We introduce the nilpotent graph $ \Gamma_N(L) $ of a finite-dimensional Lie superalgebra $ L = L_{\bar{0}} \oplus L_{\bar{1}} $ over a field $ \mathbb{F} $, with vertices consisting of non-nilpotent elements and edges connecting pairs that generate nilpotent subsuperalgebras. We prove that the nilpotentizer $ \mathscr{N}(L) $ coincides with the hypercenter $ Z^*(L) $ when $ \text{char}(\mathbb{F}) = 0 $. For the triangular Lie superalgebra $ \mathfrak{t}(2, \mathbb{F}_q) $, we show that $ \Gamma_{N}(L) $ is the disjoint union of $ q+1 $ complete graphs $ K_{q(q-1)} $, each having $ q(q-1) $ vertices. We characterize the bipartiteness of $ \Gamma_N(L) $, demonstrating that it is bipartite if and only if the odd component $ L_{\bar{1}} \subseteq \mathscr{N}(L) $. We also analyze connectivity, diameter, clique number, and chromatic number for Lie superalgebras such as $ \mathfrak{sl}(1|1, \mathbb{F}_q) $ and investigate direct sums and complement graphs. SageMath algorithms are provided to compute $ \Gamma_N(L) $ and its invariants, linking the algebraic structure of Lie superalgebras to graph theory and emphasizing the role of $ \mathbb{Z}_2 $-grading in topological properties. Open problems on higher-dimensional structures and spectral properties are proposed.
Citation: Ali Yahya Hummdi, Kholood Alnefaie, Giovanni Scudo, Mohammad Shane Alam. Nilpotent graphs of Lie superalgebras: structure and graph-theoretic properties[J]. AIMS Mathematics, 2025, 10(12): 28451-28469. doi: 10.3934/math.20251252
We introduce the nilpotent graph $ \Gamma_N(L) $ of a finite-dimensional Lie superalgebra $ L = L_{\bar{0}} \oplus L_{\bar{1}} $ over a field $ \mathbb{F} $, with vertices consisting of non-nilpotent elements and edges connecting pairs that generate nilpotent subsuperalgebras. We prove that the nilpotentizer $ \mathscr{N}(L) $ coincides with the hypercenter $ Z^*(L) $ when $ \text{char}(\mathbb{F}) = 0 $. For the triangular Lie superalgebra $ \mathfrak{t}(2, \mathbb{F}_q) $, we show that $ \Gamma_{N}(L) $ is the disjoint union of $ q+1 $ complete graphs $ K_{q(q-1)} $, each having $ q(q-1) $ vertices. We characterize the bipartiteness of $ \Gamma_N(L) $, demonstrating that it is bipartite if and only if the odd component $ L_{\bar{1}} \subseteq \mathscr{N}(L) $. We also analyze connectivity, diameter, clique number, and chromatic number for Lie superalgebras such as $ \mathfrak{sl}(1|1, \mathbb{F}_q) $ and investigate direct sums and complement graphs. SageMath algorithms are provided to compute $ \Gamma_N(L) $ and its invariants, linking the algebraic structure of Lie superalgebras to graph theory and emphasizing the role of $ \mathbb{Z}_2 $-grading in topological properties. Open problems on higher-dimensional structures and spectral properties are proposed.
| [1] | V. G. Kac, Lie superalgebras, Adv. Math., 26 (1977), 8–96. https://doi.org/10.1016/0001-8708(77)90017-2 |
| [2] | L. Frappat, A. Sciarrino, P. Sorba, Dictionary on Lie superalgebras, arXiv, 1996. https://doi.org/10.48550/arXiv.hep-th/9607161 |
| [3] | S. J. Cheng, W. Wang, Dualities and Representations of Lie Superalgebras, Vol. 144, American Mathematical Society, 2012. |
| [4] | I. M. Musson, Lie superalgebras and enveloping algebras, Vol. 131, American Mathematical Society, 2012. |
| [5] | M. Scheunert, The theory of Lie superalgebras: an introduction, Vol. 716, Springer, 1979. https://doi.org/10.1007/BFb0070929 |
| [6] | D. Towers, I. Gutierrez, L. Fernandez, The nilpotent graph of a finite-dimensional Lie algebra, arXiv, 2025. https://doi.org/10.48550/arXiv.2506.19758 |
| [7] | J. Torres, I. G. Garcia, E. J. Garcia-Claro, On the nilpotent graph of a finite group, Int. J. Group Theory, 2025. https://doi.org/10.22108/ijgt.2025.145208.1961 |
| [8] |
P. Bhowal, D. Nongsiang, R. K. Nath, Solvable graphs of finite groups, Hacettepe J. Math. Stat., 49 (2020), 1955–1964. https://doi.org/10.15672/hujms.573766 doi: 10.15672/hujms.573766
|
| [9] |
H. Wang, Y. Zhang, C. Li, Multi-component superintegrable Hamiltonian hierarchies, Phys. D, 456 (2023), 133918. https://doi.org/10.1016/j.physd.2023.133918 doi: 10.1016/j.physd.2023.133918
|
| [10] |
J. Wang, X. Yue, Lie conformal superalgebras of rank $(2 + 1)$, J. Algebra, 668 (2025), 116–155. https://doi.org/10.1016/j.jalgebra.2025.08.045 doi: 10.1016/j.jalgebra.2025.08.045
|
| [11] | A. Makhlouf, S. D. Silvestrov, Hom-Lie admissible hom-coalgebras and hom-Hopf algebras, In: S. Silvestrov, E. Paal, V. Abramov, A. Stolin, Generalized Lie theory in mathematics, physics and beyond, Springer, 2009,189–206. https://doi.org/10.1007/978-3-540-85332-9_17 |
| [12] | R. Diestel, Graph theory, 3 Eds., Springer-Verlag, Berlin, 2005. |
| [13] | D. B. West, Introduction to graph theory, 2 Eds., Prentice Hall, 2001. |
| [14] |
A. Abdollahi, S. Akbari, H. R. Maimani, Non-commuting graph of a group, J. Algebra, 298 (2006), 468–492. https://doi.org/10.1016/j.jalgebra.2006.02.015 doi: 10.1016/j.jalgebra.2006.02.015
|
| [15] |
A. Abdollahi, M. Zarrin, Non-nilpotent graph of a group, Commun. Algebra, 38 (2009), 4390–4403. https://doi.org/10.1080/00927870903386460 doi: 10.1080/00927870903386460
|
| [16] | D. Towers, I. Gutierrez, L. Fernandez, The nilpotent graph of a finite-dimensional Lie algebra, arXiv, 2025. https://doi.org/10.48550/arXiv.2506.19758 |
| [17] |
J. M. Bois, Generators of simple Lie algebras in arbitrary characteristics, Math. Z., 262 (2009), 715–741. https://doi.org/10.1007/s00209-008-0397-3 doi: 10.1007/s00209-008-0397-3
|
| [18] | The Sage Developers, SageMath, Version 9.0, 2020. Available from: http://www.sagemath.org. |
| [19] | C. Chevalley, The theory of Lie algebras, Princeton University Press, 1946. |
| [20] | F. H. Haydarov, B. A. Omirov, G. O. Solijanova, Infinite dimensional analogues of nilpotent and solvable Lie algebras, arXiv, 2025. https://doi.org/10.48550/arXiv.2510.02488 |
| [21] |
L. M. Camacho, R. M. Navarro, B. A. Omirov, Residually solvable extensions of pro-nilpotent Leibniz superalgebras, J. Geom. Phys., 172 (2022), 104414. https://doi.org/10.1016/j.geomphys.2021.104414 doi: 10.1016/j.geomphys.2021.104414
|
| [22] | J. E. Humphreys, Introduction to Lie algebras and representation theory, Vol. 9, Springer-Verlag, 1972. https://doi.org/10.1007/978-1-4612-6398-2 |