Research article Special Issues

Efficient Laplace-based decomposition and iteration techniques for the fractional GHS coupled KdV system with Atangana-Baleanu derivative

  • Published: 28 November 2025
  • MSC : 26A33, 65D12, 91G20

  • This study explored efficient solution strategies for the fractional generalized Hirota-Satsuma (GHS) coupled KdV system, which serves as a fundamental model for describing nonlinear wave interactions across various branches of physics and engineering, including nonlinear dispersive-wave phenomena in plasma and optical fibers. In particular, attention was focused on the GHS-KdV system governed by the Atangana-Baleanu Caputo fractional derivative (AB-CFD), which effectively captures the distinctive memory and hereditary features of complex materials and wave propagation phenomena. We presented two advanced Laplace-based methods: the Laplace Adomian decomposition method (LADM) and Laplace variational iteration method (LVIM) that effectively capture the system's nonlinear dynamics and memory effects without requiring linearization or perturbation. Numerical validation confirmed the methods' accuracy through excellent agreement with exact solutions, demonstrating systematic convergence as additional terms were included and complete recovery of classical solutions when fractional orders approached integer values. The mathematical consistency of both approaches is verified through comprehensive error analysis. These results establish LADM and LVIM as efficient computational tools for nonlinear fractional PDEs, particularly valuable for modeling wave propagation in complex media and other systems exhibiting hereditary properties. The methods offer significant advantages in handling the nonlocal characteristics inherent to fractional systems while maintaining computational efficiency.

    Citation: Mofida Zaki, M. Abdelgaber, Hoda F. Ahmed, W. A. Hashem. Efficient Laplace-based decomposition and iteration techniques for the fractional GHS coupled KdV system with Atangana-Baleanu derivative[J]. AIMS Mathematics, 2025, 10(11): 28034-28058. doi: 10.3934/math.20251232

    Related Papers:

  • This study explored efficient solution strategies for the fractional generalized Hirota-Satsuma (GHS) coupled KdV system, which serves as a fundamental model for describing nonlinear wave interactions across various branches of physics and engineering, including nonlinear dispersive-wave phenomena in plasma and optical fibers. In particular, attention was focused on the GHS-KdV system governed by the Atangana-Baleanu Caputo fractional derivative (AB-CFD), which effectively captures the distinctive memory and hereditary features of complex materials and wave propagation phenomena. We presented two advanced Laplace-based methods: the Laplace Adomian decomposition method (LADM) and Laplace variational iteration method (LVIM) that effectively capture the system's nonlinear dynamics and memory effects without requiring linearization or perturbation. Numerical validation confirmed the methods' accuracy through excellent agreement with exact solutions, demonstrating systematic convergence as additional terms were included and complete recovery of classical solutions when fractional orders approached integer values. The mathematical consistency of both approaches is verified through comprehensive error analysis. These results establish LADM and LVIM as efficient computational tools for nonlinear fractional PDEs, particularly valuable for modeling wave propagation in complex media and other systems exhibiting hereditary properties. The methods offer significant advantages in handling the nonlocal characteristics inherent to fractional systems while maintaining computational efficiency.



    加载中


    [1] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 1999.
    [2] G. Barbero, L. R. Evangelista, R. S. Zola, E. K. Lenzi, A. M. Scarfone, A brief review of fractional calculus as a tool for applications in physics: Adsorption phenomena and electrical impedance in complex fluids, Fractal Fract., 8 (2024), 369. https://doi.org/10.3390/fractalfract8070369 doi: 10.3390/fractalfract8070369
    [3] N. S. Alharthi, Efficient simulation of plasma physics' time fractional modified Korteweg-de Vries equations, PLoS One, 20 (2025), e0316218. https://doi.org/10.1371/journal.pone.0316218 doi: 10.1371/journal.pone.0316218
    [4] V. T. Hoang, J. Widjaja, Y. L. Qiang, M. K. Liu, T. J. Alexander, A. F. Runge, et al., Nonlinear wave propagation governed by a fractional derivative, Nat. Commun., 16 (2025), 5469. https://doi.org/10.1038/s41467-025-60625-4 doi: 10.1038/s41467-025-60625-4
    [5] H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
    [6] Y. Wu, X. Geng, X. Hu, S. Zhu, A generalized Hirota-Satsuma coupled Korteweg-de Vries equation and Miura transformations, Phys. Lett. A, 255 (1999), 259–264. https://doi.org/10.1016/S0375-9601(99)00163-2 doi: 10.1016/S0375-9601(99)00163-2
    [7] M. Jibran, R. Nawaz, A. Khan, S. Afzal, Iterative solutions of Hirota-Satsuma coupled KdV and modified coupled KdV systems, Math. Probl. Eng., 2018 (2018), 9042039. https://doi.org/10.1155/2018/9042039 doi: 10.1155/2018/9042039
    [8] A. Kumar, R. D. Pankaj, Laplace-modified decomposition method for the generalized Hirota-Satsuma coupled KdV equation, Can. J. Basic Appl. Sci., 3 (2015), 126–133.
    [9] R. Abazari, M. Abazari, Numerical simulation of generalized Hirota-Satsuma coupled KdV equation by RDTM and comparison with DTM, Commun. Nonlinear Sci., 17 (2012), 619–629. https://doi.org/10.1016/j.cnsns.2011.05.022 doi: 10.1016/j.cnsns.2011.05.022
    [10] H. Gundogdu, O. F. Gozukizil, Double Laplace decomposition method and exact solutions of Hirota, Schrödinger and complex mKdV equations, Konuralp J. Math., 7 (2019), 7–15.
    [11] M. Inc, M. T. Gencoglu, A. Akgül, Application of extended Adomian decomposition method and extended variational iteration method to Hirota-Satsuma coupled KdV equation, J. Adv. Phys., 6 (2017), 216–222. https://doi.org/10.1166/jap.2017.1326 doi: 10.1166/jap.2017.1326
    [12] O. W. Lawal, A. C. Loyimi, L. M. Erinle-Ibrahim, Algorithm for solving a generalized Hirota-Satsuma coupled KdV equation using homotopy perturbation transform method, Sci. World J., 13 (2018), 23–28. https://doi.org/10.4314/swj.v13i3 doi: 10.4314/swj.v13i3
    [13] J. Hristov, On the Atangana-Baleanu derivative and its relation to the fading memory concept: the diffusion equation formulation, In: Fractional derivatives with Mittag-Leffler kernel: Theory and applications in science and engineering, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-11662-0-11
    [14] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [15] I. Abbas, R. Tiwari, A. E. Abouelregal, Atangana-Baleanu fractional approach to photothermal wave propagation in semiconductor materials under the influence of a moving heat source, Mech. Solids, 2025 (2025), 1–18. https://doi.org/10.1134/S002565442560240X doi: 10.1134/S002565442560240X
    [16] A. E. Abouelregal, M. Marin, A. Foul, S. S. Askar, Coupled responses of thermomechanical waves in functionally graded viscoelastic nanobeams via thermoelastic heat conduction model including Atangana-Baleanu fractional derivative, Sci. Rep., 14 (2024), 9122. https://doi.org/10.1038/s41598-024-58866-2 doi: 10.1038/s41598-024-58866-2
    [17] M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 444. https://doi.org/10.1140/epjp/i2017-11717-0 doi: 10.1140/epjp/i2017-11717-0
    [18] R. Saadeh, O. Ala'yed, A. Qazza, Analytical solution of coupled Hirota-Satsuma and KdV equations, Fractal Fract., 6 (2022), 694. https://doi.org/10.3390/fractalfract6120694 doi: 10.3390/fractalfract6120694
    [19] B. R. Sontakke, A. Shaikh, K. S. Nisar, Approximate solutions of a generalized Hirota-Satsuma coupled KdV and a coupled mKdV systems with time fractional derivatives, Malaysian J. Math. Sci., 12 (2018), 175–196.
    [20] L. Akinyemi, O. S. Iyiola, A reliable technique to study nonlinear time-fractional coupled Korteweg-de Vries equations, Adv. Differ. Equ., 2020 (2020), 169. https://doi.org/10.1186/s13662-020-02625-w doi: 10.1186/s13662-020-02625-w
    [21] M. H. Heydari, Z. Avazzadeh, C. Cattani, Numerical solution of variable-order space-time fractional KdV-Burgers-Kuramoto equation by discrete Legendre polynomials, Eng. Comput., 38 (2022), 859–869. https://doi.org/10.1007/s00366-020-01181-x doi: 10.1007/s00366-020-01181-x
    [22] M. A. Saker, S. S. Ezz-Eldien, A. H. Bhrawy, A pseudospectral method for solving the time-fractional generalized Hirota-Satsuma coupled KdV equation, Romanian J. Phys., 62 (2017), 105.
    [23] A. H. Ganie, S. Noor, M. Al Huwayz, A. Shafee, S. A. El-Tantawy, Numerical simulations for fractional Hirota-Satsuma coupled Korteweg-de Vries systems, Open Phys., 22 (2024), 20240008. https://doi.org/10.1515/phys-2024-0008 doi: 10.1515/phys-2024-0008
    [24] O. J. Algahtani, Investigation of a spatio-temporal fractal fractional coupled Hirota system, Fractal Fract., 8 (2024), 178. https://doi.org/10.3390/fractalfract8030178 doi: 10.3390/fractalfract8030178
    [25] S. Mahmood, R. Shah, H. Khan, M. Arif, Laplace Adomian decomposition method for multidimensional time-fractional Navier-Stokes equation, Symmetry, 11 (2019), 149. https://doi.org/10.3390/sym11020149 doi: 10.3390/sym11020149
    [26] H. F. Ahmed, M. S. Bahgat, M. Zaki, Numerical approaches to system of fractional partial differential equations, J. Egypt. Math. Soc., 25 (2017), 141–150. https://doi.org/10.1016/j.joems.2016.12.004 doi: 10.1016/j.joems.2016.12.004
    [27] H. F. Ahmed, M. S. M. Bahgat, M. Zaki, Analytical approaches to space- and time-fractional coupled Burgers' equations, Pramana J. Phys., 92 (2019), 38. https://doi.org/10.1007/s12043-018-1693-z doi: 10.1007/s12043-018-1693-z
    [28] N. Ngarhasta, B. Some, K. Abbaoui, Y. Cherruault, New numerical study of Adomian method applied to a diffusion model, Kybernetes, 31 (2002), 61–75. https://doi.org/10.1108/03684920210413764 doi: 10.1108/03684920210413764
    [29] M. M. Al-Sawalha, A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives, AIMS Math., 7 (2022), 18334–18359. https://doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010
    [30] A. Nazneen, R. Nawaz, L. Zada, N. Ali, M. Benghanem, H. Ahmad, Analysis of the non-linear higher dimensional fractional differential equations arising in dusty plasma using the Atangana-Baleanu fractional derivative, Results Eng., 25 (2025), 104116. https://doi.org/10.1016/j.rineng.2025.104116 doi: 10.1016/j.rineng.2025.104116
    [31] D. Baleanu, H. K. Jassim, H. Ahmed, J. Singh, D. Kumar, R. Shah, et al., A mathematical theoretical study of Atangana-Baleanu fractional Burger's equations, Partial Differ. Equ. Appl. Math., 11 (2024), 100741. https://doi.org/10.1016/j.padiff.2024.100741 doi: 10.1016/j.padiff.2024.100741
    [32] F. Ogunfiditimi, N. Okiotor, Solution of modified Hirota-Satsuma coupled KdV equations by variational iteration method, IJMTT, 67 (2021), 113–125. https://doi.org/10.14445/22315373/IJMTT-V67I5P514 doi: 10.14445/22315373/IJMTT-V67I5P514
    [33] A. M. Wazwaz, The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave equations, Comput. Math. Appl., 54 (2007), 926–932. https://doi.org/10.1016/j.camwa.2006.12.038 doi: 10.1016/j.camwa.2006.12.038
    [34] M. Inc, Numerical simulation of KdV and mKdV equations with initial conditions by the variational iteration method, Chaos Soliton. Fract., 34 (2007), 1075–1081. https://doi.org/10.1016/j.chaos.2006.04.069 doi: 10.1016/j.chaos.2006.04.069
    [35] S. Kumar, P. Pandey, Quasi wavelet numerical approach of nonlinear reaction-diffusion and integro reaction-diffusion equation with Atangana-Baleanu time fractional derivative, Chaos Soliton. Fract., 130 (2020), 109456. https://doi.org/10.1016/j.chaos.2019.109456 doi: 10.1016/j.chaos.2019.109456
    [36] E. F. Doungmo Goufo, S. Kumar, Shallow water wave models with and without singular kernel: existence, uniqueness, and similarities, Math. Probl. Eng., 2017 (2017), 4609834. https://doi.org/10.1155/2017/4609834 doi: 10.1155/2017/4609834
    [37] E. Fan, Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled mKdV equation, Phys. Lett. A, 282 (2001), 18–22. https://doi.org/10.1016/S0375-9601(01)00161-X doi: 10.1016/S0375-9601(01)00161-X
    [38] D. D. Ganji, M. Rafei, Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation by homotopy perturbation method, Phys. Lett. A, 356 (2006), 131–137. https://doi.org/10.1016/j.physleta.2006.03.039 doi: 10.1016/j.physleta.2006.03.039
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(345) PDF downloads(28) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog