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wave phenomena in plasma and optical fibers. In particular, attention was focused on the GHS-
KdV system governed by the Atangana-Baleanu Caputo fractional derivative (AB-CFD), which
effectively captures the distinctive memory and hereditary features of complex materials and wave
propagation phenomena. We presented two advanced Laplace-based methods: the Laplace Adomian
decomposition method (LADM) and Laplace variational iteration method (LVIM) that effectively
capture the system’s nonlinear dynamics and memory effects without requiring linearization or
perturbation. Numerical validation confirmed the methods’ accuracy through excellent agreement
with exact solutions, demonstrating systematic convergence as additional terms were included and
complete recovery of classical solutions when fractional orders approached integer values. The
mathematical consistency of both approaches is verified through comprehensive error analysis. These
results establish LADM and LVIM as efficient computational tools for nonlinear fractional PDEs,
particularly valuable for modeling wave propagation in complex media and other systems exhibiting
hereditary properties. The methods offer significant advantages in handling the nonlocal characteristics
inherent to fractional systems while maintaining computational efficiency.
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1. Introduction

Fractional calculus, an extension of classical calculus that generalizes derivatives and integrals to
non-integer orders [1], has become a crucial mathematical framework for modeling complex systems
with inherent memory and hereditary effects. Unlike traditional calculus, which is restricted to
integer-order derivatives, fractional calculus enables the study of phenomena such as viscoelasticity,
anomalous diffusion, and complex wave dynamics. These capabilities make it particularly effective
for modeling systems exhibiting long-range dependencies. Consequently, fractional calculus has
found applications in diverse fields, including fluid dynamics [2], plasma physics [3], and nonlinear
optics [4], where classical models often fail to capture the underlying system behavior [5].

The generalized Hirota-Satsuma (GHS) coupled Korteweg-de Vries (KdV) system, introduced
in [6], is widely recognized as a fundamental model for describing nonlinear wave interactions. This
system arises in several real-world physical and engineering scenarios. In fluid dynamics, it models
the evolution of shallow water waves in channels, harbors, and coastal regions, which is essential for
hydraulic and coastal engineering applications. In plasma physics, it describes ion-acoustic plasma
waves, which play a crucial role in controlled fusion devices and space plasma environments. In
nonlinear optics, the system captures the propagation of nonlinear optical pulses in fiber optics and
photonic media.

Over the years, numerous studies have proposed various approaches to solve the GHS-KdV system,
ranging from numerical techniques to semi-analytical methods [7–12]. While these methods have
provided valuable insights, incorporating fractional derivatives into the model significantly increases
its complexity, necessitating advanced solution strategies capable of capturing both the memory and
nonlinear characteristics of the system.

The adoption of fractional derivatives, particularly the Atangana-Baleanu derivative [13],
represents a notable advancement in the mathematical modeling of complex dynamical systems. The
AB-CFD incorporates a nonlocal Mittag-Leffler (ML) kernel that is non-singular at the origin and
exhibits an intermediate memory decay, slower than exponential but faster than a power law. This
memory structure has been shown to better reflect the relaxation and dispersive dynamics of many
complex wave media. In contrast to Caputo and Riemann-Liouville operators, whose singular kernels
enforce strong power-law memory, and the Caputo-Fabrizio operator with its rapidly fading
exponential behavior, the AB-CFD introduces a smooth hereditary law without nonphysical
singularities. As a result, it offers an enhanced and physically grounded framework for modeling
nonlinear wave propagation and transport phenomena where history-dependent effects are
essential [14–17]. Despite these advantages, the analytical and numerical treatment of fractional
differential equations involving the AB-CFD operator remains challenging due to the strong
nonlinearity, non-locality, and memory dependence inherent in such models, especially for systems
like the fractional GHS-KdV equation. For the GHS coupled KdV system, where nonlinear dispersive
waves interact through multifield dynamics, variations in memory strength can significantly influence
transient propagation characteristics. The AB-CFD formulation offers a flexible framework that:

• captures non-singular fading memory in time-fractional models.
• preserves physical nonlocality through the ML kernel.
• recovers the classical GHS-KdV dynamics as the fractional order tends to one.
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Classical models often fail to fully account for memory and nonlocal effects inherent in these
systems, whereas fractional derivatives, particularly those with non-singular kernels, offer a more
realistic and flexible framework for describing wave evolution and dissipation in such complex media.
In Table 1, we provide a comparison of representative time-derivative models used for KdV-type
equations, highlighting the kernel behavior, memory-decay characteristics, and short-time regularity.
Our AB-based model occupies a distinct position within this comparison.

Table 1. Representative time-derivative models for KdV systems (qualitative comparison).

Time derivative Kernel K(t) Short-time
behavior

Memory decay Notes

Classical (θ = 1) δ(t) Markovian None Recovers standard GHS-
KdV

Caputo/RL for α ∈
(0,1)

K(t)∼ t−θ (singular) Power-law
singular

Power-law tail Strong long memory;
classical fractional models

Caputo-Fabrizio Exponential (non-
singular)

Finite at 0 Exponential Short memory; fast
forgetting

Atangana-Baleanu
(AB-CFD)

Mittag-Leffler (non-
singular, nonlocal)

Finite at 0 ML/stretched-
exp type

Distinct transient
dynamics; kernel used
in this work

Given these analytical challenges, several advanced solution techniques have been developed to
address the intricacies introduced by fractional derivatives. For example, Rania Saadeh [18] applied
the Laplace residual power series method (LRPSM) to solve the nonlinear time-fractional GHS-KdV
equation using Caputo fractional derivatives. In [19], a fractional complex transform and a modified
Adomian decomposition method were employed. Similarly, the q-homotopy analysis transform
method (q-HATM) was utilized in [20] to study the nonlinear Caputo fractional GHS-KdV.
Heydari [21] employed discrete Legendre polynomials with a collocation scheme, while the authors
in [22] applied a pseudo-spectral method to address the time-fractional GHS-KdV system. Recent
work [23] introduced two novel semi-analytical techniques for solving the fractional GHS-KdV
system: the Aboodh residual power series method (ARPSM) and the Aboodh transform iteration
method (ATIM). Additionally, the spatio-temporal fractal fractional coupled Hirota system was
numerically solved in [24].

Since traditional methods often perform poorly when handling non-singular memory laws. We
explore the specific impact of the AB-CFD kernel on solution behavior by embedding it within
Laplace-enhanced LADM and LVIM algorithms. These techniques are then employed to compute
accurate and efficient solutions of the following fractional GHS-KdV system.

ABC
0D

θ
tϕ(x, t) = ρ1 ϕxxx(x, t) − ρ2 ϕ(x, t) ϕx(x, t) + ρ3

(
ψ(x, t)φ(x, t)

)
x,

ABC
0D

θ
tψ(x, t) = −σ1 ψxxx(x, t) + σ2 ϕ(x, t)ψx(x, t),

ABC
0D

θ
tφ(x, t) = −δ1 φxxx(x, t) + δ2 ϕ(x, t)φx(x, t),

(1.1)
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along the initial conditions (ICs):

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x). (1.2)

Here, ϕ(x, t), ψ(x, t), and φ(x, t) are unknown functions represent interacting wave
fields, (x, t) ∈ [A, B] × [0, L], 0 < θ ≤ 1, the coefficients ρ1, ρ2, ρ3, σ1, σ2, δ1 and δ2 are non-negative
numbers determining coupling strengths and ABC

0D
θ
t is the time AB-CFD.

The LADM integrates the Laplace transform with the Adomian decomposition method, simplifying
fractional derivatives into algebraic terms and decomposing solutions into rapidly convergent series.
This approach eliminates the need for linearization or perturbation, making it particularly suitable for
complex fractional systems such as the GHS-KdV. The effectiveness of the LADM in handling a wide
class of differential equations has been demonstrated in several studies; see, for example, [25–27].
The convergence of both the ADM and LADM has been established by various authors for different
classes of differential equations involving diverse types of fractional derivatives; see [28–30].

The variational iteration method (VIM) is an iterative approach that constructs correction
functionals to approximate solutions. By incorporating the Laplace transform, the VIM simplifies the
treatment of complex initial and boundary conditions, thereby improving accuracy. This method
effectively integrates memory effects from fractional derivatives, enhancing its applicability to
fractional GHS-KdV systems with the AB-CFD. Due to its effectiveness, the LVIM has become a
popular choice among researchers seeking semi-analytical solutions for various types of fractional
differential equations (FDEs) involving different kinds of fractional derivatives; relevant studies
include [26, 27, 31, 32]. The LVIM facilitates rapid convergence and yields progressively more
accurate approximations of the exact solutions [33, 34].

Although several methods have been developed for fractional KdV-type equations, incorporating
the AB-CFD operator introduces unique analytical and computational challenges due to its
non-singular Mittag-Leffler kernel. To address these, we propose Laplace-based decomposition
frameworks (LADM and LVIM) tailored to the AB-CFD operator. These hybrid semi-analytical
schemes yield rapidly convergent solutions without linearization or discretization, while preserving
the physical integrity and computational efficiency of the fractional model.

The proposed LADM and LVIM offer distinct advantages:

• Efficiency and Simplicity: Both methods transform the fractional GHS-KdV system into simpler
forms, providing accurate solutions without requiring extensive computational resources.

• Robustness: By leveraging the Laplace transform, these methods effectively handle the non-
linearity and memory effects introduced by the AB-CFD.

• Convergence and Accuracy: The LADM and LVIM exhibit rapid convergence to solutions,
achieving high accuracy as validated through comparisons with exact results.

• Wide Applicability: These methods are not only effective for the fractional GHS-KdV system but
are also applicable to a broad class of nonlinear fractional differential equations across various
scientific and engineering fields.

The novelty of this study is threefold: (i) it presents the first application of the LADM and LVIM
to the fractional GHS-KdV system involving the Atangana-Baleanu derivative, (ii) it provides a
systematic convergence assessment, and (iii) it offers a comprehensive comparison with recent
numerical techniques. Extensive numerical experiments and graphical analyses confirm the superior
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accuracy, stability, and efficiency of the proposed methods, positioning them as powerful and reliable
tools for solving complex fractional systems.

The paper proceeds as follows: Section 2 introduces the mathematical basic definitions, including
the AB-CFD and related essential concepts. Section 3 details the implementation of the LADM and
LVIM for solving the fractional GHS-KdV system. Numerical results and analyses are presented in
Sections 4 and 5, respectively. The concluding remarks and future research directions are discussed in
Section 6.

2. Basic definitions

In this section, we present some fundamental definitions and essential results related to the AB-
CFD.
Definition 1. [14] The two-parameter Mittag-Leffler function is defined as

Eα,β(t) =
∞∑

k=0

tk

Γ(αk + β)
α, β ∈ R+, t ∈ C,

which is a generalization of the one-parameter Mittag-Leffler function (Eα(t) = Eα,1(t)), and the latter
is a generalization of the exponential function et.
Definition 2. Let F (x, t) ∈ H1(a, b), b > a and F (x, t) differentiable and let θ ∈ (0, 1]. The AB-CFD
is defined as:

ABC
0D

θ
tF (x, t) =

M(θ)
1 − θ

∫ t

0

∂F (x, s)
∂s

Eθ

(−θ (t − s)θ

1 − θ

)
ds, (2.1)

whereM(θ) = 1 − θ + θ
Γ(θ) ,M(0) =M(1) = 1, and Eθ

(
−θ (t−s)θ

1−θ

)
denotes the Mittag-Leffler function of

one parameter. For more details and properties of the AB-CFD, refer to [31, 35, 36].
Definition 3. For a piecewise continuous function u(ξ, t) of exponential order σ0, i.e., there exist
constants M > 0 and σ0 ∈ R such that |u(ξ, t)| ⩽ Meσ0t, t ⩾ 0.

The Laplace transform (LT) with respect to the temporal variable t exists and is given by:

Ltu(ξ, t) = U(ξ, s) =
∫ ∞

0
u(ξ, τ)e−sτdτ, s ≥ 0, (2.2)

and its inverse is given by

u(ξ, t) = L−1
t [U(ξ, s)] =

∫ c+i∞

c−i∞
U(ξ, s)esτds, c = Re(s). (2.3)

Definition 4. The LT of the AB-CFD is defined as [31],

Lt[ABC
θD

θ
t f (x, t)](s) =

M(θ)
1 − θ

F (x, s)sθ − sθ−1 f (x, 0)
sθ + θ

1−θ

 . (2.4)

3. Analysis of the proposed methods

3.1. Laplace Adomian decomposition method

In the following, we will summarize the procedure steps of applying the LADM to the fractional
GHS coupled KdV system Eq (1.1).
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• First, applying the Laplace transform to Eq (1.1) followed by its inverse gives

ϕ(x, t) = ϕ(x, 0) +L−1
t

[
ϖ(θ)Lt

[
ρ1 ϕxxx(x, t) − ρ2 A1(ϕ, ϕ) + ρ3(A2(ψ, φ) +A3(ψ, φ))

]]
,

ψ(x, t) = ψ(x, 0) +L−1
t

[
ϖ(θ)Lt

[
−σ1 ψxxx(x, t) + σ2 B(ϕ, ψ)

]]
,

φ(x, t) = φ(x, 0) +L−1
t

[
ϖ(θ)Lt

[
−δ1 φxxx(x, t) + δ2 H(ϕ, φ)

]]
.

(3.1)

Here ϖ(θ) = θ+sθ(1−θ)
sθM(θ) , A1 = ϕ(x, t)ϕx(x, t), A2 = ψx(x, t)φ(x, t), A3 = ψ(x, t)φx(x, t) , B =

ϕ(x, t)ψx(x, t), and H = ϕ(x, t)φx(x, t).
• In the LADM, the solutions ϕ(x, t) , ψ(x, t), and φ(x, t) are expressed as convergent infinite series

as:

ϕ(x, t) =
∞∑

n=0

ϕn(x, t), ψ(x, t) =
∞∑

n=0

ψn(x, t) and φ(x, t) =
∞∑

n=0

φn(x, t). (3.2)

The nonlinear components A1, A2, A3, B, and H are expanded by an infinite series of the
Adomian polynomials as

A1 =

∞∑
n=0

Ξn, A2 =

∞∑
n=0

Pn, A3 =

∞∑
n=0

Kn, B =

∞∑
n=0

Υn, H =

∞∑
n=0

Ωn, (3.3)

where

Ξn =
1
n!

[ dn

dλn

[
A1

( ∞∑
k=0

λkϕk
)]]

λ=0
=

1
n!

[ dn

dλn

[( ∞∑
k=0

λkϕk)
(
Dx(

∞∑
k=0

λkϕk)
)]]

λ=0
,

Pn =
1
n!

[ dn

dλn

[
A2

( ∞∑
k=0

λkψk,

∞∑
k=0

λkφk
)]]

λ=0
=

1
n!

[ dn

dλn

[(
Dx(

∞∑
k=0

λkψk))
( ∞∑

k=0

λkφk
)]]

λ=0
,

Kn =
1
n!

[ dn

dλn

[
A3

( ∞∑
k=0

λkψk,

∞∑
k=0

λkφk
)]]

λ=0
=

1
n!

[ dn

dλn

[( ∞∑
k=0

λkψk)
(
Dx(

∞∑
k=0

λkφk)
)]]

λ=0
,

Υn =
1
n!

[ dn

dλn

[
B
( ∞∑

k=0

λkϕk,

∞∑
k=0

λkψk
)]]

λ=0
=

1
n!

[ dn

dλn

[( ∞∑
k=0

λkϕk)
(
Dx(

∞∑
k=0

λkψk)
)]]

λ=0
,

Ωn =
1
n!

[ dn

dλn

[
H

( ∞∑
k=0

λkϕk,

∞∑
k=0

λkφk
)]]

λ=0
=

1
n!

[ dn

dλn

[( ∞∑
k=0

λkϕk)
(
Dx(

∞∑
k=0

λkφk)
)]]

λ=0
.

(3.4)

• The Adomian polynomials (3.4) can be systematically computed. Below are the first few
components:

Ξ0 = ϕ0Dxϕ0, Ξ1 = ϕ0Dxϕ1 + ϕ1Dxϕ0, Ξ2 = ϕ0Dxϕ2 + ϕ1Dxϕ1 + ϕ2Dxϕ0, · · ·

P0 = φ0Dxψ0, P1 = φ1Dxψ0 + φ0Dxψ1, P2 = φ2Dxψ0 + φ1Dxψ1 + φ0Dxψ2, · · ·

K0 = ψ0Dxφ0, K1 = ψ1Dxφ0 + ψ0Dxφ1, K2 = ψ2Dxφ0 + ψ1Dxφ1 + ψ0Dxφ2, · · ·

Υ0 = ϕ0Dxψ0, Υ1 = ϕ1Dxψ0 + ϕ0Dxψ1, Υ2 = ϕ2Dxψ0 + ϕ1Dxψ1 + ϕ0Dxψ2, · · ·

Ω0 = ϕ0Dxφ0, Ω1 = ϕ1Dxφ0 + ϕ0Dxφ1, Ω2 = ϕ2Dxφ0 + ϕ1Dxφ1 + ϕ0Dxφ2, · · ·
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• Inserting Eqs (3.2) and (3.3) into Eq (3.1) yields

∞∑
n=0

ϕn(x, t) = ϕ0 +L
−1
t

[
ϖ(θ) Lt

[
ρ1

∞∑
n=0

(ϕn)xxx

− ρ2

∞∑
n=0

(A1)n + ρ3

∞∑
n=0

(A2)n + ρ3

∞∑
n=0

(A3)n

]]
,

∞∑
n=0

ψn(x, t) = ψ0 +L
−1
t

ϖ(θ)Lt

−σ1

∞∑
n=0

(ψn)xxx + σ2

∞∑
n=0

Bn

 ,
∞∑

n=0

φn(x, t) = φ0 +L
−1
t

ϖ(θ) Lt

−δ1

∞∑
n=0

(φn)xxx + δ2

∞∑
n=0

Hn

 .

(3.5)

• By using the linearity property of the LT, the subsequent recursive formulas are attained:

ϕ0 = ϕ(x, 0), ψ0 = ψ(x, 0), and φ0 = φ(x, 0). (3.6)

ϕ1(x, t) = L−1
t

[
ϖ(θ)Lt

[
ρ1 (ϕ0)xxx − ρ2 (A1)0 + ρ3(A2)0 + ρ3(A3)0

]]
,

ψ1(x, t) = L−1
t

[
ϖ(θ) Lt

[
−σ1 (ψ0)xxx(x, t) + σ2 B0

]]
,

φ1(x, t) = L−1
t

[
ϖ(θ) Lt

[
−δ1 (φ0)xxx + δ2 H0

]]
.

(3.7)

In overall, for κ ≥ 1, we have

ϕκ+1(x, t) = L−1
t

[
ϖ(θ)Lt

[
ρ1 (ϕκ)xxx − ρ2 (A1)κ + ρ3(A2)κ + ρ3(A3)κ

]]
,

ψκ+1(x, t) = L−1
t

[
ϖ(θ) Lt

[
−σ1 (ψκ)xxx + σ2 Bκ

]]
,

φκ+1(x, t) = L−1
t

[
ϖ(θ) Lt

[
−δ1 (φκ)xxx + δ2 Hκ

]]
.

(3.8)

• The practical solution will be the κ-term approximations

ϕ(x, t) ≃
κ∑

n=0

ϕn(x, t), ψ(x, t) ≃
κ∑

n=0

ψn(x, t), and φ(x, t) ≃
κ∑

n=0

φn(x, t). (3.9)

• The precise solution will be

ϕ(x, t) = Limκ→∞

κ∑
n=0

ϕn(x, t), ψ(x, t) = limκ→∞

κ∑
n=0

ψn(x, t),

and φ(x, t) = limκ 7→∞

κ∑
n=0

φn(x, t).

(3.10)

3.2. Laplace variational iteration method

Consider fractional GHS-KdV system (1.1) defined with the initial conditions in Eq (1.2). The
primary steps involved in applying the LVIM can be outlined as follows:
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• By taking the Laplace transform of the entire system, we obtain

M(θ)
sθ(1 − θ) + θ

[
sθLtϕ(x, t) − sθ−1 ϕ(x, 0)

]
− Lt

[
ρ1 ϕxxx(x, t) − ρ2 ϕ(x, t) ϕx(x, t)

+ ρ3

(
ψ(x, t) φ(x, t)

)
x

]
= 0,

M(θ)
sθ(1 − θ) + θ

[
sθLtψ(x, t) − sθ−1 ψ(x, 0)

]
− Lt

[
−σ1 ψxxx(x, t) + σ2 ϕ(x, t) ψx(x, t)

]
= 0,

M(θ)
sθ(1 − θ) + θ

[
sθLtφ(x, t) − sθ−1 φ(x, 0)

]
− Lt

[
−δ1 φxxx(x, t) + δ2 ϕ(x, t) φx(x, t)

]
= 0.

(3.11)

Let Ltϕ(x, t) = ϕ̄(x, s), Ltψ(x, t) = ψ̄(x, s), Ltφ(x, t) = φ̄(x, s).
• The iterative formula is formulated as

ϕ̄κ+1(x, s) = ϕ̄κ(x, s) + Λ1(s)
[

M(θ)
sθ(1 − θ) + θ

(
sθϕ̄(x, s) − sθ−1ϕ(x, 0)

)
− Lt

[
ρ1ϕxxx(x, t) − ρ2ϕ(x, t)ϕx(x, t) + ρ3

(
ψ(x, t)φ(x, t)

)
x

] ]
,

ψ̄κ+1(x, s) = ψ̄κ(x, s) + Λ2(s)
[

M(θ)
sθ(1 − θ) + θ

(
sθψ̄(x, s) − sθ−1ψ(x, 0)

)
− Lt

[
−σ1ψxxx(x, t) + σ2ϕ(x, t)ψx(x, t)

] ]
,

φ̄κ+1(x, s) = φ̄κ(x, s) + Λ3(s)
[

M(θ)
sθ(1 − θ) + θ

(
sθφ̄(x, s) − sθ−1φ(x, 0)

)
− Lt

[
−δ1φxxx(x, t) + δ2ϕ(x, t)φx(x, t)

] ]
,

(3.12)

where Λ1(s), Λ2(s) and Λ3(s) represent the Lagrange multipliers. Set
δϕ̄κ+1(x,s)
δϕ̄κ(x,s) =0, δψ̄κ+1(x,s)

δψ̄κ(x,s) =0, and δφ̄κ+1(x,s)
δφ̄κ(x,s) = 0, consider the terms

Lt
(
ρ1 ϕxxx(x, t) − ρ2 ϕ(x, t) ϕx(x, t) + ρ3 (ψ(x, t) φ(x, t))x

)
, Lt (−σ1 ψxxx(x, t) + σ2 ϕ(x, t) ψx(x, t)),

and Lt (−δ1 φxxx(x, t) + δ2 ϕ(x, t) φx(x, t)) as restricted terms and we get

1 +
M(θ)sθ

sθ(1 − θ) + θ
Λ1(s) = 0,

1 +
M(θ)sθ

sθ(1 − θ) + θ
Λ2(s) = 0,

1 +
M(θ)sθ

sθ(1 − θ) + θ
Λ3(s) = 0.

(3.13)

So

Λ1(s) = Λ2(s) = Λ3(s) = −
sθ(1 − θ) + θ

sθM(θ)
= −ϖ(θ). (3.14)
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• Using the inverse Laplace transform, we arrive at

ϕκ+1(x, t) = ϕ(x, 0) +L−1
t

[
ϖ(θ)Lt

[
ρ1 (ϕκ)xxx(x, t) − ρ2 ϕκ(x, t) (ϕκ)x(x, t)

+ ρ3 (ψκ(x, t) φκ(x, t))x
]]
,

ψk+1(x, t) = ψ(x, 0) +L−1
t

[
ϖ(θ)Lt

[
−σ1 (ψκ)xxx(x, t) + σ2 ϕκ(x, t) (ψκ)x(x, t)

]]
,

φκ+1(x, t) = φ(x, 0) +L−1
t

[
ϖ(θ)Lt

[
−δ1 (φκ)xxx(x, t) + δ2 ϕκ(x, t) (φκ)x(x, t)

]]
,

(3.15)

using the starting iteration

ϕ0(x, t) = ϕ(x, 0), ψ0(x, t) = ψ(x, 0), φ0(x, t) = φ(x, 0). (3.16)

• The exact solution will be

ϕ(x, t) = limκ−→∞ϕκ(x, t), ψ(x, t) = limκ−→∞ψκ(x, t), φ(x, t) = limκ−→∞φκ(x, t). (3.17)

4. Numerical studies

We will examine the fractional GHS coupled KdV system represented by Eq (1.1) with the given
coefficients, (ρ1, ρ2, ρ3, σ1, σ2, δ1, δ2) = (0.5, 3, 3, 1, 3, 1, 3) ensuring consistency across the analysis,
under two specified initial conditions:

4.1. First kind initial condition

At first, consider the fractional GHS-KdV system Eq (1.1) under the following condition:

ϕ(x, 0) =
γ − 2k2

3
− 2k2tanh2(kx),

ψ(x, 0) =
−4k2c0(γ + k2)

3c2
1

+
4k2(γ + k2)

3c1
tanh(kx),

φ(x, 0) = c0 + c1tanh(kx).

(4.1)

It is worth noting that the exact solution of the GHS-KdV system Eq (1.1) at θ = 1 under the initial
condition Eq (4.1) is provided in [37] as

ϕ(x, t) =
γ − 2k2

3
+ 2k2tanh2(k(x + γt)),

ψ(x, t) =
4k2c0(γ + k2)

3c2
1

+
4k2(γ + k2)

3c1
tanh(k(x + γt)),

ψ(x, t) = c0 + c1tanh(k(x + γt)).

(4.2)

Solution using the LADM
By following the procedure outlined in the previous section, the first few terms of the solution

obtained using the LADM are expressed as

ϕ0(x, t) =
γ − 2k2

3
− 2k2tanh2(kx),

ψ0(x, t) =
−4k2c0(γ + k2)

3c2
1

+
4k2(γ + k2)

3c1
tanh(kx),

φ0(x, t) = c0 + c1tanh(kx),

(4.3)
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and

ϕ1(x, t) =
γk3Γ(θ) tanh(kx)sech2(kx)

(
(4.θ − 4)Γ(θ + 1) − 4θtθ

)
((θ − 1)Γ(θ) − θ)Γ(θ + 1)

,

ψ1(x, t) =
4γk3

(
γ + k2

)
sech2(kx)

(
−θΓ(θ) + Γ(θ) + tθ

)
3c1(θ + θ(−Γ(θ)) + Γ(θ))

,

φ1(x, t) =
γc1ksech2(kx)

(
−θΓ(θ) + Γ(θ) + tθ

)
θ + θ(−Γ(θ)) + Γ(θ)

.

(4.4)

Similarly, the subsequent components can be computed analogously, yielding the κ-th term
approximation:

ϕ(x, t) ≃
κ∑

n=0

ϕn(x, t) =
γ − 2k2

3
− 2k2tanh2(kx)

+
γk3Γ(θ) tanh(kx)sech2(kx)

(
(4θ − 4)Γ(θ + 1) − 4θtθ

)
((θ − 1)Γ(θ) − θ)Γ(θ + 1)

+ ....

(4.5)

ψ(x, t) ≃
κ∑

n=0

ψn(x, t) =
−4k2c0(γ + k2)

3c2
1

+
4k2(γ + k2)

3c1
tanh(kx)

+
4γk3

(
γ + k2

)
sech2(kx)

(
−θΓ(θ) + Γ(θ) + tθ

)
3c1(θ − θΓ(θ) + Γ(θ))

+ ....

(4.6)

φ(x, t) ≃
κ∑

n=0

φn(x, t) = c0 + c1tanh(kx) +
γc1ksech2(kx)

(
−θΓ(θ) + Γ(θ) + tθ

)
θ − θΓ(θ) + Γ(θ)

+ ... (4.7)

Solution using the LVIM
Building upon the theoretical framework developed earlier, the initial iterative solutions are attained

as:

ϕ0(x, t) =
γ − 2k2

3
− 2k2tanh2(kx),

ψ0(x, t) =
−4k2c0(γ + k2)

3c2
1

+
4k2(γ + k2)

3c1
tanh(kx),

φ0(x, t) = c0 + c1tanh(kx),

(4.8)

and

ϕ1(x, t) =
1
3

(
γ +

γk3Γ(θ) tanh(kx)sech2(kx)
(
(12θ − 12)Γ(θ + 1) − 12θtθ

)
((θ − 1)Γ(θ) − θ)Γ(θ + 1)

+ 6k2 tanh2(kx) − 2k2
)
,

ψ1(x, t) =
4k2

(
γ + k2

) (
c1

(
γksech2(kx)(−θΓ(θ)+Γ(θ)+tθ)

θ−θΓ(α)+Γ(θ) + tanh(kx)
)
− c0

)
3c2

1

,

φ1(x, t) = c1

γksech2(kx)
(
−θΓ(θ) + Γ(θ) + tθ

)
θ − θΓ(θ) + Γ(θ)

+ tanh(kx)

 + c0,

(4.9)

and so on. The subsequent approximated components can be easily computed by using Eq (3.15).

AIMS Mathematics Volume 10, Issue 11, 28034–28058.



28044

4.2. Second initial condition

To validate the correctness and reliability of the developed methods when applied to the fractional
GHS-KdV system Eq (1.1), we consider another initial condition as follows:

ϕ(x, 0) =
γ − 8k2

3
+ 4k2 tanh2(kx),

ψ(x, 0) =
4k2 tanh2(kx)

c1
−

4
(
3c0k4 + 4c1k4 − 2γc1k2

)
3c2

1

,

φ(x, 0) = c0 + c1 tanh2(kx).

(4.10)

This specific initial condition is important when studying the fractional generalized
Hirota-Satsuma (GHS) coupled Korteweg-de Vries (KdV) system because it is carefully chosen to
represent a solitary wave profile and to ensure the physical and mathematical consistency of the
model. It is noteworthy that [37] presented the exact solution for the GHS-KdV system Eq (1.1)
with θ = 1 under the initial condition (4.10) as:

ϕ(x, t) =
1
3

(
γ − 8k2

)
+ 4k2 tanh2(k(γt + x)),

ψ(x, t) =

(
4k2

)
tanh2(k(γt + x))

c1
−

4
(
3c0k4 + 4c1k4 − 2γc1k2

)
3c2

1

φ(x, t) = c1 tanh2(k(γt + x)) + c0.

(4.11)

Solution using the LADM
By applying the procedure described in the previous section, the initial terms of the LADM are

given as

ϕ0(x, 0) =
γ − 8k2

3
+ 4k2tanh2(kx),

ψ0(x, 0) =

(
4k2

)
tanh2(kx)

c1
−

4
(
3c0k4 + 4c1k4 − 2γc1k2

)
3c2

1

,

φ0(x, 0) = c0 + c1tanh2(kx),

(4.12)

and

ϕ1(x, t) =
1

c1
(
(θ − 1)Γ(θ) − θ

)
Γ(θ + 1)

(
k3Γ(θ) tanh(kx) sech2(kx)

[
θtθ

(
c1

(
(48 − 48k2)sech2(kx)

− 8γ + 48k2 − 48
)
+ c0(24k2 − 24)

)
+ Γ(θ + 1)

(
c0(24k2 − 24θk2 + 24θ − 24)

+ c1
(
48k2 − 48θk2 + 8θγ − 8γ + (−48θ + (48θ − 48)k2 + 48)sech2(kx) − 48

))])
,

ψ1(x, t) =
8γk3Γ(θ) tanh(kx) sech2(kx)

(
θtθ − (θ − 1)Γ(θ + 1)

)
c1 (θ − θΓ(θ) + Γ(θ))Γ(θ + 1)

,

φ1(x, t) =
2γc1kΓ(θ) tanh(kx) sech2(kx)

(
θtθ − (θ − 1)Γ(θ + 1)

)
(θ − θΓ(θ) + Γ(θ))Γ(θ + 1)

.

(4.13)
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Likewise, the remaining components can be easily computed, facilitating the approximation of the
solution for the κ-th term approximation as:

ϕ(x, t) ≃
κ∑

n=0

ϕn(x, t), ψ(x, t) ≃
κ∑

n=0

ψn(x, t), and ψ(x, t) ≃
κ∑

n=0

ψn(x, t). (4.14)

Solution using the LVIM
Applying the procedure detailed earlier, the first iterative solutions are calculated as follows:

ϕ0(x, 0) =
γ − 8k2

3
+ 4k2tanh2(kx),

ψ0(x, 0) =

(
4k2

)
tanh2(kx)

c1
−

4
(
3c0k4 + 4c1k4 − 2γc1k2

)
3c2

1

,

φ0(x, 0) = c0 + c1tanh2(kx),

(4.15)

and

ϕ1(x, t) =
1
3

(γ − 8k2) + 4k2 tanh2(kx) +
k3 tanh(kx) sech2(kx)

c1
(
−θ + θ

Γ(θ) + 1
)
Γ(θ + 1)

[
c0

(
θ(24 − 24k2) tθ

+ Γ(θ + 1)
(
−24θ + (24θ − 24)k2 + 24

))
+ c1

(
θtθ

(
(48 − 80k2) tanh2(kx) + 8γ − 32k2sech2(kx) + 32k2)

+ Γ(θ + 1)
(
−8θγ + 8γ − 32θk2 + (−48θ + (80θ − 80)k2 + 48) tanh2(kx)

+ (32θ − 32)k2sech2(kx) + 32k2))],
ψ1(x, t) =

8γk3 tanh(kx)sech2(kx)
(
θtθ − (θ − 1)Γ(θ + 1)

)
c1

(
−θ + θ

Γ(θ) + 1
)
Γ(θ + 1)

+
4k2 tanh2(kx)

c1
−

4(3c0k4 + 4c1k4 − 2γc1k2)
3c2

1

,

φ1(x, t) =
2γc1k tanh(kx)sech2(kx)

(
θtθ − (θ − 1)Γ(θ + 1)

)(
−θ + θ

Γ(θ) + 1
)
Γ(θ + 1)

+ c1 tanh2(kx) + c0,

(4.16)

and so on.
The subsequent κ-th approximations can be straightforwardly determined using Eq (3.15).

5. Numerical results

Here, we will showcase the effectiveness of the suggested methods for handling the fractional
GHS-KdV system Eq (1.1) by presenting various graphical representations of the numerical results
and comparing our findings with published results from the literature through tabular data. All
computations were performed on a laptop running Mathematica 11.2, with 8.00 GB of RAM and a
processor; 13th Gen Intel(R) Core(TM) i5-13420H 2.10 GHz processor. The results were computed
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using of the absolute errors (AEs), relative absolute errors (RAEs) and the maximum absolute
error (MAE) between the exact solution ⊓(x, t), and the κ-th iteration of the approximate
solution ⊓κ(x, t), which are defined, respectively, as follows:

AEs = |⊓(x, t) − ⊓κ(x, t)|, (5.1)

RAEs =
|⊓(x, t) − uk(x, t)|

⊓(x, t)
, (5.2)

and

MAE = max
(x,t)∈[A,B]×[0,L]

|⊓(x, t) − ⊓κ(x, t)|. (5.3)

Suppose that ϕ(x, t), ψ(x, t), and φ(x, t) are defined over the spatial interval A ≤ x ≤ B and temporal
interval 0 ≤ t ≤ L. A uniform discretization of the domain is constructed via grid points (xi, tn) with
spatial spacing h = △x = B−A

M and temporal spacing k = △t = L
K where

xi = A + ih (i = 0, 1, 2, · · · , M), and tn = nk, (n = 0, 1, 2, · · · ,K).
Numerical analysis under the first initial condition

The numerical outcomes for the AB- fractional GHS-coupled KdV system Eq (1.1) under the
initial condition Eq (4.1) are summarized in Tables 2 and 3 visually represented in Figures 1–6 at
k = 0.1, c1 = 0.1, c0 = 3/2, γ = 3/2, while the results in Table 4 are tabulated at
k = 0.1, c1 = 1, c0 = 1, γ = 1.

Table 2. Comparisons of the AEs and RAEs of ϕ(x, t), ψ(x, t), φ(x, t) at x = 0.1 with the
LRPSM [18].

t
LADM LVIM LRPSM [18]

AEs (φ) RAEs (φ) AEs (φ) RAEs (φ) AEs (φ) RAEs (φ)

ϕ
(x
,t

)

0.00 0.0 0.0 0.0 0.0 0.0 0.0
0.02 1.079 × 10−12 2.187 × 10−12 5.632 × 10−13 1.142 × 10−12 3.807 × 10−5 7.541 × 10−5

0.04 1.726 × 10−11 3.499 × 10−11 9.010 × 10−12 1.826 × 10−11 7.625 × 10−5 1.511 × 10−4

0.06 8.737 × 10−11 1.771 × 10−10 4.560 × 10−11 9.249 × 10−11 1.145 × 10−4 2.269 × 10−4

0.08 2.761 × 10−10 5.597 × 10−10 1.441 × 10−10 2.921 × 10−10 1.529 × 10−4 3.129 × 10−4

0.10 6.740 × 10−10 6.740 × 10−9 3.517 × 10−10 7.130 × 10−10 1.914 × 10−4 3.792 × 10−4

ψ
(x
,t

)

0.00 0.0 0.0 0.0 0.0 0.0 0.0
0.02 1.155 × 10−13 −3.827 × 10−14 1.319 × 10−13 −4.371 × 10−14 1.679 × 10−5 5.228 × 10−3

0.04 1.948 × 10−12 −6.457 × 10−13 2.220 × 10−12 −7.358 × 10−13 3.365 × 10−5 1.042 × 10−2

0.06 1.039 × 10−11 −3.444 × 10−12 1.179 × 10−11 −3.910 × 10−12 5.059 × 10−5 1.559 × 10−2

0.08 3.450 × 10−11 −1.144 × 10−11 3.904 × 10−11 −1.295 × 10−11 6.761 × 10−5 2.072 × 10−2

0.10 8.829 × 10−11 8.829 × 10−11 9.963 × 10−11 −3.305 × 10−11 8.470 × 10−5 2.582 × 10−2

φ
(x
,t

)

0.00 0.0 0.0 0.0 0.0 0.0 0.0
0.02 5.729 × 10−14 3.816 × 10−14 6.550 × 10−14 4.363 × 10−14 1.880 × 10−3 7.338 × 10−4

0.04 9.672 × 10−13 6.441 × 10−13 1.102 × 10−12 7.342 × 10−13 3.767 × 10−3 3.428 × 10−3

0.06 5.159 × 10−12 3.435 × 10−12 5.858 × 10−12 3.900 × 10−12 5.663 × 10−3 2.348 × 10−3

0.08 1.713 × 10−11 1.141 × 10−11 1.939 × 10−11 1.291 × 10−11 7.568 × 10−3 7.568 × 10−3

0.10 4.385 × 10−11 2.919 × 10−11 4.947 × 10−11 3.294 × 10−11 9.483 × 10−3 3.633 × 10−3
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Table 3. Comparison of the MAEs and CPU time of the LADM and LVIM for Eq (1.1) under
Eq (4.1) for −1 ≤ x ≤ 1, 0 ≤ t ≤ 1.

κ

LADM LVIM

MAE(ϕ) MAE(ψ) MAE(φ) CPU MAE(ϕ) MAE(ψ) MAE(φ) CPU
3 6.716 × 10−6 8.378 × 10−6 4.161 × 10−6 0.34375 3.473 × 10−6 9.444 × 10−6 4.691 × 10−6 1.73438
4 3.962 × 10−7 2.031 × 10−6 1.009 × 10−6 0.703125 1.294 × 10−7 2.550 × 10−6 1.267 × 10−6 23.9219
5 8.563 × 10−8 9.740 × 10−8 4.802 × 10−8 1.20313 3.941 × 10−8 1.685 × 10−7 8.370 × 10−8 841.844

Figure 1. Contour plots of the absolute errors between the exact and LADM solutions of
Eq (1.1) under Eq (4.1).

Figure 2. Contour plots of the absolute errors between the exact and LVIM solutions of
Eq (1.1) under Eq (4.1).
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Figure 3. Plots of the LADM solutions at different time levels (t = 0.1, 1, 2, 3) of Eq (1.1)
under Eq (4.1).

Figure 4. Plots of the LVIM solutions at different time levels (t = 0.1, 1, 2, 3) of Eq (1.1)
under Eq (4.1).

Figure 5. Plots of the LADM solutions at different values of θ; θ = 0.5, 0.75, 1 with ESs of
Eq (1.1) under Eq (4.1).
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Figure 6. Plots of the LVIM solutions at different values of θ; θ = 0.5, 0.75, 1 with ESs of
Eq (1.1) under Eq (4.1).

Tables 2 and 3 provides detailed comparisons of the absolute errors and relative absolute errors
between the two proposed methods LADM and LVIM using the third series approximation with the
LRPSM [18] for the functions ϕ(x, t), ψ(x, t), and φ(x, t) using 6th approximate of the LRPSM solution,
respectively. These comparisons are conducted at x = 0.1 and over the time interval t ∈ [0, 0.1]. The
numerical results clearly demonstrate that the LADM and LVIM converge significantly faster to the
exact solution than the RPSM. This faster convergence reflects the strength of the proposed Laplace-
based approaches in efficiently handling the non-linearity and memory effects of the fractional system.

Numerical comparisons of the MAEs for ϕ(x, t), ψ(x, t), and φ(x, t) obtained using the LADM and
LVIM are presented in Table 3. The computations are performed over the domains −1 ≤ x ≤ 1
and 0 ≤ t ≤ 1 for κ = 3, 4, 5, where κ represents the number of series terms in the LADM and the
number of iterations in the LVIM. The results clearly indicate that increasing κ improves the accuracy
of both methods, demonstrating their strong iterative refinement capability. Furthermore, the numerical
values produced by the LADM and LVIM exhibit excellent agreement, confirming the consistency and
reliability of these techniques for solving the fractional GHS-KdV system. The corresponding CPU
times for the LADM and LVIM at different iteration levels (κ = 3, 4, 5) are also reported in the table.
The results show that the LADM outperforms the LVIM in terms of computational speed, highlighting
its efficiency and suitability for this class of fractional problems.

To validate the accuracy of the used methods over a large interval, numerical comparisons of AEs
for the second approximation of ϕ(x, t), ψ(x, t), and φ(x, t) obtained using our approaches are presented
in Table 4 at θ = 1. These comparisons are conducted for x ∈ [−50, 50] at t = 2 and benchmarked
against the second approximate solution of the method in [7]. Our computational findings demonstrate
the efficiency of the proposed approaches as well as the approach in [7]. The comprehensive analysis
in these tables highlights the advantages of the LADM and LVIM in achieving high accuracy.
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To verify the performance and accuracy of our methods for solving Eq (1.1) under the first initial
condition Eq (4.1), a series of graphical representations are provided. The contour plots of the
absolute errors for ϕ(x, t), ψ(x, t), and φ(x, t) using the LADM and LVIM are shown in Figures 1
and 2, respectively, over x ∈ [−40, 40], and t ∈ [0, 2]. These plots highlight the minimal errors and
confirm the high precision of both methods in solving the fractional system. Figures 3 and 4 further
illustrate the applicability of the LADM and LVIM in obtaining approximate solutions for ϕ(x, t),
ψ(x, t), and φ(x, t) at different time levels (t = 0.1, 1, 2, 3). These graphs reveal the robustness of the
proposed methods in capturing the dynamics of the system over varying temporal and spatial
domains. Additionally, Figures 5 and 6 evaluate the performance of the LADM using just four terms
and the third approximation of the LVIM for deriving solutions at various fractional orders. The
solutions are analyzed for x ∈ [−60, 60] with fractional orders θ = 0.5, 0.75, 1, alongside the exact
solutions. These figures demonstrate that as the fractional order approaches an integer, the
approximate solutions increasingly converge to the exact solution.
Numerical analysis of the fractional GHS-KdV system under the second initial condition

The computational findings of the fractional GHS-KdV coupled system Eq (1.1) under Eq (4.10)
obtained using the LADM and LVIM are presented in Tables 5 and 6, while their graphical
representations are illustrated in Figures 7–10. Table 5 provides a numerical comparison of the
absolute errors between the second approximation of our findings using the LADM and LVIM with
those reported in [7] when θ = 1 for x ∈ [−50, 50], t = 1 for k = 0.1, c1 = c0 = γ = 1 . Table 6
tabulates a comparison of the absolute errors at discrete points of x and t for the parameters
k = 0.1, c1 = c0 = γ = 3/2, against the results of [38] . Figures 7 and 8 depict the space time surface
plots of the exact, and approximate solutions obtained via the LADM and LVIM, respectively. The
numerical finding of LADM and LVIM for the functions ϕ(x, t), ψ(x, t), φ(x, t) are displayed for
different values of the fractional parameter θ are plotted in Figures 9 and 10; respectively.

Figure 7. The surfaces of the exact and LADM solutions for Eq (1.1) under Eq (4.10).
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Figure 8. The surfaces of the exact and LVIM solutions for Eq (1.1) under Eq (4.10).

Figure 9. Plots of the LADM solutions at different values of θ; θ = 0.5, 0.75, 1 with the
exact solutions of Eq (1.1) under Eq (4.10).

Figure 10. Plots of the LVIM solutions at different values of θ; θ = 0.5, 0.75, 1 with the
exact solutions Eq ( 1.1) under Eq (4.10).
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6. Conclusions

The present study has systematically explored the application of Laplace-based methodologies to
the fractional GHS-KdV system within the AB fractional calculus framework. The use of the
AB-CFD operator with a Mittag-Leffler kernel enables accurate modeling of non-singular fading
memory and effectively captures both short- and long-term nonlinear wave dynamics. Integrating this
operator into the LADM and LVIM required a tailored Laplace domain reformulation, representing a
key methodological advancement.

The analysis confirms that both the LADM and LVIM provide robust computational frameworks
capable of efficiently handling the inherent non-linearity and memory effects of fractional-order
systems without conventional simplifying assumptions. The comparative results reveal strong
consistency between the two methods, with excellent agreement of solution profiles. Moreover, the
convergence behavior demonstrates that accuracy improves systematically with additional series
terms. Also, both methods accurately capture the limiting behavior as the fractional order approaches
the classical integer case, ensuring mathematical consistency.

However, certain limitations exist such as sensitivity to exact initial conditions, challenges in
Laplace inversion for complex source terms, and potential computational inefficiency in constructing
higher-order Adomian polynomials for strongly nonlinear problems.

Overall, the developed framework offers a powerful and flexible approach for analyzing nonlinear
fractional systems with memory effects. It can be readily extended to other classes of fractional PDEs
and contributes to the advancement of analytical numerical techniques in fractional calculus. Future
work will focus on extending the proposed methods to two-dimensional systems and exploring adaptive
strategies for improved convergence and efficiency.
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