockwell transform: theory and applications, IEEE T. Signal Proces., 70 (2022), 1333–1347. https://doi.org/10.1109/TSP.2022.3152402 doi: 10.1109/TSP.2022.3152402
    [15] J. Y. Chen, Y. Zhang, B. Z. Li, Graph linear canonical transform: Definition, vertex-frequency analysis and filter design, IEEE T. Signal Proces., 72 (2024), 5691–5707. https://doi.org/10.1109/TSP.2024.3507787 doi: 10.1109/TSP.2024.3507787
    [16] S.-C. Pei, J.-J. Ding, Closed-form discrete fractional and affine fourier transforms, IEEE T. Signal Proces., 48 (2000), 1338–1353. https://doi.org/10.1109/78.839981 doi: 10.1109/78.839981
    [17] J. Zhao, R. Tao, Y. Wang, Smpling rate conversion for linear canonical transform, Signal Process., 88 (2008), 2825–2832. https://doi.org/10.1016/j.sigpro.2008.06.008 doi: 10.1016/j.sigpro.2008.06.008
    [18] A. Koc, H. M. Ozaktas, C. Candan, M. A. Kutay, Digital computation of linear canonical transforms, IEEE T. Signal Proces., 56 (2008), 2383–2394. https://doi.org/10.1109/TSP.2007.912890 doi: 10.1109/TSP.2007.912890
    [19] F. S. Oktem, H. M. Ozaktas, Exact relation between continuous and discrete linear canonical transforms, IEEE Signal Proc. Let., 16 (2009), 727–730. https://doi.org/10.1109/LSP.2009.2023940 doi: 10.1109/LSP.2009.2023940
    [20] S.-C. Pei, S.-G. Huang, Fast discrete linear canonical transform based on CM-CC-CM decomposition and FFT, IEEE T. Signal Proces., 64 (2016), 855–866. https://doi.org/10.1109/TSP.2015.2491891 doi: 10.1109/TSP.2015.2491891
    [21] B. M. Hennelly, J. T. Sheridan, Fast numerical algorithm for the linear canonical transform, J. Opt. Soc. Am. A., 22 (2005), 928–937. https://doi.org/10.1364/JOSAA.22.000928 doi: 10.1364/JOSAA.22.000928
    [22] J. J. Healy, J. T. Sheridan, Sampling and discretization of the linear canonical transform, Signal Process., 89 (2009), 641–648. https://doi.org/10.1016/j.sigpro.2008.10.011 doi: 10.1016/j.sigpro.2008.10.011
    [23] J. J. Healy, J. T. Sheridan, Fast linear canonical transforms, J. Opt. Soc. Am. A., 27 (2010), 21–30. https://doi.org/10.1364/JOSAA.27.000021 doi: 10.1364/JOSAA.27.000021
    [24] W.-L. Zhang, B.-Z. Li, Q.-Y. Cheng, A new discretization algorithm of linear canonical transform, Procedia Engineering, 29 (2012), 930–934. https://doi.org/10.1016/j.proeng.2012.01.066 doi: 10.1016/j.proeng.2012.01.066
    [25] S.-C. Pei, Y.-C. Lai, Discrete linear canonical transforms based on dilated hermite functions, J. Opt. Soc. Am. A., 28 (2011), 1695–1708. https://doi.org/10.1364/JOSAA.28.001695 doi: 10.1364/JOSAA.28.001695
    [26] A. Koc, H. M. Ozaktas, Operator theory-based computation of linear canonical transforms, Signal Process., 189 (2021), 108291. https://doi.org/10.1016/j.sigpro.2021.108291 doi: 10.1016/j.sigpro.2021.108291
    [27] D. Y. Wei, Y. Shen, Discrete complex linear canonical transform based on super-differential operators, Optik, 230 (2021), 166343. https://doi.org/10.1016/j.ijleo.2021.166343 doi: 10.1016/j.ijleo.2021.166343
    [28] A. Koc, H. M. Ozaktas, L. Hesselink, Fast and accurate computation of two-dimensional nonseparable quadratic-phase integrals, J. Opt. Soc. Am. A., 27 (2010), 1288–1302. https://doi.org/10.1364/JOSAA.27.001288 doi: 10.1364/JOSAA.27.001288
    [29] D. Y. Wei, H. M. Hu, Sparse discrete linear canonical transform and its applications, Signal Process., 183 (2021), 108046. https://doi.org/10.1016/j.sigpro.2021.108046 doi: 10.1016/j.sigpro.2021.108046
    [30] Y. N. Sun, W. C. Qian, Fast linear canonical transform for nonequispaced data, Fractal Fract., 7 (2023), 353. https://doi.org/10.3390/fractalfract7050353 doi: 10.3390/fractalfract7050353
    [31] C. Anderson, M. D. Dahleh, Rapid computation of the discrete fourier transform, SIAM J. Sci. Comput., 17 (1996), 913–919. https://doi.org/10.1137/0917059 doi: 10.1137/0917059
    [32] S. Kunis, I. Melzer, Fast evaluation of real and complex exponential sums, Electron. T. Numer. Ana., 46 (2016), 23–35.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(99) PDF downloads(11) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog