As a fundamental tool for interval-valued intuitionistic fuzzy sets (IVIFSs), the score function (SF) plays a pivotal role in quantifying interval-valued intuitionistic fuzzy values (IVIFVs) and facilitating their comparative analysis. However, a notable limitation of existing SFs is their potential to assign identical scores to distinct IVIFVs, thereby compromising the discrimination capability. To address this challenge, this study introduces IVIFS-SF, a novel score function grounded in prospect theory, and proposes two innovative assessment methodologies. First, we employed prospect theory to develop an interval-valued evaluation method (IVEM), which converts the interval into a crisp number. Second, using IVEM, we developed the new score function IVIFS-SF and present its properties. Third, we put forward pass rate and variance as metrics to analyze and compare SFs. Rigorous comparative analysis demonstrated that IVIFS-SF achieves superior performance in both pass rate and variance metrics when benchmarked against existing state-of-the-art SFs. Furthermore, sensitivity analysis confirmed the robustness of IVIFS-SF across the parameter spectrum of prospect theory. Empirical case studies revealed that while IVIFS-SF identifies the same optimal alternative as competing SFs, it exhibits the highest variance among them, suggesting enhanced discriminative power.
Citation: Benting Wan, Jun Wan, Juan Zhang, Jin Xie, Youyu Cheng, Wenzhong Peng. A new score function of interval-valued intuitionistic fuzzy values based on prospect theory[J]. AIMS Mathematics, 2025, 10(11): 27718-27754. doi: 10.3934/math.20251219
As a fundamental tool for interval-valued intuitionistic fuzzy sets (IVIFSs), the score function (SF) plays a pivotal role in quantifying interval-valued intuitionistic fuzzy values (IVIFVs) and facilitating their comparative analysis. However, a notable limitation of existing SFs is their potential to assign identical scores to distinct IVIFVs, thereby compromising the discrimination capability. To address this challenge, this study introduces IVIFS-SF, a novel score function grounded in prospect theory, and proposes two innovative assessment methodologies. First, we employed prospect theory to develop an interval-valued evaluation method (IVEM), which converts the interval into a crisp number. Second, using IVEM, we developed the new score function IVIFS-SF and present its properties. Third, we put forward pass rate and variance as metrics to analyze and compare SFs. Rigorous comparative analysis demonstrated that IVIFS-SF achieves superior performance in both pass rate and variance metrics when benchmarked against existing state-of-the-art SFs. Furthermore, sensitivity analysis confirmed the robustness of IVIFS-SF across the parameter spectrum of prospect theory. Empirical case studies revealed that while IVIFS-SF identifies the same optimal alternative as competing SFs, it exhibits the highest variance among them, suggesting enhanced discriminative power.
| [1] |
K. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets Syst., 31 (1989), 343–349. https://doi.org/10.1016/0165-0114(89)90205-4 doi: 10.1016/0165-0114(89)90205-4
|
| [2] |
I. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Set. Syst., 20 (1986), 191–210. https://doi.org/10.1016/0165-0114(86)90077-1 doi: 10.1016/0165-0114(86)90077-1
|
| [3] |
K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
|
| [4] |
J. Jebadass, P. Balasubramaniam, Color image enhancement technique based on interval-valued intuitionistic fuzzy set, Inform. Sciences, 653 (2024), 119811. https://doi.org/10.1016/j.ins.2023.119811 doi: 10.1016/j.ins.2023.119811
|
| [5] |
R. Chinnappan, D. Sundaram, Image enhancement framework combining interval-valued intuitionistic fuzzy sets and fractional sobel operator, Artif. Intell. Rev., 58 (2025), 291. https://doi.org/10.1007/s10462-025-11294-8 doi: 10.1007/s10462-025-11294-8
|
| [6] |
C. Suo, X. Li, Y. Li, Distance-based knowledge measure and entropy for interval-valued intuitionistic fuzzy sets, Mathematics, 11 (2023), 3468. https://doi.org/10.3390/math11163468 doi: 10.3390/math11163468
|
| [7] |
A. Wei, D. Li, P. Lin, B. Jiang, An information-based score function of interval-valued intuitionistic fuzzy sets and its application in multiattribute decision making, Soft Comput., 25 (2021), 1913–1923. https://doi.org/10.1007/s00500-020-05265-0 doi: 10.1007/s00500-020-05265-0
|
| [8] |
P. Rani, A. Mishra, F. Cavallaro, A. Alrasheedi, Location selection for offshore wind power station using interval-valued intuitionistic fuzzy distance measure-RANCOM-WISP method, Sci. Rep., 14 (2024), 4706. https://doi.org/10.1038/s41598-024-54929-6 doi: 10.1038/s41598-024-54929-6
|
| [9] |
Z. Xu, Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making (Chinese), Control and Decision, 22 (2007), 215–219. https://doi.org/10.13195/j.cd.2007.02.97.xuzsh.020 doi: 10.13195/j.cd.2007.02.97.xuzsh.020
|
| [10] |
S. Seker, N. Aydin, Assessment of hydrogen production methods via integrated MCDM approach under uncertainty, Int. J. Hydrogen Energ., 47 (2022), 3171–3184. https://doi.org/10.1016/j.ijhydene.2021.07.232 doi: 10.1016/j.ijhydene.2021.07.232
|
| [11] |
H. Garg, A new generalized improved score function of interval-valued intuitionistic fuzzy sets and applications in expert systems, Appl. Soft Comput., 38 (2016), 988–999. https://doi.org/10.1016/j.asoc.2015.10.040 doi: 10.1016/j.asoc.2015.10.040
|
| [12] |
W. Wang, X. Han, W. Ding, Q. Wu, X. Chen, M. Deveci, A Fermatean fuzzy Fine-Kinney for occupational risk evaluation using extensible MARCOS with prospect theory, Eng. Appl. Artif. Intel., 117 (2023), 105518. https://doi.org/10.1016/j.engappai.2022.105518 doi: 10.1016/j.engappai.2022.105518
|
| [13] |
C. Wang, S. Chen, A new multiple attribute decision making method based on linear programming methodology and novel score function and novel accuracy function of interval-valued intuitionistic fuzzy values, Inform. Sciences, 438 (2018), 145–155. https://doi.org/10.1016/j.ins.2018.01.036 doi: 10.1016/j.ins.2018.01.036
|
| [14] |
R. Gong, L. Ma, A new score function and accuracy function of interval-valued intuitionistic fuzzy number and its application (Chinese), Systems Engineering-Theory & Practice, 39 (2019), 463–475. https://doi.org/10.12011/1000-6788-2017-0995-13 doi: 10.12011/1000-6788-2017-0995-13
|
| [15] |
S. Chen, H. Deng, Multiattribute decision making based on nonlinear programming methodology and novel score function of interval-valued intuitionistic fuzzy values, Inform. Sciences, 607 (2022), 1348–1371. https://doi.org/10.1016/j.ins.2022.06.004 doi: 10.1016/j.ins.2022.06.004
|
| [16] |
C. Cheng, W. Ding, F. Xiao, W. Pedrycz, A majority rule-based measure for Atanassov-type intuitionistic membership grades in MCDM, IEEE Trans. Fuzzy Syst., 30 (2022), 121–132. https://doi.org/10.1109/TFUZZ.2020.3033062 doi: 10.1109/TFUZZ.2020.3033062
|
| [17] |
K. Kumar, S. Chen, Multiattribute decision making based on interval-valued intuitionistic fuzzy values, score function of connection numbers, and the set pair analysis theory, Inform. Sciences, 551 (2021), 100–112. https://doi.org/10.1016/j.ins.2020.11.032 doi: 10.1016/j.ins.2020.11.032
|
| [18] | L. Wu, R. Li, S. Shen, Virtual reality educational institutions evaluation: evidential reasoning based on MAGDM model integrating trust network and three-dimensional emotion, Int. J. Fuzzy Syst., in press. https://doi.org/10.1007/s40815-025-02060-7 |
| [19] |
S. Chen, S. Yu, Multiattribute decision making based on novel score function and the power operator of interval-valued intuitionistic fuzzy values, Inform. Sciences, 606 (2022), 763–785. https://doi.org/10.1016/j.ins.2022.05.041 doi: 10.1016/j.ins.2022.05.041
|
| [20] |
S. Chen, K. Tsai, Multiattribute decision making based on new score function of interval-valued intuitionistic fuzzy values and normalized score matrices, Inform. Sciences, 575 (2021), 714–731. https://doi.org/10.1016/j.ins.2021.07.074 doi: 10.1016/j.ins.2021.07.074
|
| [21] |
C. Wei, P. Wang, Y. Zhang, Entropy, similarity measure of interval-valued intuitionistic fuzzy sets and their applications, Inform. Sciences, 181 (2011), 4273–4286. https://doi.org/10.1016/j.ins.2011.06.001 doi: 10.1016/j.ins.2011.06.001
|
| [22] |
J. Ye, Multicriteria fuzzy decision-making method using entropy weights-based correlation coefficients of interval-valued intuitionistic fuzzy sets, Appl. Math. Model., 34 (2010), 3864–3870. https://doi.org/10.1016/j.apm.2010.03.025 doi: 10.1016/j.apm.2010.03.025
|
| [23] |
C. Wang, S. Chen, An improved multiattribute decision making method based on new score function of interval-valued intuitionistic fuzzy values and linear programming methodology, Inform. Sciences, 411 (2017), 176–184. https://doi.org/10.1016/j.ins.2017.05.022 doi: 10.1016/j.ins.2017.05.022
|
| [24] |
Z. Bai, An interval-valued intuitionistic fuzzy TOPSIS method based on an improved score function, Sci. World J., 2013 (2013), 879089. https://doi.org/10.1155/2013/879089 doi: 10.1155/2013/879089
|
| [25] |
K. Guo, J. Zang, Knowledge measure for interval-valued intuitionistic fuzzy sets and its application to decision making under uncertainty, Soft Comput., 23 (2019), 6967–6978. https://doi.org/10.1007/s00500-018-3334-3 doi: 10.1007/s00500-018-3334-3
|
| [26] |
T. Kumar, K. Kumar, N. Dhiman, M. Sharma, Novel Pythagorean fuzzy score function to optimize fuzzy transportation models, Results in Engineering, 25 (2025), 104048. https://doi.org/10.1016/j.rineng.2025.104048 doi: 10.1016/j.rineng.2025.104048
|
| [27] |
H. Nguyen, A new interval-valued knowledge measure for interval-valued intuitionistic fuzzy sets and application in decision making, Expert Syst. Appl., 56 (2016), 143–155. https://doi.org/10.1016/j.eswa.2016.03.007 doi: 10.1016/j.eswa.2016.03.007
|
| [28] |
H. Nguyen, A generalized p-norm knowledge-based score function for an interval-valued intuitionistic fuzzy set in decision making, IEEE Trans. Fuzzy Syst., 28 (2020), 409–423. https://doi.org/10.1109/TFUZZ.2019.2907068 doi: 10.1109/TFUZZ.2019.2907068
|
| [29] | D. Kahneman, A. Tversky, Prospect theory: an analysis of decision under risk, Economica, 47 (1979), 263–292. |
| [30] |
A. Tversky, D. Kahneman, Advances in prospect theory: cumulative representation of uncertainty, J. Risk Uncertainty, 5 (1992), 297–323. https://doi.org/10.1007/BF00122574 doi: 10.1007/BF00122574
|
| [31] |
A. Mondal, S. Roy, Behavioural three-way decision making with Fermatean fuzzy Mahalanobis distance: application to the supply chain management problems, Appl. Soft Comput., 151 (2024), 111182. https://doi.org/10.1016/j.asoc.2023.111182 doi: 10.1016/j.asoc.2023.111182
|
| [32] |
W. Lei, X. Li, K. Gong, B. Sun, Large-scale behavioral three-way group decision based on prospect theory under dual hesitant fuzzy environment, IEEE Trans. Syst. Man Cy. B, 55 (2025), 4943–4956. https://doi.org/10.1109/TSMC.2025.3561051 doi: 10.1109/TSMC.2025.3561051
|
| [33] | N. Belle, P. Cantarelli, V. Cruciani, Behavioral insights for managing environmental decisions: an experimental test of prospect theory, Bus. Strateg. Environ., in press. https://doi.org/10.1002/bse.70159 |
| [34] |
J. Fan, T. Lei, M. Wu, MEREC-MABAC method based on cumulative prospect theory for picture fuzzy sets: applications to wearable health technology devices, Expert Syst. Appl., 255 (2024), 124749. https://doi.org/10.1016/j.eswa.2024.124749 doi: 10.1016/j.eswa.2024.124749
|
| [35] |
J. Gao, H. Liu, Interval-valued intuitionistic fuzzy stochastic multi-criteria decision-making method based on prospect theory, Kybernetes, 44 (2015), 25–42. https://doi.org/10.1108/K-02-2014-0027 doi: 10.1108/K-02-2014-0027
|
| [36] |
J. Wang, K. Li, H. Zhang, Interval-valued intuitionistic fuzzy multi-criteria decision-making approach based on prospect score function, Knowl. -Based Syst., 27 (2012), 119–125. https://doi.org/10.1016/j.knosys.2011.08.005 doi: 10.1016/j.knosys.2011.08.005
|
| [37] |
B. Farhadinia, H. Khayyam, M. Jalili, Enhancing decision-making clarity: layered set-based similarity measures for probabilistic hesitant fuzzy sets, IEEE Trans. Fuzzy Syst., 33 (2025), 2161–2173. https://doi.org/10.1109/TFUZZ.2025.3554196 doi: 10.1109/TFUZZ.2025.3554196
|
| [38] |
M. Gao, T. Sun, J. Zhu, Interval-valued intuitionistic fuzzy multiple attribute decision-making method based on revised fuzzy entropy and new scoring function (Chinese), Control and Decision, 31 (2016), 1757–1764. https://doi.org/10.13195/j.kzyjc.2015.1042 doi: 10.13195/j.kzyjc.2015.1042
|