The Gronwall-Bellman inequality is a primary tool for proving various types of stability. For this importance, the present paper focuses on the generalized forms of the well-known Gronwall-Bellman inequality in the context of the Hadamard fractional calculus. We prove and generalize the coupled version of the Hadamard-Gronwall-Bellman inequality and then, generalize its extended form with the sum of two non-decreasing functions. In the sequel, the applicability of these inequalities is established in proving the existence and Ulam-Hyers stability of a Caputo-Hadamard coupled delay system and a Caputo-Hadamard damped initial value problem, which are appeared in population dynamic problems.
Citation: Sina Etemad, Ali Akgül, J. Alberto Conejero. On the generalized coupled Hadamard-Gronwall-Bellman-type inequalities with applications to fractional delay systems[J]. AIMS Mathematics, 2025, 10(11): 27954-27984. doi: 10.3934/math.20251228
The Gronwall-Bellman inequality is a primary tool for proving various types of stability. For this importance, the present paper focuses on the generalized forms of the well-known Gronwall-Bellman inequality in the context of the Hadamard fractional calculus. We prove and generalize the coupled version of the Hadamard-Gronwall-Bellman inequality and then, generalize its extended form with the sum of two non-decreasing functions. In the sequel, the applicability of these inequalities is established in proving the existence and Ulam-Hyers stability of a Caputo-Hadamard coupled delay system and a Caputo-Hadamard damped initial value problem, which are appeared in population dynamic problems.
| [1] |
L. Sadek, A. Algefary, Extended Hermite-Hadamard inequalities, AIMS Math., 9 (2024), 36031–36046. https://doi.org/10.3934/math.20241709 doi: 10.3934/math.20241709
|
| [2] |
H. Budak, N. Ozmen, Hermite-Hadamard inequalities for left fractional conformable integral operator, Bound. Value Probl., 2025 (2025), 98. https://doi.org/10.1186/s13661-025-02096-6 doi: 10.1186/s13661-025-02096-6
|
| [3] |
E. Set, A. Gözpinar, S. I. Butt, A study on Hermite-Hadamard-type inequalities via new fractional conformable integrals, Asian-Eur. J. Math., 14 (2021), 2150016. https://doi.org/10.1142/S1793557121500169 doi: 10.1142/S1793557121500169
|
| [4] |
R. S. Ali, N. Talib, S. Etemad, J. Tariboon, M. I. Hafeez, A new trend of fractional inequalities for differentiable monotone convexities through generalized operators with applications, Eur. J. Pure Appl. Math., 18 (2025), 6306. https://doi.org/10.29020/nybg.ejpam.v18i3.6306 doi: 10.29020/nybg.ejpam.v18i3.6306
|
| [5] |
T. Tunc, I. Demir, Some trapezoid-type inequalities for newly defined proportional Caputo-hybrid operator, J. Inequal. Math. Anal., 1 (2025), 65–78. https://doi.org/10.63286/jima.2025.05 doi: 10.63286/jima.2025.05
|
| [6] |
T. Tunc, I. Demir, On a new version of Hermite-Hadamard-type inequality based on proportional Caputo-hybrid operator, Bound. Value Probl., 2024 (2024), 44. https://doi.org/10.1186/s13661-024-01852-4 doi: 10.1186/s13661-024-01852-4
|
| [7] |
A. A. Almoneef, A. Hyder, H. Budak, M. A. Barakat, Exploring advanced weighted integral inequalities via extended fractional calculus approaches, Fractal Fract., 9 (2025), 516. https://doi.org/10.3390/fractalfract9080516 doi: 10.3390/fractalfract9080516
|
| [8] |
H. Budak, P. Kösem, H. Kara, On new Milne-type inequalities for fractional integrals, J. Inequal. Appl., 2023 (2023), 10. https://doi.org/10.1186/s13660-023-02921-5 doi: 10.1186/s13660-023-02921-5
|
| [9] |
J. Nasir, S. Qaisar, S. I. Butt, A. Qayyum, Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator, AIMS Math., 7 (2022), 3303–3320. https://doi.org/10.3934/math.2022184 doi: 10.3934/math.2022184
|
| [10] |
T. Sitthiwirattham, M. A. Ali, H. Budak, M. Abbas, S. Chasreechai, Montgomery identity and Ostrowski-type inequalities via quantum calculus, Open Math., 19 (2021), 1098–1109. https://doi.org/10.1515/math-2021-0088 doi: 10.1515/math-2021-0088
|
| [11] |
G. Rahman, M. Samraiz, K. Shah, T. Abdeljawad, Y. Elmasry, Advancements in integral inequalities of Ostrowski type via modified Atangana-Baleanu fractional integral operator, Heliyon, 11 (2025), e41525. https://doi.org/10.1016/j.heliyon.2024.e41525 doi: 10.1016/j.heliyon.2024.e41525
|
| [12] |
C. A. J. Klaassen, J. A. Wellner, Hardy's inequality and its descendants: A probability approach, Electron. J. Probab., 26 (2021), 1–34. https://doi.org/10.1214/21-EJP711 doi: 10.1214/21-EJP711
|
| [13] |
S. Rezapour, S. Etemad, R. P. Agarwal, K. Nonlaopon, On a Lyapunov-type inequality for control of a $\psi$-model thermostat and the existence of its solutions, Mathematics, 10 (2022), 4023. https://doi.org/10.3390/math10214023 doi: 10.3390/math10214023
|
| [14] |
A. Shehzadi, H. Budak, W. Haider, F. Hezenci, H. Chen, Fractional Euler-Maclaurin-type inequalities for twice-differentiable functions, Adv. Cont. Discr. Mod., 2025 (2025), 118. https://doi.org/10.1186/s13662-025-03976-y doi: 10.1186/s13662-025-03976-y
|
| [15] |
A. Fahad, Z. Ali, S. Furuichi, S. I. Butt, Ayesha, Y. Wang, New inequalities for GA-h convex functions via generalized fractional integral operators with applications to entropy and mean inequalities, Fractal Fract., 8 (2024), 728. https://doi.org/10.3390/fractalfract8120728 doi: 10.3390/fractalfract8120728
|
| [16] |
T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. Math., 20 (1919), 292–296. https://doi.org/10.2307/1967124 doi: 10.2307/1967124
|
| [17] | R. E. Bellman, Stability, boundedness, and asymptotic behavior of solutions of linear systems, In Stability Theory of Differential Equations, Dover Publications: Mineola, NY, USA, 2008. |
| [18] | B. G. Pachpatte, On some fundamental integral inequalities and their discrete analogues, J. Inequal. Pure Appl. Math., 2 (2001), 1–31. |
| [19] | B. G. Pachpatte, The inequalities of Gronwall-Bellman, In Inequalities for Differential and Integral Equations, Academic Press Limited: London, UK, 1998. |
| [20] |
Y. Adjabi, F. Jarad, T. Abdeljawad, On generalized fractional operators and a Gronwall type inequality with applications, Filomat, 31 (2017), 5457–5473. https://doi.org/10.2298/FIL1717457A doi: 10.2298/FIL1717457A
|
| [21] |
J. Alzabut, T. Abdeljawad, A generalized discrete fractional Gronwall inequality and its application on the uniqueness of solutions for nonlinear delay fractional difference system, Appl. Anal. Discr. Math., 12 (2018), 36–48. https://doi.org/10.2298/AADM1801036A doi: 10.2298/AADM1801036A
|
| [22] |
R. I. Butt, T. Abdeljawad, M. A. Alqudah, M. ur Rehman, Ulam stability of Caputo $q$-fractional delay difference equation: $q$-fractional Gronwall inequality approach, J. Inequal. Appl., 2019 (2019), 305. https://doi.org/10.1186/s13660-019-2257-6 doi: 10.1186/s13660-019-2257-6
|
| [23] |
J. Alzabut, Y. Adjabi, W. Sudsutad, M. ur Rehman, New generalizations for Gronwall type inequalities involving a $\psi$-fractional operator and their applications, AIMS Math., 6 (2021), 5053–5077. https://doi.org/10.3934/math.2021299 doi: 10.3934/math.2021299
|
| [24] |
W. Sudsutad, C. Thaiprayoon, B. Khaminsou, J. Alzabut, J. Kongson, A Gronwall inequality and its applications to the Cauchy-type problem under $\psi$-Hilfer proportional fractional operators, J. Inequal. Appl., 2023 (2023), 20. https://doi.org/10.1186/s13660-023-02929-x doi: 10.1186/s13660-023-02929-x
|
| [25] |
M. Al-Refai, M. Al-Jararha, Y. Luchko, On a Gronwall-type inequality for the general fractional integrals with the Sonin kernels and its applications, Commun. Nonlinear Sci. Numer. Simul., 150 (2025), 108985. https://doi.org/10.1016/j.cnsns.2025.108985 doi: 10.1016/j.cnsns.2025.108985
|
| [26] |
H. Mohammadi, D. Baleanu, S. Etemad, S. Rezapour, Criteria for existence of solutions for a Liouville-Caputo boundary value problem via generalized Gronwall's inequality, J. Inequal. Appl., 2021 (2021), 36. https://doi.org/10.1186/s13660-021-02562-6 doi: 10.1186/s13660-021-02562-6
|
| [27] |
S. Rezapour, S. K. Ntouyas, A. Amara, S. Etemad, J. Tariboon, Some existence and dependence criteria of solutions to a fractional integro-differential boundary value problem via the generalized Gronwall inequality, Mathematics, 9 (2021), 1165. https://doi.org/10.3390/math9111165 doi: 10.3390/math9111165
|
| [28] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 204 (2006). |
| [29] |
F. Jarad, D. Baleanu, T. Abdeljawad, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142
|