In this paper, we investigated the influence of climatic factors, particularly low temperature and humidity, on the grounding resistance of transmission towers in severely cold regions. Drawing on a full year of field monitoring data, we first identified a clear negative linear correlation between temperature and grounding resistance. Notably, the inclusion of precipitation as an additional variable led to a significant increase in the model's explanatory power and indicated that the resistance behavior was influenced by multiple environmental factors. To further explore the nonlinear and dynamic aspects of this relationship, we used multifractal detrended fluctuation analysis (MF-DFA) and multifractal detrended cross-correlation analysis (MF-DCCA). The computational results showed that the resistance time series exhibits strong multifractal characteristics and suggests high variability across temporal scales. Moreover, the combined influence of temperature and precipitation demonstrated a markedly stronger cross-correlation with resistance than temperature alone. These findings emphasize the complex and multiscale nature of grounding behavior in harsh climates and underscore the importance of moving beyond simplified linear models. Our research offers both methodological insights and practical implications for the design, maintenance, and risk assessment of power transmission infrastructure operating under extreme weather conditions, particularly in high-latitude or alpine environments.
Citation: Guangxin Zhang, Minzhen Wang, Jian Wang, Junseok Kim. Multifractal time series analysis of grounding resistance in transmission line towers under cold-climate conditions[J]. AIMS Mathematics, 2025, 10(11): 27985-28003. doi: 10.3934/math.20251229
In this paper, we investigated the influence of climatic factors, particularly low temperature and humidity, on the grounding resistance of transmission towers in severely cold regions. Drawing on a full year of field monitoring data, we first identified a clear negative linear correlation between temperature and grounding resistance. Notably, the inclusion of precipitation as an additional variable led to a significant increase in the model's explanatory power and indicated that the resistance behavior was influenced by multiple environmental factors. To further explore the nonlinear and dynamic aspects of this relationship, we used multifractal detrended fluctuation analysis (MF-DFA) and multifractal detrended cross-correlation analysis (MF-DCCA). The computational results showed that the resistance time series exhibits strong multifractal characteristics and suggests high variability across temporal scales. Moreover, the combined influence of temperature and precipitation demonstrated a markedly stronger cross-correlation with resistance than temperature alone. These findings emphasize the complex and multiscale nature of grounding behavior in harsh climates and underscore the importance of moving beyond simplified linear models. Our research offers both methodological insights and practical implications for the design, maintenance, and risk assessment of power transmission infrastructure operating under extreme weather conditions, particularly in high-latitude or alpine environments.
| [1] | V. P. Androvitsaneas, G. J. Tsekouras, I. F. Gonos, I. A. Stathopulos, Seasonal variation and timeless evolution of ground resistance, In: 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece, 2018, 1–4. http://dx.doi.org/10.1109/ICHVE.2018.8641909 |
| [2] | M. Li, Y. Gao, T. Zhang, H. Wu, X. Lao, Z. Chen, Analysis of soil resistivity characteristics under meteorological conditions in Haikou City, In: 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing), Beijing, China, 2017, 1–5. http://dx.doi.org/10.1109/EMC-B.2017.8260388 |
| [3] |
B. M. Kouchaki, M. L. B. Barry, C. M. Wood, T. Moody, A laboratory investigation of factors influencing the electrical resistivity of different soil types, Geotech. Test. J., 42 (2019), 829–853. http://dx.doi.org/10.1520/GTJ20170364 doi: 10.1520/GTJ20170364
|
| [4] |
D. M. S. Gerscovich, C. Vipulanandan, Data analyses to correlate the soil properties to the electrical resistivity, Geotech. Geol. Eng., 41 (2023), 4507–4528. http://dx.doi.org/10.1007/s10706-023-02529-y doi: 10.1007/s10706-023-02529-y
|
| [5] | S. Bhatt, P. K. Jain, Correlation between electrical resistivity and water content of sand–a statistical approach, Am. Int. J. Res. Sci. Technol. Eng. Math., 6 (2014), 115–121. |
| [6] | M. Kizhlo, A. Kanbergs, Correlation analysis between grounding resistance and seasonal variations of upper soil resistivity of two-year period in Balozhi, Latvia, In: International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, Sorrento, Italy, 2012,890–893. http://dx.doi.org/10.1109/SPEEDAM.2012.6264517 |
| [7] | A. Madikizela, M. Kabeya, I. E. Davidson, Seasonal variation of soil resistivity and corrective factor for optimal substation earth grid design in Eastern Cape, In: 2022 30th Southern African Universities Power Engineering Conference (SAUPEC), Durban, South Africa, 2022, 1–6. http://dx.doi.org/10.1109/SAUPEC55179.2022.9730743 |
| [8] |
V. L. Coelho, A. Piantini, H. A. D. Almaguer, R. A. Coelho, W. D. C. Boaventura, J. O. S. Paulino, The influence of seasonal soil moisture on the behavior of soil resistivity and power distribution grounding systems, Electr. Pow. Syst. Res., 118 (2015), 76–82. http://dx.doi.org/10.1016/j.epsr.2014.07.027 doi: 10.1016/j.epsr.2014.07.027
|
| [9] |
F. E. Asimakopoulou, G. J. Tsekouras, I. F. Gonos, I. A. Stathopulos, Estimation of seasonal variation of ground resistance using artificial neural networks, Electr. Pow. Syst. Res., 94 (2013), 113–121. http://dx.doi.org/10.1016/j.epsr.2012.07.018 doi: 10.1016/j.epsr.2012.07.018
|
| [10] | A. Rani, N. Kumar, J. Kumar, N. K. Sinha, Machine learning for soil moisture assessment, In: Deep learning for sustainable agriculture, Academic Press, 2022,143–168. http://dx.doi.org/10.1016/B978-0-323-85214-2.00001-X |
| [11] |
W. D. A. Mahemmdi, A. S. A. Banna, F. H. A. Menshed, The relation between the variation of electrical resistivity values and moisture of soil at Baghdad University, Iraq, Iraqi J. Sci., 64 (2023), 2946–2958. http://dx.doi.org/10.24996/ijs.2023.64.6.23 doi: 10.24996/ijs.2023.64.6.23
|
| [12] |
G. Yuan, A. Che, H. Tang, Evaluation of soil damage degree under freeze–thaw cycles through electrical measurements, Eng. Geol., 293 (2021), 106297. http://dx.doi.org/10.1016/j.enggeo.2021.106297 doi: 10.1016/j.enggeo.2021.106297
|
| [13] |
J. W. Kantelhardt, S. A. Zschiegner, E. K. Bunde, S. Havlin, A. Bunde, H. E. Stanley, Multifractal detrended fluctuation analysis of nonstationary time series, Physica A, 316 (2002), 87–114. http://dx.doi.org/10.1016/S0378-4371(02)01383-3 doi: 10.1016/S0378-4371(02)01383-3
|
| [14] |
M. Wang, Y. Wang, R. Xu, R. Peng, J. Wang, J. Kim, Multifractal detrended fluctuation analysis combined with Allen–Cahn equation for image segmentation, Fractal Fract., 9 (2025), 310. http://dx.doi.org/10.3390/fractalfract9050310 doi: 10.3390/fractalfract9050310
|
| [15] |
B. Podobnik, H. E. Stanley, Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series, Phys. Rev. Lett., 100 (2008), 084102. https://doi.org/10.1103/PhysRevLett.100.084102 doi: 10.1103/PhysRevLett.100.084102
|
| [16] |
N. Xu, S. Li, X. Hui, Multifractal analysis of COVID-19's impact on China's stock market, Fractals, 29 (2021), 2150213. https://doi.org/10.1142/S0218348X21502133 doi: 10.1142/S0218348X21502133
|
| [17] |
F. H. A. D. Araujo, L. H. S. Fernandes, Multifractal detrended fluctuations analysis for ibovespa assets, Fractals, 29 (2021), 2150183. https://doi.org/10.1142/S0218348X21501838 doi: 10.1142/S0218348X21501838
|
| [18] |
A. Sankaran, T. Plocoste, A. N. G. R. Nair, M. G. Mohan, Unravelling the fractal complexity of temperature datasets across Indian mainland, Fractal Fract., 8 (2024), 241. https://doi.org/10.3390/fractalfract8040241 doi: 10.3390/fractalfract8040241
|
| [19] |
S. J. Duanzhu, J. Wang, C. R. Jia, Hotel comment emotion classification based on the MF-DFA and partial differential equation classifier, Fractal Fract., 7 (2023), 744. https://doi.org/10.3390/fractalfract7100744 doi: 10.3390/fractalfract7100744
|
| [20] |
A. Alam, D. Nikolopoulos, D. Cantzos, M. Tahir, T. Iqbal, E. Petraki, et al., Regional multifractal variability of the overall seismic activity in Pakistan from 1820 to 2020 via the application of MDFA on earthquake catalogs, Fractal Fract., 7 (2023), 857. https://doi.org/10.3390/fractalfract7120857 doi: 10.3390/fractalfract7120857
|
| [21] |
F. Rahmani, M. H. Fattahi, A multifractal cross-correlation investigation into sensitivity and dependence of meteorological and hydrological droughts on precipitation and temperature, Nat. Hazards, 109 (2021), 2197–2219. https://doi.org/10.1007/s11069-021-04916-1 doi: 10.1007/s11069-021-04916-1
|
| [22] |
S. T. Ogunjo, I. Fuwape, A. B. Rabiu, S. S. Oluyamo, Multifractal analysis of air and soil temperatures, Chaos, 31 (2021), 033103. https://doi.org/10.1063/5.0029658 doi: 10.1063/5.0029658
|
| [23] |
J. Wang, H. Xu, W. Jiang, Z. Han, J. Kim, A novel MF-DFA-phase-field hybrid MRIs classification system, Expert Syst. Appl., 225 (2023), 120071. https://doi.org/10.1016/j.eswa.2023.120071 doi: 10.1016/j.eswa.2023.120071
|
| [24] |
C. Lee, S. Ham, Y. Hwang, S. Kwak, J. Kim, An explicit fourth-order accurate compact method for the Allen-Cahn equation, AIMS Math., 9 (2024), 735–762. https://doi.org/10.3934/math.2024038 doi: 10.3934/math.2024038
|
| [25] |
J. Wang, M. Huang, X. Wu, J. Kim, A local fitting based multifractal detrend fluctuation analysis method, Physica A, 611 (2023), 128476. https://doi.org/10.1016/j.physa.2023.128476 doi: 10.1016/j.physa.2023.128476
|
| [26] |
R. Zhang, C. Jia, J. Wang, MF-DCCA analysis of investor sentiment and financial market based on NLP algorithm, J. Korean Soc. Ind. App., 28 (2024), 71–87. https://doi.org/10.12941/jksiam.2024.28.071 doi: 10.12941/jksiam.2024.28.071
|
| [27] |
P. Oswiecimka, S. Drozdz, M. Forczek, S. Jadach, J. Kwapien, Detrended cross-correlation analysis consistently extended to multifractality, Phys. Rev. E, 89 (2014), 023305. https://doi.org/10.1103/PhysRevE.89.023305 doi: 10.1103/PhysRevE.89.023305
|
| [28] | Q. Meng, F. Wang, L. Zhao, Incremental policy iteration for unknown nonlinear systems with stability and performance guarantees, arXiv Preprint, 2025. https://doi.org/10.48550/arXiv.2508.21367 |
| [29] | R. T. Q. Chen, Y. Rubanova, J. Bettencourt, D. K. Duvenaud, Neural ordinary differential equations, Adv. Neural Inf. Process. Syst., 31 (2018). |
| [30] | A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, P. Tabuada, Control barrier functions: Theory and applications, In: 2019 18th European Control Conference (ECC), Naples, Italy, 2019, 3420–3431. https://doi.org/10.23919/ECC.2019.8796030 |