In general topology, connectedness is a fundamental concept. Convex structures, analogous to topological structures, enable the generalization of numerous properties from topological spaces. In this paper, we first define $ r $-connectivity for $ L $-subsets in convex $(L, M)$-fuzzy hull spaces based on convex $(L, M)$-fuzzy hull operators. We then establish several equivalent characterizations of $ r $-connected $ L $-subsets and explore their key properties. In particular, by leveraging these operators, we introduce the finite product property of $ r $-connecivity for product spaces within the framework of convex $(L, M)$-fuzzy hull spaces.
Citation: Hu Zhao, Bingnan Zhang, Jue Ma, Xiongwei Zhang. $ r $-connectivity of $ L $-subsets in convex $ (L, M) $-fuzzy hull spaces[J]. AIMS Mathematics, 2025, 10(11): 28020-28033. doi: 10.3934/math.20251231
In general topology, connectedness is a fundamental concept. Convex structures, analogous to topological structures, enable the generalization of numerous properties from topological spaces. In this paper, we first define $ r $-connectivity for $ L $-subsets in convex $(L, M)$-fuzzy hull spaces based on convex $(L, M)$-fuzzy hull operators. We then establish several equivalent characterizations of $ r $-connected $ L $-subsets and explore their key properties. In particular, by leveraging these operators, we introduce the finite product property of $ r $-connecivity for product spaces within the framework of convex $(L, M)$-fuzzy hull spaces.
| [1] |
D. M. Ali, Some other types of fuzzy connectedness, Fuzzy Sets Syst., 46 (1992), 55–61. https://doi.org/10.1016/0165-0114(92)90266-7 doi: 10.1016/0165-0114(92)90266-7
|
| [2] |
J. M. Fang, Y. L. Yue, K. Fan's theorem in fuzzifying topology, Inf. Sci., 162 (2004), 139–146. https://doi.org/10.1016/j.ins.2003.09.003 doi: 10.1016/j.ins.2003.09.003
|
| [3] |
J. M. Fang, Y. L. Yue, Extensionality and $\epsilon$-connectednessin the category of convergence spaces, Fuzzy Sets Syst., 425 (2021), 100–116. https://doi.org/10.1016/j.fss.2021.05.001 doi: 10.1016/j.fss.2021.05.001
|
| [4] |
G. Jäger, Connectedness and local connectedness for lattice-valued convergenc spaces, Fuzzy Sets Syst., 300 (2016), 134–146. https://doi.org/10.1016/j.fss.2015.11.013 doi: 10.1016/j.fss.2015.11.013
|
| [5] |
Q. Jin, L. Q. Li, Y. Lv, F. Zhao, J. Zou, Connectedness for lattice-valued subsets in lattice-valued convergence spaces, Quaest. Math., 42 (2019), 135–150. https://doi.org/10.2989/16073606.2018.1441920 doi: 10.2989/16073606.2018.1441920
|
| [6] | Y. Maruyama, Lattice-valued fuzzy convex geometry, RIMS Kokyuroku, 1641 (2009), 22–37. |
| [7] |
B. Pang, Bases and subbases in $(L, M)$-fuzzy convex spaces, Comp. Appl. Math., 39 (2020), 41. https://doi.org/10.1007/s40314-020-1065-4 doi: 10.1007/s40314-020-1065-4
|
| [8] |
B. Pang, Hull operators and interval operators in $(L, M)$-fuzzy convex spaces, Fuzzy Sets Syst., 405 (2021), 106–127. https://doi.org/10.1016/j.fss.2019.11.010 doi: 10.1016/j.fss.2019.11.010
|
| [9] |
B. Pang, F. G. Shi, Strong inclusion orders between $L$-subsets and its applications in $L$-convex spaces, Quaest. Math., 41 (2018), 1021–1043. https://doi.org/10.2989/16073606.2018.1436613 doi: 10.2989/16073606.2018.1436613
|
| [10] |
B. Pang, Y. Zhao, Characterizations of $L$-convex spaces, Iran. J. Fuzzy Syst., 13 (2016), 51–61. https://doi.org/10.22111/ijfs.2016.2595 doi: 10.22111/ijfs.2016.2595
|
| [11] |
P. M. Pu, Y. M. Liu, Fuzzy topology Ⅰ, Neighborhood structure of a fuzzy point and Moore-Smith convergence, Math. Anal. Appl., 76 (1980), 571–599. https://doi.org/10.1016/0022-247X(80)90048-7 doi: 10.1016/0022-247X(80)90048-7
|
| [12] |
G. N. Raney, A subdirect-union representation for completely distibutive complete lattices, Proc. Am. Math. Soc., 4 (1953), 518–522. https://doi.org/10.2307/2032514 doi: 10.2307/2032514
|
| [13] |
M. V. Rosa, On fuzzy topology fuzzy convexity spaces and fuzzy local convexity, Fuzzy Sets Syst., 62 (1994), 97–100. https://doi.org/10.1016/0165-0114(94)90076-0 doi: 10.1016/0165-0114(94)90076-0
|
| [14] | S. E. Rodabaugh, Powerset operator foundations for poslat fuzzy set theories and topologies, In: Mathematics of Fuzzy Set, Boston: Springer, 1999, 91–116. https://doi.org/10.1007/978-1-4615-5079-2_3 |
| [15] |
O. R. Sayed, E. El-Sanousy, Y. H. Raghp Sayed, On $(L, M)$-fuzzy convex structures, Filomat, 33 (2019), 4151–4163. https://doi.org/10.2298/FIL1913151s doi: 10.2298/FIL1913151s
|
| [16] |
F. G. Shi, Z. Y. Xiu, $(L, M)$-fuzzy convex structures, J. Nonlinear Sci. Appl., 10 (2017), 3655–3669. https://doi.org/10.22436/jnsa.010.07.25 doi: 10.22436/jnsa.010.07.25
|
| [17] |
F. G. Shi, Z. Y. Xiu, A new approach to the fuzzification of convex structures, J. Appl. Math., 2014 (2014), 249183. https://doi.org/10.1155/2014/249183 doi: 10.1155/2014/249183
|
| [18] |
F. G. Shi, E. Q. Li, The restricted hull operator of $M$-fuzzifying convex structures, J. Intel. Fuzzy Syst., 30 (2016), 409–421. https://doi.org/10.3233/IFS-151765 doi: 10.3233/IFS-151765
|
| [19] |
F. G. Shi, Connectedness degrees in $L$-fuzzy topological spaces, Int. J. Math. Math. Sci., 2009 (2009), 892826. https://doi.org/10.1155/2009/892826 doi: 10.1155/2009/892826
|
| [20] | M. Van De Vel, Theory of convex structures, Amsterdam: North-Holland, 1993. |
| [21] |
G. J. Wang, Theory of topological molecular lattices, Fuzzy Set Syst., 47 (1992), 351–376. https://doi.org/10.1016/0165-0114(92)90301-J doi: 10.1016/0165-0114(92)90301-J
|
| [22] |
T. T. Xie, R. Y. Wang, Connectedness degrees in $(L, M)$-fuzzy structures, J. Intel. Fuzzy Syst., 46 (2024), 2865–2876. https://doi.org/10.3233/JIFS-232309 doi: 10.3233/JIFS-232309
|
| [23] |
M. S. Ying, A new approach for fuzzy topology. Ⅱ, Fuzzy Set Syst., 47 (1992), 221–232. https://doi.org/10.1016/0165-0114(92)90181-3 doi: 10.1016/0165-0114(92)90181-3
|
| [24] |
L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
|
| [25] |
H. Zhao, X. Hu, G. X. Chen, A new characterization of the product of $(L, M)$-fuzzy convex structures, J. Intel. Fuzzy Syst., 45 (2023), 4535–4545. https://doi.org/10.3233/JIFS-231909 doi: 10.3233/JIFS-231909
|
| [26] |
H. Zhao, X. Hu, O. R. Sayed, E. El-Sanousy, Y. H. R. Sayed, Concave $(L, M)$-fuzzy interior operators and $(L, M)$-fuzzy hull operators, Comp. Appl. Math., 40 (2021), 301. https://doi.org/10.1007/s40314-021-01690-5 doi: 10.1007/s40314-021-01690-5
|
| [27] |
H. Zhao, O. R. Sayed, E. El-Sanousy, Y. H. Ragheb Sayed, G. X. Chen, On separation axioms in $(L, M)$-fuzzy convex structures, J. Intel. Fuzzy Syst., 40 (2021), 8765–8773. https://doi.org/10.3233/JIFS-200340 doi: 10.3233/JIFS-200340
|
| [28] |
H. Zhao, Q. L. Song, O. R. Sayed, E. El-Sanousy, Y. H. Ragheb Sayed, G. X. Chen, Corrigendum to "On $(L, M)$-fuzzy convex structures", Filomat, 35 (2021), 1687–1691. https://doi.org/10.2298/FIL2105687Z doi: 10.2298/FIL2105687Z
|
| [29] |
H. Zhao, L. Y. Jia, G. X. Chen, Product and coproduct structures of $(L, M)$-fuzzy hull operators, J. Intel. Fuzzy Syst., 44 (2023), 3515–3526. https://doi.org/10.3233/JIFS-222911 doi: 10.3233/JIFS-222911
|
| [30] |
H. Zhao, L. Y. Jia, G. X. Chen, Convex $(L, M)$-fuzzy remote neighborhood operators, Kybernetika, 60 (2024), 150–171. http://dx.doi.org/10.14736/kyb-2024-2-0150 doi: 10.14736/kyb-2024-2-0150
|
| [31] |
H. Zhao, Y. J. Zhao, S. Y. Zhang, On $(L, N)$-fuzzy betweenness relations, Filomat, 37 (2023), 3559–3573. https://doi.org/10.2298/FIL2311559Z doi: 10.2298/FIL2311559Z
|
| [32] |
Y. Zhong, F. H. Chen, F. G. Shi, A new approach of describing $L$-fuzzy convexity, J. Intel. Fuzzy Syst., 37 (2019), 2253–2264. https://doi.org/10.3233/JIFS-182568 doi: 10.3233/JIFS-182568
|