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Abstract: As a fundamental tool for interval-valued intuitionistic fuzzy sets (IVIFSs), the score
function (SF) plays a pivotal role in quantifying interval-valued intuitionistic fuzzy values (IVIFVs)
and facilitating their comparative analysis. However, a notable limitation of existing SFs is their
potential to assign identical scores to distinct IVIFVs, thereby compromising the discrimination
capability. To address this challenge, this study introduces IVIFS-SF, a novel score function
grounded in prospect theory, and proposes two innovative assessment methodologies. First, we
employed prospect theory to develop an interval-valued evaluation method (IVEM), which converts
the interval into a crisp number. Second, using IVEM, we developed the new score function
IVIFS-SF and present its properties. Third, we put forward pass rate and variance as metrics to
analyze and compare SFs. Rigorous comparative analysis demonstrated that IVIFS-SF achieves
superior performance in both pass rate and variance metrics when benchmarked against existing
state-of-the-art SFs. Furthermore, sensitivity analysis confirmed the robustness of IVIFS-SF across
the parameter spectrum of prospect theory. Empirical case studies revealed that while IVIFS-SF
identifies the same optimal alternative as competing SFs, it exhibits the highest variance among them,
suggesting enhanced discriminative power.
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1. Introduction

Interval-valued intuitionistic fuzzy sets (IVIFSs) [1], which extend both interval-valued fuzzy
sets (IVFSs) [2] and intuitionistic fuzzy sets (IFSs) [3], provide a more flexible representation of
uncertainty. They have been extensively applied in areas such as intelligent decision-making, target
selection, and risk assessment [4,5]. When measuring the interval-valued intuitionistic fuzzy value
(IVIFV) [1], commonly used methods include the score function (SF), distance, similarity, and
entropy [6—8]. Unlike other measures, the SF can derive a crisp value directly from a single IVIFV.
Consequently, researchers have placed considerable emphasis on studying the SF and its properties.
However, the single, one-dimensional output of the SF makes it mathematically challenging to
distinguish among all possible IVIFVs, which inherently possess a complex four-dimensional
structure. Therefore, numerous studies have been conducted to enhance the discriminative ability of
the SF in practical applications and to mitigate its mathematical limitations. The SF for the IVIFV
was first proposed by Xu [9], can intuitively reflect the positive and negative attitudes of
decision-makers, and has been widely used [10]. However, Xu also noted that some IVIFVs cannot
be distinguished using this method [9]. To enhance the comparative ability of two IVIFVs, the
accuracy function (AF) was then introduced. Despite their wide application in multi-attribute group
decision-making (MADM) problems [4,11,12], it has been observed that some IVIFVs still cannot be
effectively distinguished using the SF and AF [11,12]. For example, a; and a, cannot be
distinguished when a; = ([0.2,0.6],[0.3,0.4]) and a, = ([0.3,0.5],[0.2,0.5]). In order to improve
the comparative ability of IVIFVs by using the SF and AF, researchers have continued exploring
some new SFs and AFs. However, they still show some degree of indistinguishability when a3 =
([0.45,0.45],[0.45,0.45]) and a, = ([0.35,0.35],[0.35,0.35]) [13], and when ag=
([0.3,0.45],[0.27,0.51]) and ag = ([0.15,0.55],[0.32,0.37]) [14]. To enhance the
distinguishability of IVIFVs and effectively utilize the SF in MADM, extensive investigations into
score function techniques have been conducted in recent years [15—17]. For example, Kumar [17]
developed an SF based on set pair analysis theory (SPA), and while building on Kumar’s work,
Wu [18] outlined one based on the beta function. Chen made improvements to this work a year later
[19], but when a, = ([0.3,0.45],[0.27,0.51]), ag = ([0.15,0.55],[0.32,0.37]), and the calculation
results retain four decimal places, the SF cannot distinguish a; and ag. Chen and Tsai [20] then
presented improved SFs for the IVIFV that could easily distinguish IVIFVs rounded to two decimal
places, and Chen [15,19] and Wu [18] studied SFs without the need of AFs to efficiently solve
MADM problems. The details of these works are given in Section 4.2 and detailed explanations of
the problems are given in Section 2.3. Cheng [16] studied the measurement method based on the
Gold Rule and T-S theory. This successfully solved the measurement problem when s =
([a, b], [c,d]) meets the condition of a = b = ¢ = d. However, it is necessary to determine the
value of the parameter k based on the actual application environment. Our investigation indicates that
existing SFs inadequately capture the uncertainties inherent in the membership and non-membership
intervals, as well as in the dynamic nature of decision-making. Hence, addressing interval
uncertainty remains a crucial challenge.

To overcome the limitations of existing score functions (SFs), researchers have incorporated
entropy-based techniques into the design of SFs for IVIFVs [21-23]. Specifically, Ye [22] proposed
an SF that combines entropy and the correlation coefficient. Wei [21] introduced SFs that integrate
entropy and similarity, a combination that has proven not only superior to the SF developed by Bai
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[24] but also widely applied in fuzzy decision-making applications. However, Guo [25] identified
several shortcomings of these SFs. In efforts to enhance the processing capabilities of SFs, some
researchers have introduced SFs based on knowledge measures and entropy. For example, Guo [25]
proposed an SF based on membership, non-membership, and hesitation of the IVIFV. Kumar [26]
studied the SF for transportation models. While Nguyen [27] investigated SFs based on knowledge
measurement, in [28] he then investigated the SF by using a generalized p-Norm. However, when the
norm value is p = 1, aq = ([0.0,0.4],[0.0,0.5]), and a;, = ([0.1,0.3 ],[0.1,0.4]), the Nguyen SF
[28] fails to compare aq and a,,. Although entropy- and knowledge-based approaches have shown
promise in constructing SFs for IVIFVs, the SFs of their products do not adequately reflect the
psychological change process.

Despite these challenges, researchers have discovered that prospect theory effectively captures
the psychological changes decision-makers experience [29]. Decision-makers tend to exhibit risk
aversion when facing gains and show a preference for risk when facing losses. As the frequency of
gains and losses increases for decision-makers, the marginal value of each subsequent gain or loss
diminishes [30]. Consequently, the integration of fuzzy theory has received substantial attention
[31,32], leading to significant methodological advances [33]. For instance, Fan [34] proposed a
MEREC-MABAC approach for evaluating the performance of wearable health technology devices
within a prospect-theory-based framework. Wang put forward a decision method based on prospect
theory [12]. Gao [35] also developed an SF based on prospect theory, but could not distinguish
IVIFVs with equal membership and non-membership. Wang et al. [36] proposed an SF based on the
prospect value function, in which the reference point corresponds to the expected value of multiple
IVIFVs and the resulting output is an interval. When there is only one IVIFV, this SF degenerates
into a membership interval minus a non-membership interval value, which cannot be converted into
a crisp number. Moreover, it fails to account for the dynamic psychological transition that
decision-makers undergo when shifting from support to opposition.

In general, existing SFs for IVIFSs have demonstrated strong applicability in areas such as
decision-making, evaluation, and intelligent analysis, but they also have several shortcomings. Some
SFs can rapidly calculate and intuitively reflect the positive and negative attitudes of
decision-makers, yet they fail to distinguish and compare a large number of different IVIFVs. Some
SFs incorporate entropy-based measures, but they are not able to reflect the psychological change
process of decision-makers. Therefore, the main research drivers behind this paper are summarized
as follows.

(1) Although some functions can map the interval [a,b] ([a,b] S [0,1]) to a crisp number,
they fail to reflect the psychology of decision-makers. This paper will use prospect theory to study
the interval mapping function and map [a, b] to a crisp number.

(2) Many existing SFs of IVIFVs struggle to compare two IVIFVs with obvious differences.
Despite the use of AFs to enhance the distinction of IVIFVs, a significant number of them remain
incomparable (see Section 2.3). It is necessary to develop a new SF to improve the ability to compare
IVIFVs without requiring an AF, thus enhancing the practical applicability of IVIFVs.

(3) Although researchers [36] have proposed SFs based on prospect theory before, their methods
do not fully account for the prospect values of interior points in an interval, nor do their SFs result in
a crisp number. Our proposal in this paper is to develop an SF that considers the prospect values of
interior points and yields a crisp number.
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(4) The selection and development of SFs need a set of standards and methods for comparison.
To the best of our knowledge, no study has proposed an evaluation method or criteria for evaluating
SFs, a gap which this paper aims to fill.

Inspired by prospect theory [29], this paper transforms continuous decision-making information
into crisp numbers that can also reflect the decision-making psychology of decision-makers. An
interval-valued evaluation method (IVEM) based on prospect theory is thus proposed to transform
the IVIFV into an intuitionistic fuzzy value (IFV). The key contributions of this paper are:

(1) The development of an IVEM based on prospect theory, which can improve the
discriminative ability in practical applications and mitigating mathematical limitations.

(2) The transformation of the IFN based on the IVEM.

(3) The design of an IVIFS-SF and the investigation of its properties based on the IVEM.

(4) The proposal of pass rate and variance as the SFs assessment methods, where a generated
dataset is used for illustration.

(5) A comparative analysis and verification of the IVIFS-FS with the state-of-the-art SFs
through a case study.

The remaining sections of this paper are organized as follows. Section 2 provides a background
discussion of prospect theory, Section 3 describes the IVEM that has been developed as a result of
that theory, Section 4 develops a new SF and SF assessment methods, Section 5 verifies the proposed
SF with a case study, and concluding remarks are found in the final section.

2. Preliminary
2.1. IVIFS

Definition 1 [1]. Let X be the universe. The IVIFS A on X is defined in Eq (1):
A ={(x,uy(x), v4(x))|x € X}. (1)

In Eq (1), the membership function is an interval mapping: u,(x) = [u; (x), uf (x)] € [0,1]
and the non-membership function is a mapping of interval value: v,(x) = [v; (x), v{ (x)] < [0,1].
They satisfy uy (x) = 0,v;(x) = 0,and 0 < uj (x) + v; (x) < 1. The hesitation degree of 4 is

pa(x) = [y (), i ()] = [1 —ug (x) —vi (x),1 —uz (x) — va (O)]. 2)

In [12], a = ([u~,u*],[v",v*]) is regarded as an interval-valued intuitionistic fuzzy value
(IVIFV) where [u~,u*] €[0,1],[v",v*] €[0,1], and u* +v* < 1.

c
c

Definition 2 [9]. Let a; = ([ug,, ui | [va,, vd,]) be a set of IVIFVs and w = (wy, wy, -+, wy,) be
the weight vector satisfying Y’y w; =1, w; =0, i = 1,2,---,n. The IIFWA operator is defined as

IIFWA (ay, az, -, @) = ([1 = [Tz, (1 — u)®4 1 = [Tioy (1 — )@, [Ty )24 Ty ()@ (3)
2.2. Prospect theory
In prospect theory [29], the value of a prospect is evaluated relative to a reference point from

decision-makers. The prospect value function is S-shaped, being concave in the gain domain and
convex in the loss domain, as illustrated in Figure 1.
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Figure 1. Value function of prospect theory.

In prospect theory, it has been observed that different decision-makers may have different
choices for the same problem, as their subjective preferences influence the resulting decision
outcomes. The prospect value is thus jointly determined by the value function and probabilistic
weight function as shown in Eq (4).

V =v(@x)w(p), (4)

where V represents the prospect value, v(Ax) represents the value function of a decision-maker’s
subjective feelings, and w(p) represents the weight function of probability. If we define Ax as
x; — x,, where x, is the reference point and x; represents the evaluation point, the calculation of
v(Ax) is shown in Eq (5).

(Ax)*,Ax = 0,

—0(—Ax)B, Ax < 0. )

V(Ax) = {
In Eq (5), when Ax > 0, it is expressed as gain. Otherwise, it is regarded as loss. (0 < a <
1) and B(0 < B < 1) are the risk attitude coefficients, which are shown in Figure 1 as the degree
of concavity and convexity of the value function in the gain domain and the loss domain,
respectively. They reflect the decreasing speed of the decision-maker’s sensitivity. The larger their
values are, the more likely the decision-makers are to take risks. 6 is the loss avoidance coefficient,
which is the steepness of the value function in the loss domain in Figure 1, that is, it reflects the
degree of loss avoidance of a decision-maker. When 6 > 1, it indicates a decision-maker’s loss
aversion.
In Eq (4), the probability weight function w(p) is determined by the probability of occurrence
p of the event x;, which is a monotonically increasing function as shown in Eq (6). In Eq (6), y > 0
and § > 0 represent the risk attitude coefficients of the gain domain and the loss domain,
respectively,

py
e A = 0
wipy={"""} (6)
75, Ax < 0.

(Po+(1-p)%)
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2.3. Analysis of existing score functions

Since the first SF of IVIFSs was proposed in 2007 [9], over forty have been developed and
investigated. However, many of these methods still have several shortcomings. To illustrate the
performance of existing SFs, we scrutinize ten of them focusing on their indistinguishability.

The score function S, of the IVIFVs proposed by Xu [9] has a simple calculation process and
obtains results easily. Definition 3 shows that at present, it is one of the most widely used SFs, while
Example 1 demonstrates its indistinguishability.

Definition 3. Let a = ([u™,u*],[v™,v*]) be an IVIFV. The Sy is defined in Eq (7):

u +ut—v —v?t

Sx(@) = = ™

Example 1. Let a,; = ([0.25,0.3],[0.4,0.6]) and a,, = ([0.15,0.4],[0.5,0.5]). We can get
Sy(ay1) = Sx(a,3) = —0.45, indicating that Sy cannot distinguish a;; and a;,. Although Xu [9]
proposed the improved AF Hy(a) = %(u‘ +ut+v-+v*), the calculation Hy(a;;) =
Hy(a;z) = 0.775 fails to distinguish a;; and a;,. At the same time, for any two a; and a;, when
u; +uf —v; +v =u; +uf — v + v, Sy cannot distinguish a; and a;.

Wang and Chen [13] proposed a score function Sy, which not only integrates the support and
opposition attitudes of decision-makers, but also considers the intersection of membership and
non-membership as shown in Definition 4. Wei [7] pointed out that the parameters u* and v~ in
Swc do not satisfy monotonicity whenu™ = ut = v~ = v*. As shown in Example 2, IVIFVs
cannot be distinguished.

Definition 4. Let a = ([u™,u™],[v",v*]) be an IVIFV. The Sy is

(w +ut)@w +v)-(v +v)(ut+vt)

Swe(a) = 5 (&)

Example 2. Let a3 = ([0.45,0.45],[0.45,0.45]) and a,4 = ([0.35,0.35],[0.35,0.35]). This
gives us Syc(as;3) =0,Syc(a,) =0, and a Sy that cannot distinguish a;53 and a,,. At the
same time, for any two a; and a;, when u; = u = v; = v, u; =u =v; = v, Sy cannot
distinguish a; and a;.

Wei and Li [7] proposed an information-based score function Sy,; as shown in Definition 5.
Their Sy, comprehensively reflects the multiple relationships between membership and
non-membership of IVIFVs. Example 3 gives the indistinguishability in this case.

Definition 5. Let a = (Ju™,u*],[v~,v*]) be an IVIFV. The S, is

Sp@=[1+u +u"—v —v*+05(u" —v7 |+ [ut —v DL +u + pT)et TvTHuTHUY
e+ (1 +ut+ v+)e”+‘”+‘”_‘”+/e][(2 —v-—vh)/(d—u —ut —v- —vt)]/16. 9)
Example 3. Let a;5 = ([0.05,0.07],[0.1,0.55]) and a;¢ = ([0.23,0.27],[0.45,0.61]). This gives

us Sy (ays) = Sy (ae) = 0.0049, thus making Sy, unable to distinguish a;5 and a,q. At the
same time, when a; = ([0.05,0.07],[0.1,0.55]) , a; = ([0.05+ k,0.07 + 1.111k],[0.1 +
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1.944k,0.55 + 0.333k])(—0.05 < k < 0.263), and the score value is rounded to two decimal
places, there are some a; that Sy, cannot distinguish a; and a;.

Bai [24] proposed a score function Sp based on the unknown degree as shown in Definition 6,
but when u~™ = u* =0, S is always 0 as shown in Example 4.

Definition 6. Let a = (Ju™,u*],[v™,v*]) be an IVIFV. The Sy is shown in Eq (10):

u”+u”(1-u"-v)+ut+ut (1-ut-vt)

Sp(a) = . (10)

Example 4. Let a,; = ([0,0],[0.2,0.5]) and a,5 = ([0,0],[0.1,0.2]). Sg(a;;) = Sg(a;g) =0
indicates that Sp fails to distinguish a,; and a,g. At the same time, for any two @; and a;,when
u; =uf =0 and u; =uj =0, Sp =0.So Sp cannot distinguish a; and q;.

Garg [11] generalized score function S; as shown in Definition 7. However, as shown in

Example 5, when u~ = ut =0, S; is always 0 regardless of the values of k; or k,.

Definition 7. Let a = (Ju™,u*],[v~,v*]) be anIVIFV. The S; is

Se(a) = ”_;‘” +hpu A—p —v ) +kout (A —put —v),and ky + ky = 1,ky, ky = 0. (11)

Example 5. Let a9 = ([0,0],[0.3,0.5]) and a,, = ([0,0],[0,0]). This gives us S;(a;q) =
Sg(ayp) =0 and an S; that cannot distinguish a,9 and a,,. At the same time, for any two
a; and a;, when u; =u =0 and u; =uf =0, S; =0.So S; cannot distinguish a; and q;.
Gao and Liu [35] proposed a score function S;;, which reflects the degree of support by
measuring the difference between the midpoint values of the membership and non-member degrees.
By taking into account the effect of the degree of hesitation, it describes the integrated information of
the IVIFV as indicated in Definition 8. When u; + u} = u; + u} and vy + v} = v, +vf, Sg,

cannot distinguish between the two IVIFVs as shown in Example 6.

Definition 8. Let a = ([u™,u*],[v~,v*]) be an IVIFV. The S;, is

exp {[u"+ut-v~—v*]/2}
1-u——v~+1-ut-vt]/2+1

Ser(a) = [ (12)
Example 6. Let a,; = ([0,0.4],[0.4,0.6]) and a,, = ([0.2,0.2],[0.3,0.7]). We have S;;(a,,) =
Sg(az1) = 0.5699, which implies that S;; cannot distinguish a,, and a,;. At the same time,
there exist two a; and a;, a;€ A and a; € A, and A= ([0.1+k,0.3 —k;],[0.4+k,,0.6 —
koD, {(ki, ky) € R?| —0.1 < k; <0.1,-0.2 <k, <0.1}, and S;;, cannot distinguish a; and a;
when value is rounded to 1.

Chen and Tsai [20] proposed a score function S;r as defined in Definition 9 to consider the
hesitation, but the shortcoming of this approach is given in Example 7.

Definition 9. Let a = ([u™,u*],[v~,v™]) be an IVIFV. The S is

Vum+Vut+/1—v=+V1-v+

Ser(a) = . (13)

Example 7. Let a,; =([0.1,0.2],[0.0,0.8]) and a,, = ([0.0,0.1],[0.0,0.2]) . This gives
Scr(azs) = Ser(ay,) = 1.1053, which means that S;p cannot distinguish a,; and a,,. At the

same time, there exist two a;and a;, a; € A anda;j € A and A = ([0.1 + k;,0.25 — k;],[0.12 +
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k,,0.43 — k,]),{(k1, k;) € R?|0 < k; < 0.05,0 < k, < 0.06}, and the score value is rounded to 1
decimal places. S¢r cannot distinguish a; and a;.

Chen and Deng [15] proposed a score function Scp as presented in Definition 10, which
extends Sy and Scr by improving the comparison ability of IVIFVs. As shown in Example 8,
however, Scp is also insufficient to distinguish two IVIFVs under specific scenarios.

Definition 10. Let a = ([u~,u*],[v~,v*]) be an IVIFV. The S.p, is

i ™\ 1 si +5) 1 si )% ) 4si _pH)xE
u——v—+ut—vt sm(u x2)+sm (u x2)+sm<(1 v )><2>+51n<(1 v )xz)

Sep(a) = > + . + 2. (14)

Example 8. Let a,;=([0.42,0.71],[0.07,0.08]) and a,, = ([0.61,0.71],[0.2,0.24])
Scp(ays) = Sep(aye) = 4.239 indicates that S;p cannot distinguish a,s and a,,. At the same
time, for any two a; and a;, a; € A, and a; € A, and A = ([0.5,0.5],[0.1 + k,0.5 — k]),—0.2 <
k < 0.1, and the score value is rounded to 3 decimal places. S¢p cannot distinguish a; and a;.

Kumar and Chen [17] proposed a score function Sg. as presented in Definition 11. It uses
membership and non-member degrees and the degree of hesitation to construct the connection
number CN. In Eq (15), 4 represents the same degree, B represents the degree of difference, and C
represents the degree of opposites. Example 9 shows where Sk is insufficient.

Definition 11. Let a = ([u~,u™],[v™,v*]) be an IVIFV. The Sk is
CN(a) = A + Bi + Cj,
_(A-=C)1-B), ifA#C,
SeceN@) ={* 1 e my, i
u‘v++u+v')

A=u‘+u+—u‘u+—( .

(15)

C=v +vt—vvt- (—u_V++u+v_)
2 b
B=1-A-C.

Example 9. Let a,, = ([0.49,0.52],[0.01,0.48]) and a,g = ([0.08,0.7],[0.22,0.3]). Skc(a,;) =
Skc(ayg) = 0.27, implies that Sk cannot distinguish a,; and a,g. At the same time, there exist
two a; and a;, a; €A anda;€ A, and A= ([0.40 + k;,0.60 — k,],[0.16 + k;,0.34 — k, +
0.3k.1), {(ky, k) € R?| — 0.1 < k; < 0.1,—0.05 < k, < 0.05}, and the score value is rounded to 3
decimal places. Sk cannot distinguish a; and a;.

Chen and Yu [19] proposed a score function Sy based on the expected value of an interval. It
not only considers the membership and non-membership relationships of the interval, but also
considers their cross relationships as shown in Definition 12. Example 10 shows a case of
indistinguishability.

Definition 12. Let a = ([u~,u*],[v~,v*]) be an IVIFV. The Sy is shown in Eq (16):

SCY=\/u‘+u++(1—v‘)+(1—v+)+(u‘x§+u+xé)[1—(v‘x§+v+x§)]+

VI VuF+V1-vF
() T (wxawn) T (16)
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Example 10. Let a, = ([0.27,0.37],[0.53,0.53]) and a3, = ([0.23,0.27],[0.18,0.69]) . This
gives us Scy(ayqg) = Scy(asg) = 3.7546 and shows that S;y cannot distinguish a,q and asg.
According to Definition 12, we can see that the S;y lacks theoretical guidance and has

unpredictable discrimination blind spots in high-dimensional spaces, leading to indistinguishable
IVIFNSs.

3. An interval-valued evaluation method (IVEM) based on prospect theory

In this section, prospect theory is introduced to evaluate [a, b] that satisfies [a, b] € [0,1]
(0<a<b<1).

3.1. An interval-valued attitude analysis based on prospect theory

The interval [a, b] is equally divided into k(k = 1)segments, with the length of each segment
being d = (b — a)/k. The midpoint of each segment is selected to represent its judgment value; that
is, we use x; to represent the evaluation value of the i*" segment. If the decision-makers have the
same attitude toward any points on [a, b], the weights of each point on [a, b] are equal, whereas
any arbitrary method of division is equivalent.

In Figure 2, for example, the interval is equally divided into k segments, where x; =
[a+ixd+a+(i—1)=d]
2

average of [a, b] can then be derived to be aTer. This calculation process is shown in Eq (17).

,(i=12,..k). The weight of x; is equal, namely w; = 1/k. The weighted

._b—a . b—a
a+l><T+a+(l—1)><T
2k ’

k 1 _ vk
D=1 Xi X P Yi=1

ix(b-a) __b-a b-a) ok . _ __b-a (b—a) (k+1)k_ﬂ
k2 o TRz L=l = o TR 2 2‘(17)

— b-a k
=a-—0t Liz1

It can be seen from Eq (17) that, when the decision-makers have the same attitude toward each
part of the interval, the midpoint of [a, b] becomes the evaluation value, which is inconsistent with
the uncertainty of the interval. Therefore, the weights of x; should not be the same when [a, b] is
equally divided.

Figure 2. Interval segmentation process.

Prospect theory [29] is well able to reflect the change process of decision-makers’ attitudes
within [a, b]. As shown in Figure 1, the curve of the prospect value function takes the reference
point as the base point to separate the loss domain and the gain domain. The membership and
non-membership of IVIFVs are subsets of [0,1] and meet 0 < ujf(x) + vi(x) < 1. When the
endpoint of the membership (non-membership) is greater than the midpoint 0.5, the decision-makers
usually think that the degree of support is greater than (less than) the degree of opposition. Thus, in
this paper, 0.5 is taken as the reference point for prospect theory to separate the loss domain from the
gain domain. The translated prospect theory curve is shown in Figure 3. By taking any point from
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[a, b] on the horizontal axis, a vertical line passing through this point intersects the prospect
theoretical function curve L. The ordinate value corresponding to the intersection point is thus the
prospect value.

aneA

Figure 3. Mapping between the interval and prospect curve.

Figure 3 has x; = a and x; = b. The prospect values corresponding to X, x5, X3,**+, X} are
Vi, V5, Vs, -+, Vi It can be seen that for any point x;, the weight of x; is set to be w; = Zk—iv’ (i =
i=1"1i

1,2,:+,k). The evaluation value of [a,b] is calculated by the weighted average, defined as E =
Kk x;w;. It is easy to verify that E is not necessarily equal to %. Therefore, the prospect value

of x; is used to calculate the weight of decision-maker that can overcome the shortcomings of equal
weight on [a, b]. In addition, the prospect value of x; can effectively capture the changes in the
decision-maker’s attitude.

3.2. IVEM based on the prospect value function

Since the interval [a, b] is continuous, Eq (6) cannot be directly used to calculate the prospect
value. Drawing inspiration from the concept of a hesitation fuzzy set [37], we fuse the finite number
of evaluation values that can be used to express the decision-makers’ attitudes. These fused data,
derived from interval discretization, are then used to obtain the evaluation value of the interval.
There are two common methods to discretize the interval: equal division and random division. The
equal division method not only accurately reflects the decision-makers’ attitudes but is also simpler
to calculate. Since the weights of each point are different, the equal division method will be adopted
in this study.

Suppose [a,b](0 < a < b < 1) to be an arbitrary interval. We use Eq (18) to discretize the
interval [a,b] into k(k = 2) points. The set of discrete points is X = {Xx;, x5, X3, ", Xj—1, Xi }-
When k = 2, X contains only the endpoints a and b.

xi=a+(i—1)g. (18)

For any point x;, as defined in Eq (6), both the reference point and the parameter k£ need to be
considered when calculating its prospect value. When the decision-makers select different reference
points, their subjective perception values are different. Thus, the prospect values are also different.
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For all discrete points, however, the prospect value ratio of x; does not change, a claim that will be
proved in Section 3.3 For the convenience of calculation, the reference point in this paper is set
to 0.5.

Each real number x; in X is independent of the others. The probability of drawing x; is equal,
that is, p; = 1/k. By substituting p;, x;, and x, = 0.5 into Eqs (4)—(6), we can calculate the
prospect value of x; in Eq (19), where parameters «,y, 5,6, and 6 have the same meaning as
those in Egs (5) and (6).

( (xi - x*)a’ ¥ (%) N (xi - X*) = O;
(@+(-®))
V(x;) = 5 (1)5 (19)
—H(X'* - xi)ﬁ . 1 (xi - x*) <0.
\ (-6

When a = b, the interval degenerates into a real number a or b denoted as [a,a] or [b,b].
In this case, the equal division of the interval is still the point itself and the probability of drawing x;
is p; = 1. Substituting x; = a and p; = 1 into Eqs (4)—(6), the prospect value of point a or b
can be obtained using Eq (20):

(xi - x*)a’ (xi - x*) = 0,

v(a) = {—H(x* — xl-)ﬁ, (x; —x,) <0, (20)

where x, is the reference point. The meanings of @ and S are explained in Eq (5). Combining Eqs
(19) and (20), Eq (21) gives the prospect value of any discrete point on [a, b].

( (x; — x)® . (%) ¥
(" +(-())
V(x;) =1 —0(x. —x)F () 1, (x; —x,) <0, (21)
(@™+(-6))
(x; —x)% (x;—x,)=0anda =b = x;,
\—0(x, —x)P,(x; —x,) <Oanda = b = x;.

1/y? (xl - x*) 2 01

As shown in Eq (21), the parameter k directly influences the prospect value of x;. From
the intuitive perspective of the decision-makers, the smaller the discrete number is, the smaller
the prospect value discrimination of x; becomes, while the value of k depends on the actual
situation. In Section 4.3.2, we discuss whether or not k can take the value greater than or equal
to 20.

As illustrated in Figure 3, the interval [a,b] lies within [0,1]. The prospect value
calculated by Eq (21) increases monotonously, which means that it cannot directly reflect the
attitude of the decision-makers. Instead, by taking the x-axis as the symmetric axis, the gain part
of curve L is mirrored below y = 0 as shown in Figure 4. The corresponding formula is given
in Eq (22). The curve S only indirectly reflects the attitude of the decision-makers because part
of S isthe symmetry of curve L.

AIMS Mathematics Volume 10, Issue 11, 27718-27754.



27729

aneA

-0.5

Figure 4. Curve S of transforming prospect theory.

(0—(xl-—x*)“ (E) 7,(x; —x,)=0anda < x; < b,
(@+(-@) )
V(x) =1 -0(x, —x)F &) 5, (x; —x,) <0anda < x; <b, (22)

1 s 1 8\&

(@+(-3))
0—(x;—x)%(x;j—x,)=0anda=b = x;,
\—6(x, —x;)f,(x; —x.) <O0anda = b = x;,

Similarly, in Eq (22), x, represents the reference point and 1/k represents the probability
of each point. The prospect value V(x;) of x; is calculated by Eq (22). It can be seen from
Figure 4 that all prospect values are negative. We introduce Weight(x;) as the weight of x; in
Definition 13 to normalize the prospect values.

Definition 13. The weight of x;(i = 1,2,::+, k) on interval [a,b] is denoted by Weight(x;):

( V(xi)—mjin (V(x]-))

, {'C= V( i)— : Vix; + 0,
Weight(x) = | S oo -malve)] > 1 [V = min (V)|

=3 [V(xi) — min (V(xj))] =0

(23)

where mijn (V(xj)) represents the minimum prospect value of all discrete points and V(x;)
]

represents the prospect value of x;. It can be seen that Weight(x;) = 0 and Xj_, Weight(x;) = 1.

According to Eq (23), the weight of each point can be calculated by using the transformed
prospect value function and the evaluation value of [a, b] can be obtained by taking the weighted
average given by Eq (24). In this paper, the weighted average of the discrete points on [a,b] is
regarded as the evaluation value InValue of [a,b]:

InValue = Y% x; « Weight(x,). (24)

a+b

When — =X = 0.5 for any [a, b], after the discretization by Eq (18), the weight of each

discrete point can be obtained by Eq (23). It is found that the closer x; locates to the reference point
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x,, the greater weight the point obtains. The change in the decision-maker’s psychological state is
consistent with prospect theory. When aT+b # 0.5, however, the weight of the endpoint a or b of
[a, b] is the largest, making it difficult to map the change process of the decision-maker’s attitude.
Therefore, it is necessary to translate [a, b] to make the midpoint of the interval equal 0.5. In this

sense, the decision-maker has a greater weight near the midpoint of the interval. The length of
translation, MoveLength, is defined in Eq (25).

MovelLength = % — %. (25)
If the MoveLength is less than (greater than) 0, [a, b] is shifted to the left (right) to get a
new interval [d, b]. With Eq (24), the evaluation value InValue of [d, b] can be obtained and

with Eq (26), the evaluation value EvValue of [a,b] can be obtained:
EvValue = IVEM([a, b]) = InValue — MoveLength. (26)

In summary, the calculation of the EvValue of [a,b] includes six steps: (1) [a,b] is
converted to [d, B] by using Eq (25), where @ and b satisfy dsz =0.5; (2) [d, E] is discretized
into set X = {x;|i = 1,2, ..., k} by Eq (18); (3) the prospect value V(x;) of x; is calculated by Eq
(22); (4) the weight Weight(x;) of x; is derived by Eq (23); (5) the InValue is calculated by Eq
(24); and (6) the EvValue of [a,b] is obtained by Eq (26).

3.3. IVIFS-SF and its properties

For an arbitrary IVIFV a = ([u~,u*],[v",v*]), 0<u  <u*, 0<v™ <v* and u* +
vt <1 are satisfied. The membership, non-membership, and hesitation intervals of a are u, =
[u™,u*], v, =[v-,v*], and p, =[1—-u" —v*,1—u" —v7], respectively. According to the
IVEM, u, and v, can be transformed into two crisp numbers: u and v. The evaluation value u
of u, is
u +ut-1

2

u=YkK x; *Weight(x;) + 27)

— +\_ - +\_
Equation (27) first shifts u, by ()1 _—%,w’—

I
(o rut)1 +; ) 1)]. Equation (18) is then used to get the k discrete points x;(i = 1,2,---, k). The weight

Weight(x;) of x; is obtained according to Eq (23).

to get the interval [u

(v™+vt)-1

Similarly, the evaluation value v of v, can be derived. v, is translated by to the

__(v_+v+)—1 v*___(v_+:+)—1)]

. , before applying Eq (18). The calculation of v is

interval [v_

v +vt-1
2

v = Zi-‘zlxi * Weight(x;) + (28)

Then, u and v can be obtained by calculating the membership interval and non-membership
interval of the IVIFV through Eqgs (27) and (28). As shown in Theorem 1, we have 0 <u+v < 1.
Theorem 1. For an arbitrary a = ([u™,u*],[v™,v*]) of the IVIFV, the evaluation values of its

membership and non-membership intervals are u and v thatsatisfy 0 <u+v < 1.
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Proof. According to the interval value evaluation Eq (26), we have u > 0 and v > 0. If both 0 <
u<u* and 0 < v <v* hold, Theorem 1 can be proved. Below, we will first prove u < u*.

To calculate the evaluation value u of [u~,u*], the translation is first calculated. From Eq
1—(u~+ut) u+_+_1—(u_+u

+
(18), the interval after translation of [u~,u*] becomes [u_ + > )]. The k

. . _ , 1-(u"+ut)
discrete points are (xq,X,X3,**,Xk_1,Xx) and meet u” +——-—
1—-(u"+ut

Q. Therefore, we get

=X S Xp S, Xpoq S

x, =ut +
S x; * Weight () < X x, * Weight (x;).

Given the weight of each point Weight(x;) > 0 and XX, Weight(x;) = 1, we have

u +ut—-1

Til1x; * Weight(x;) < 3y xp x Weight(x;) < xp * Yo, Weight (x;) = x, = u* — 5

u +ut-

Substituting x; = ut — L into Eq (27) leads to

u+ut—-1 u +ut—-1

u= Z;‘ﬂxi * Weight(x;) + >

By rearranging the above equation, we have

u +ut—-1 u +ut—-1
u<s|ut - + =ut.

2

That is to say, u < u™ is established and 0 < u < u™ holds.
Using the same method, we can prove 0 < v < v*. Thus, itis easy tosee 0 <u+v <ut +
v*.Since 0 <u*+v* <1 and 0 <u+v <1 are now established, Theorem 1 is proved.
O

Remark 1. According to Theorem 1, using the IVEM, the EvValue of the membership and
non-membership intervals of the IVIFV can be obtained, which satisfy 0 < u + v < 1. By defining
the hesitation degree as p = 1 —u — v, the corresponding IFV can be constructed. Therefore, the
IVEM based on prospect theory can not only reflect the psychological change process of the
decision-makers, but also transform the IVIFV into an IFV.

Corollary 1. For an arbitrary a = ([u~,u*],[v",v*]) of the IVIFV, if we have u, = [u~,u*] and
v, = [v7,vT], IVEM(u,) = u and IVEM(v,) = v can be obtained by Eq (26). a; = (u,v) is an
IFV, where uand v are the membership and non-membership of a;, respectively, and the
hesitation degreeis p =1 —u —v.

Remark 2. For an arbitrary a = ([u™,u*],[v~,v*]) of the IVIFV, the evaluation values of its
membership, non-membership, and hesitation are u, v, and p;y,, respectively. As can be seen in
Example 11, u + v + p;y may be greater than 1.

Example 11. For az; = ([0.2,0.3],[0.4,0.5]), it is possible to get uq, =[0.2,0.3], v,,, =

[0.4,0.5], and pg,, = [0.2,0.4]. If the results are rounded to 4 decimal places, IVEM (u,,,) =u =
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0.2578, IVEM(v,,,) =v =0.4578, and IVEM(p,,,) = p;y = 0.3155 are obtained. We then
have u+v+py =10311>1 and p=1—-u—v =0.1844 < p;y.

Example 11 demonstrates that the IFV can be constructed by using the evaluation values u and
v. As Wang suggested [36], this method adjusts the degree of hesitation and enables the construction
of a new [FV.

According to Corollary 1, any IVIFV can be transformed into a new IFV score function.
Consequently, the evaluation value of the IVIFV can be used to develop a new SF. In other words, a
new SF can be developed by using the membership and non-membership of the IFV. In the practical
decision-making process, the decision-makers typically prefer options that have the highest positive
part, and the lowest negative and hesitation parts. If the deviation between the membership and
non-membership becomes greater and the hesitation value becomes smaller, the corresponding
alternative is better. According to the above analysis, an IVIFS-SF, Sygw, based on the sine function
and cosine function is designed and defined in Definition 14, which is affected by the hesitation.

Definition 14. Let a = ([u~,u™],[v~,v*]) be an IVIFV, and u and v are the evaluation values
of the interval membership and non-membership obtained by Eqs (27) and (28). The IVIFS-SF of a
is defined in Eq (29):

SNEw = [sin ((u - V) g) + 1] [cos ((1 —u-—v) g) + 3] —4, (29)

where u— v is the deviation between the evaluation values of interval membership and
non-membership. 1 —u — v represents the degree of hesitation after evaluation. When u —v
equals 0, as the degree of hesitation decreases, the score increases, indicating a better alternative. For
convenience, IVIFS-SF is regarded as Sygy, in this paper. The calculation process is illustrated in
Example 12.

Example 12. Suppose as, = ([0.25,0.3],[0.4,0.6]). First, the membership degree [0.25,0.3] of
as is translated to [0.475,0.525] by Eq (25). It is then discretized by Eq (18). Equation (23) is
used to calculate the weight of each discrete point and Eq (24) is used to calculate the weighted
average value of the discrete points. Finally, we use Eq (27) to compute the evaluation value, which
is u =0.2789 for [0.25,0.3]. Similarly, the evaluation value of the non-membership of a,s is
v = 0.5155. Sy, = —1.4858 of a3, can be obtained by Eq (29).

For an arbitrary a = ([u~,u™],[v™,v*]) of the IVIFV, it can be seen from Eq (29) that the
minimum value of Sygy, 1s —4 and the maximum value is 4. More specifically, four properties of
Sygw can be given.

Property 1. —4 < Syzw(a) < 4.

Property 2. If a = ([0,0],[1,1]), then u = 0,v =1, and Sy (a) = —4.
Property 3. If a = ([1,1],[0,0]), then u = 1,v=0, and Sygy (a) = 4.

Property 4. If a = ([0.5,0.5],[0.5,0.5]), then u = 0.5,v = 0.5, and Sygy(a) = 0.

Using the IVEM, the evaluations of [0,0], [1,1], and [0.5,0.5] are 0, 1, and 0.5, respectively.
For Properties 2—4, the corresponding score values can be obtained by substituting the evaluation of
u and v into Eq (29). These results are easy to deduce and prove, so their proofs have been omitted.
The proof of Property 1 is as follows.
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Proof. The partial derivative of Sygy, with respect to u is calculated to prove the monotonicity of
Sygw for the evaluation value u of interval membership.

Sy (@) _ d [sin (M) + 1] [cos (M) + 3]

ou Ju

m n(u —v) n(l—u—v) o m(u—v) m(l—-—u-—v)

=5 [cos (T) (cos (f) =+ 3) =+ (sm (T) + 1) sin (f) .
According to Theorem 1, we have 0 <u <1, 0<v <1, and 0 <u+ v <1, which indicates
cos (@) =0, (cos (@) + 3) >0, (sin (@) + 1) > 0, and sin (@) = 0.

Hence, we have

o = Floos (F5) (cos (F552) +3) + (sin (%52 + 1) sin (F5=2)] > 0

Next, we calculate the partial derivative of Sygy (a) with respect to the non-membership degree
evaluation value v. The following results can be obtained:

OSypw (@) _ d [sin (M) + 1] [cos (M) + 3]

T () a—uv) (u-v) (w+v)
T n(u—v nl—-—u—-v o (n(u—v n(u+v
o (M) (g (KE) ) (s () (22
_m m(u —v) 7(l—u—v) 3 m(u —v) w(u + v)
=-3 [cos < 3 ) cos < > > + 3cos (T) — cos (T)
—sin (Tr(uz—v)) oS (n(u2+v))]

A m(u — v) m(u + v)
=-3 [sm(nv) + 3 cos (T) — COS (T)]

m(u —v) m(u —v) m(u + v)
T) + cos (T) — cos (T)]

= —g[sin(nv) + 2 cos (@) + Zsin?sin?].

/i1
=-3 [sin(nv) + 2 cos (

According to Theorem 1, we have 0 <u <1, 0<v <1, and 0 <u+ v <1, which indicates
sin(nv) = 0, ZSin%sin% >0, and —1<u-—v<1. From that it is possible to get

2cos (@) > 0.

By applying Theorem 1 again, each sub-item in the above equation is greater than 0. Thus, the
partial derivative of Sygy (a) with respectto v is less than 0, that is,

OSnew (a)
v

= — g [COS (_ﬂ(uz— v)) <COS (—n(l —2u — v)) + 3) - (sin (_ﬂ(vz— u)) + 1) sin (—n(l —2u — v)>

Given the monotonicity of Sygy (a) with respect to the evaluation values u and v, Definition 1

and Theorem 1, when a = ([0,0],[1,1]), u =0, and v = 1, Sygy (a) reaches the minimum value

of —4. When a = ([1,1],[0,0]), u =10, and v =1, Sygw(a) reaches the maximum value of 4.
Thus, for an arbitrary a, the property —4 < Sygw(a) < 4 holds.

<0.
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4. Comparison analysis and sensitivity analysis of the IVIFS-SF

Assessment methods of SFs are introduced in Section 4.1. The IVISF-SF is compared with
other SFs in Section 4.2. Sensitivity analysis of the IVIFS-SF is presented in Section 4.3. For the
prospect theory that we will use in this paper, Kahneman and Tversky [30] have obtained the values
of the empirical parameters (¢ = 0.88,y = 0.61, f = 0.88,8 = 2.25, and § = 0.69).

4.1. Assessment methods for SFs

To assist researchers in selecting or developing more suitable SFs, we will construct a method
for evaluating them. This approach includes introducing pass rate and variance as criteria for
assessing SFs. Two synthetic datasets are generated for comparative analysis.

4.1.1.  SF pass rate

Each of the SFs was used to calculate the scores of the IVIFVs in the dataset. The ratio between
the number of IVIFVs that can be distinguished from each other and the total number of IVIFVs in
the dataset is defined as the pass rate P, as shown in Eq (30).

P = diffNumber (IVIFVs)
T TotalVIFVs)

(30)

where dif fNumber(IVIFVs) is the number of IVIFVs with different scores in the dataset and
Total(IVIFVs) is the total number of IVIFVs in the dataset. For some cases, IVIFVs cannot be
counted into dif fNumber(IVIFVs) and the scores cannot be calculated by the SF because the
denominator is 0 [38].

4.1.2. SF variance

For different score functions, when the pass rate is the same, the greater the difference of scores
in the actual application, the easier it is for decision-makers to distinguish. Therefore, on the basis of
the pass rate, we introduce the variance of the score function to further measure the difference
between score functions. Considering the different ranges of the SFs, the score values were
normalized in Eq (31), where S(q;) is the score of any IVIFV q; in the dataset, and Scorey,, and
Scorey, are the maximum and minimum scores in the dataset:

[ S(a;)-Scoreyy;,
4 i in
SC07 eNorm -

Scorey e —Scorey, (3 1)
Based on Scorel,,,,, the expected values and the variances of all the IVIFVs’ scores in the

dataset were calculated by Eqgs (32) and (33).

n i
e EEEsE— i—.Score
Scorexym, = Zl—lTNorm, (32)
: 2
n L
. i—.(Score —Score
Variance = Ziz (Se0TeNon Horn) , (33)

n

AIMS Mathematics Volume 10, Issue 11, 27718-27754.



27735

where n is the number of IVIFVs in the dataset. Some IVIFVs were excluded from the variance
calculation, as their scores cannot be computed by the SF due to a denominator of 0.

4.1.3. Synthetic dataset

IVIFVs rounded to two decimal places are widely used in the actual decision-making process.
Therefore, before calculating the pass rate and variance of the SF, we constructed an IVIFV dataset
with two decimal places denoted as IVIFDataSetl, such as a3 = ([0.35,0.45],[0.15,0.55]). This
gives us a dataset with 4,598,126 IVIFVs. The construction process adopted the exhaustive attack
method and the algorithm was implemented in the Python programming language. The pseudo-code
is shown in Algorithm 1, where step = 0.01 ranges from 0 to 1. This process ensures that both the
membership and non-membership are exhausted and no duplication occurs.

Algorithm 1. Generate IVIFDataSet1.
Input: step=0.01
Output: [VIFDataSet1

I:  Create DataFrame IVIFDataSetl

2: foruw=0->u" =1 do

3 u”+= step

4 for ut=u">ut=1 do

5: ut+= step

6 for v”=0-v" =1 do

7 v~ += step

8 for vF=v >vT=1do
9 vt+=step

10: if ut+v*<1 then
11: IVIFDataSet1 append (u~,u*,v=,v™")
12: end if

13: end for

14: end for

15: end for

16: end for

17: return IVIFDataSet1

To systematically evaluate the pass rate and variance of different score functions, we
constructed a random dataset named IVIFDataSet2. This dataset comprises 10 million randomly
generated IVIFVs, generated using Algorithm 2. The algorithm operates through the following core
steps: (1) Generate a batch data (BatchData) containing 1.5 million quadruples (a, b, c,d) with each
element satisfying 0 < a,b,c,d < 1; (2) filter the BatchData to extract quadruples that meet the
IVIFVs definition, forming a valid batch data (VBatchData); and (3) select IVIFVs from
VBatchData that are not already present in IVIFDataSet2 and add them to the dataset. This process
iterates until IVIFDataSet2 reaches its target size of 10 million IVIFVs. Algorithm 2 is shown as
follows.
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Algorithm 2. Randomly generate I[VIFDataSet2.
Input: TargetNumber = 10,000,000.
Output: [VIFDataSet2.
1. GenerateNumber = 0, BatchData=1,500,000, IVIFDataSet2=Null;
2: While (GenerateNumber < TargetNumber) do
3: Randomly generate BatchData of [a,b,c,d] with 7 decimal places retained;
4 Get VBatchData that satisfy the constraints of IVIFVs from BatchData;
5 for (i=1; i <= size(VBatchData); i++) do
6: if (VBatchData[i] not in IVIFDataSet2 && GenerateNumber < TargetNumber) then
7
8
9

Add VBatchData[i] to IVIFDataSet2;
GenerateNumber++;
end if

10: end if

11: end for

12: end while

13: return IVIFDataSet2;

4.2. Comparison analysis of the IVIFS-SF

To validate the effectiveness of the proposed score function in this paper, this section presents a
comparative analysis using two synthetic datasets and examples present in Section 2.3. The synthetic
datasets are used to evaluate the general performance and the examples are used to test the extreme
robustness.

4.2.1. Comparison analysis on the synthetic dataset

The pass rates and variances of each score function under three synthetic datasets are shown in
Figure 5. The greater the variances are, the higher the dispersion of the score values becomes and the
better the discrimination of the SFs perform. The results demonstrate that the proposed score
function performed best compared with Sy, Sy, Swi, Sg, S¢» Ser, Scr» Scp» Ske, and Scy.

As can be seen from Figure 5, the score function proposed in this paper is reliable and effective.
The subgraphs (a) and (b) in Figure 5 indicate that Sygy can distinguish more IVIFVs than
Sx, Swer SwirSeySer Ser, Scry Scp» Ske, and Sy, reducing the number of indistinguishable IVIFVs
from 68,972 to 32,186 on IVIFDataSet]l and from 370,000 to 160,000 on IVIFDataSet2. From the
subgraphs (c) and (d) in Figure 5, Sygy, achieves enhanced discriminative capability than other SFs
with higher dispersion of the score values, indicating superior separation performance. From the
comparative experimental results on the synthetic dataset, the proposed score function is reliable and
has strong discrimination ability.
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IVIFDataSet1 - Pass Rate

IVIFDataSet2 - Pass Rate
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Figure 5. Comparison results on synthetic datasets.
4.2.2.  Comparison analysis on examples

It can be seen in Examples 1 to 10 that there are scenarios that cannot be distinguished by the
SFs given in Section 2.3. This is primarily due to the loss of fuzzy information in the process of
converting IVIFVs, which can lead to the failure of distinguishing two obviously different IVIFVs.
At this point in our test, Sy, Swc,Swr Sg,Se,SerScrsScpsSker»Scy, and Sygy were used for
computing all of the 10 groups of IVIFVs given in Section 2.3. The results are shown in Table 1.

As show in Table 1, Sygy is able to distinguish all 10 groups of IVIFVs. Sy fails to
distinguish two groups (a1, @12, and a,q, ay,), while Sy¢, Sp, Sg, and S;; fail to distinguish two
groups. The remaining SFs present the indistinguishability of one group. Thus, in terms of

distinguishability, Sygy, outperforms the other compared SFs.
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Table 1. Comparison of evaluation methods and related score functions.

Vs Sx Swe Swi Sp Se SeL Ser Sep Skc Sey Snew

ZE Q11 = Q13 17 = Q3 Q11 < Qg Q11 > Qg Qg1 > Aqp Qg1 = Qg3 Qg1 > Q13 A1 < Qg2 A1 < Qg2 Q11 > Qg Q11 < Aqp
Zii Qi3 > Q14 Q43 = G4 Qg3 > Qqq Q13 > Q14 (3 > A4 Qg3 > Qgq Qg3 > Agq (g3 > Gqq Qg3 > Qgg Q13 > Agq (g3 > Aqg
Ziz Q15 > A1 Q15 > Q16 Qg5 = Qg Qg5 < A1 Q15 < Q16 Q15 < Qg A5 < g Q15 < A1 15 > A1 Q15 < Qg6 Qg5 < dgg
Zi; Q17 < Qg A7 < Qgg Q17 < Qqg G17 = Qqg Q17 = Q1 Q7 < A1g Qg7 < g Q17 < Qg Q17 < Qqg A17 < A1 Q17 < dgg
Z:z Q19 < A0 Q19 < dzp Qg9 < Az Q19 = App Q19 = Ap¢ 19 < Az Q19 < Ao A9 < dzp 19 < Az Q19 < o Ag9 < Ao
Zz; Q1 = Az Ap1 < Qpp Apq > App Apq < Qg (1 < Ay Q1 = App Ap1 < Ay Ap1 > Ay Apq > (pp Apq < Az (pq > A
Zzz Qp3 < Qpq Q3 < dpq Ap3 < (pq Gp3 > Apgq (3 > Apq Ap3 > (g4 Gp3 = Gpg (3 < Apq Ap3 < (pq Gp3 < Apg (3 < dpg
Zzz Qp5 > Qpg Q5 < Qpg Qps > (g Qps > Qpg (5 > Qpg Aps < (¢ Qps > Qg (5 = Qg Qps > (g Qps > Qg (5 > Uag
Z;; Qz7 > Qzg Q7 > Gpg Qg7 > (g Qg7 > Qpg Qz7 > Qzg Q7 > (g (g7 > (ag Up7 > dpg Gp7 = Gzg (7 > (g Qg7 > dag
Zzz Q9 < A3 Ogg9 > A3 Qz9 < d3g A9 > A3p g9 > A3p Uz9 > A3g A9 > Agp (g9 > A3p Uz9 > A3g A9 = A3q (g9 > A3

4.3. Sensitivity analysis of the IVIFS-SF
4.3.1.  Sensitivity analysis of the IVEM

For the prospect theory that we will use in this paper, Kahneman and Tversky [30] have
obtained the values of the empirical parameters (« = 0.88,y = 0.61, f = 0.88,0 = 2.25, and § =
0.69). We will then discuss the reference point and the discrete point numbers of the IVEM.

(1) Impact on the reference point

When the reference point shifts, the impact of prospect value of the interval, weight of the
discretized points, and EvValue of the interval will be analyzed, respectively.

We compare how the selection of different reference points influences the change in prospect
value of the discretized points. Figure 6 presents one of the experimental results, where the randomly
generated data was ¢; = [0.2,0.6] and was discretized into 21 points.

In Figure 6, the value lines for all of the reference points are overlapped, which means that
when the reference point ranges from 0 to 0.9, the prospect value of each discrete point is unchanged.
Therefore, the changes in the reference point do not affect the prospect value.

Using the same setting, we compare the change in weight of the discretized points when
different reference points are selected. The corresponding weight change of each discrete point in the
interval [0.2,0.6] is shown in Figure 7.

Similarly, in Figure 7, the weight change lines of the reference points are overlapped, which
means that when the reference point ranges from 0 to 0.9, the weight of each discrete point is
unchanged. Therefore, the change of reference point does not affect the weight.

We consider an arbitrary interval [a, b] and compare the changing status of the EvValue of
each interval when selecting different reference points. An experiment was selected with intervals
¢, =[0.2,0.6], ¢, =[0.3,0.5], C; =[0.15,0.8], C, =[0.3,0.7], and Cg = [0.1,0.85], which
were discretized into 21 points. The results are shown in Figure 8.
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Figure 6. Change in prospect value for different reference points.
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From Figure 8, the change in the reference point has no impact on the interval EvValue. Thus,

the change in the reference point does not affect the prospect value, the interval EvValue, or the
weight of the discrete point.

(2) Impact on the prospect value of discrete points
We took a random interval [0.4,0.8], discretized it into k points, and analyzed the change in the

prospect value when varying the number of discrete points. We used the interval [0.4,0.8]. The
change in prospect value is shown in Figure 9.

-0.175
-0.150

-0.125

anjen 198ds01d
&
g
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-0.050

-0.025

0.8 12

Figure 9. Change in prospect value for different discrete point numbers.

It can be seen from Figure 9 that with the increase in the number of discrete points k, the
function curve gradually becomes smooth. The description of each discrete point on the interval
[0.4,0.8] becomes more detailed, which mimics the true attitude of the decision-makers.

The experiment conducted 100 independent trials, with each trial randomly generating an
interval. We then took an arbitrary interval and examined the change in the EvValue for different k.
For the selected interval [0.45,0.8], the change is shown in Figure 10.

0.80
0.78 A
0.76 1
0.74 1
0.721

Evlalue

0.70 1
0.68 -
0.66 1

0.64 1

k

Figure 10. Change in interval EvValue for different discrete point numbers.

As can be seen from Figure 10, the EvValue decreases with the increase of k. When k < 20,
the EvValue decreases, but it changes gently and gradually converges around 0.645 when k >
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20. The EvValue is always greater than the midpoint 0.625 of the interval [0.45,0.8], which
further explains that the midpoint of the interval cannot reflect the fuzziness of the interval.

4.3.2. Sensitivity analysis of the IVIFS-SF

In this section, the reference point x, and the number of discrete points k are investigated for
Syew by using the settings a = 0.88,y = 0.61, f = 0.88,0 = 2.25, and 6 = 0.69.
(1) Influence of x, on Sypy

This experiment was repeated 100 times. This led to the random generation of 15 IVIFVs for
each experiment, noted as by, b,,...,b;5. The membership and non-membership intervals of
by, b,, ..., bys were discretized to k = 21 points. When x, (reference point) ranged from 0 to 1, the
scores of Sygy, were observed to be stable in each experiment. This means that the change of the
reference point does not affect the score of each b; (i =1, 2, ..., 15). Figure 11 presents the results
from one of the experiment iterations, where the randomly generated data is

b, = ([0.04,0.16],[0.09,0.40]), b, = ([0.02,0.02],[0.56,0.71]),
b; = ([0.12,0.17],[0.15,0.39]), b, = ([0.12,0.25], [0.41, 0.49]),
bs = ([0.22,0.31],[0.20,0.36]), b = ([0.01,0.62],[0.33,0.37]),
b, = ([0.00,0.56],[0.19,0.23]), bg = ([0.21,0.26],[0.02,0.02]),

bs = ([0.17,0.24],[0.11,0.67]), by = ([0.16,0.23],[0.01,0.39]),

by, = ([0.28,0.42],[0.19,0.24]), by, = ([0.26,0.66],[0.03,0.19]),

bys = ([0.09,0.20],[0.57,0.60]), by, = ([0.32,0.51],[0.41,0.41]),
bys = ([0.21,0.55],[0.09, 0.23]).

—— by
- b,

bs

== bs

—+ bg
— by
— by
= by
b1o

Score

== by,
ba3
4= b1s

0.0 0.1 02 03 04 05 06 07 08 0.9 10
Reference Point

Figure 11. Scores for different reference points.

(2) Influence of parameter k on Sygy

Similarly, we ran another 100 experiments with 15 IVIFVs (d4, d,, ..., d;5) in each experiment
by letting x, = 0.5 and varying k from 3 to 30. In one of the experiments, when 3 < k < 10, the
scores of d; (i =1,2,...,15) fluctuated greatly and seemed to cross over. When k > 15, there
were almost no fluctuations in the scores and the order of the scores did not change. In this sense, it
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seemed better to take k > 15. We in fact used k = 21 for all the experiments in this paper.
Figure 12 presents the results from another of the experiment iterations:

d, = ([0.38,0.69],[0.07,0.08]), d, = ([0.05,0.09],[0.59,0.62]),
ds = ([0.57,0.79],[0.02,0.11]), d, = ([0.35,0.38],[0.34,0.34]),
ds = ([0.25,0.32],[0.35,0.42]), dg = ([0.19,0.37],[0.39,0.60]),
d, = ([0.04,0.58],[0.24,0.41]), dg = ([0.03,0.31],[0.63,0.66]),
dy = ([0.18,0.49],[0.19,0.27]), d;, = ([0.01,0.02],[0.52,0.94]),
dy; = ([0.18,0.20],[0.32,0.32]), dy, = ([0.14,0.19],[0.65,0.65])
dy5 = ([0.02,0.23],[0.19,0.52]), dy, = ([0.25,0.85],[0.01,0.08]),
dys = ([0.06,0.06], [0.24, 0.47]).

4 .

——d

-

3 L d

== dy

2 s
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| \_\_ —
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Figure 12. Scores for different numbers of discrete points.

From Figure 12, it 1is pOSSible to see that SNEW(d7)> SNEW(d4-) and SNEW(d14-)>
SNEW(d3) when k < 7, but SNEW(d7) < SNEW(d4) and SNEW(d14) < SNEW(d3) when k > 7.

5. Cases

Two cases are presented for comparison and analysis of the proposed IVIFS-SF in this section.
An alternative sensitivity analysis of the IVIFS-SF is also provided in Case 1. For the prospect
theory that we will use in this paper, Kahneman and Tversky [30] have obtained the values of the
empirical parameters (¢ = 0.88,y = 0.61, f = 0.88,0 = 2.25, and § = 0.69).

5.1. Case 1

The problem of cadre selection [9] is used to verify the proposed SF in Case 1. In the problem,
there are five candidates A; (i =1,2,---,5) and six assessment indices Gj Gg=12,-,6)
including ideology and morality (G;), work attitude (G,), work style (G3), cultural level and
knowledge structure (G,), leadership ability (Gs), and pioneering ability (Gg). The index weight
vector is w = (0.20,0.10,0.25,0.10,0.15,0.2O)T. As a result of the consultation with the masses and
their subsequent recommendations, the five candidates are evaluated according to the

AIMS Mathematics Volume 10, Issue 11, 27718-27754.



27743

above-mentioned six indices. This is then followed by statistical processing. Specifically, there are
four steps necessary to rank the candidates.
Step 1. After the normalization [9], the decision matrix D of the IVIFVs is obtained.

([0.2.0.31,[0.4,0.51), ([0.6,0.71,[0.2.0.3]), ([0.4,0.51,[0.2.0.4]), ([0.7,0.8],[0.1,0.2]), ([0.1,0.3],[0.5,0.6]), ([0.5,0.7],[0.2,0.3])
([0.6.0.71,[0.2.0.3]), ([0.5,0.61,[0.1.0.3]), ([0.6.0.71,[0.2.0.3]),([0.6.0.71,[0.1,0.2]), ([0.3,0.41,[0.5,0.61), ([0.4,0.71,[0.1,0.2])
=| ([0.4,0.5],[0.3.0.4]),([0.7,0.81,[0.1,0.2]), ([0.5,0.6],[0.3,0.4]), ([0.6,0.7],[0.1,0.3]),([0.4,0.51,[0.3,0.4]), ([0.3,0.5],[0.1,0.3])
([0.6.0.71,[0.2,0.3]),([0.5,0.71,[0.1,0.3]), ([0.7,0.8],[0.1,0.2]), ([0.3,0.4],[0.1,0.2]), ([0.5,0.6],[0.1,0.3]), ([0.7, 0.8],[0.1,0.2])
([0.5,0.61,[0.3,0.41), ([0.3,0.4],[0.3,0.51), ([0.6,0.71,[0.1,0.3]), ([0.6,0.81,[0.1,0.2]), ([0.6,0.7],[0.2,0.3]), ([0.5,0.61,[0.2,0.4])

D

Step 2. The IIFWA [9] operator is used to aggregate the information. The evaluation value of the
corresponding candidate A4;, r; (i = 1,2,-+-,5), can be then obtained:

r, = ([0.4165,0.5597],[0.2459,0.3804]), , = ([0.5176,0.6574],[0.1739,0.2947]),
rs = ([0.4703,0.5900], [0.1933,0.3424]), 7, = ([0.6070,0.7203], [0.1149,0.2400]),

and
rs = ([0.5375,0.6536],[0.1772,0.3402]).

Step 3. r; is used to calculate Sy, Swc, Swr, Sg. S, Ser> Scr> Scps> Skcs Scy and Syew 18
denotedas (i =1,2,---,5) as shown in Table 2.

Table 2. Comprehensive index scores of candidates.
Score  S(ry) S(ry) S(ry) S(ry) S(rs) Ranking result

Sy 0.1749 03532 02623 04862 03369 A, >A, >As>A; > A,
Swe  0.0280  0.1831  0.1021 03087  0.1686 A, >A, >As > A; > A
Swi 00392 0.0862 00577  0.1468  0.0814 A, >A,>A;>A; > A
Sp 0.5752  0.6831  0.6292 07624  0.6743 A, >A, >As > A; > A,

Se 0.5645  0.6702  0.6174 07483  0.6593 A, >A,>As > A, > A,
Se. 09937 1.2083 1.0815 1.4032 12223 A, >As> A, > A > A

Ser  1.5245 1.6395 1.5815 1.7202 16305 A, > A, >As > Ay > A
Sep 37408 4.0745 39054 43032 4.0494 A > A, > As>A; > A
Ske 02060 04112 03062 05565 03820 A, >A,>A;>A; > A
Sey 46913 52011 49330 5.6290  5.1636 A, > A, >Ag>A;> A
Syew 1.0405  2.0680 15327  2.7213 19710 A, > A, >Ag > Az > A

Step 4. Candidates are ranked according to the S(r;).

As can be seen from Table 2, only the ranking of S 1is slightly different from the others, while
the remaining 10 SFs give a consistent ranking. The results verify that Sy,,, 1s accurate.

The 11 groups of scores were normalized by Eq (31) to calculate the variances indicated by Eq
(33). The results are shown in Table 3 and Figure 13.

As can be seen from Table 3, the normalized 1, of Sygy has the second highest score and the
largest variance, which makes it easier for Sygy, to distinguish the differences among alternatives.
Syew thus has better applicability than the other SFs.
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Table 3. Normalized scores and variances.

Score S(ry) S(ry) S(r3) S(ry) S(rs) Variance
Sy 0.5875 0.6766 0.6312 0.7431 0.6684 0.0027
Swe 0.5145 0.5916 0.5510 0.6543 0.5843 0.0022
Swi 0.0392 0.0862 0.0577 0.1468 0.0814 0.0013
Sg 0.5752 0.6831 0.6292 0.7624 0.6743 0.0038
Se 0.5645 0.6702 0.6174 0.7483 0.6593 0.0037
SeL 0.2663 0.3576 0.3036 0.4405 0.3635 0.0035
Ser 0.7623 0.8197 0.7908 0.8601 0.8152 0.0011
Scp 0.6852 0.7686 0.7264 0.8258 0.7624 0.0022
Skc 0.6030 0.7056 0.6531 0.7783 0.6910 0.0034
Scy 0.5273 0.6002 0.5619 0.6613 0.5948 0.0020
SNEw 0.6301 0.7585 0.6916 0.8402 0.7464 0.0049
0.006
0.005
g 0.004
= ®
E 08 5
gﬂ 0.003 :5)
'é 0.6 g
§ 0.002
% 04
02 0.001
00 Sx Swe Swe Sg S¢ Scr Ser Sco Skc Ser Swew 0000

Score function

Figure 13. Comparison of normalized scores and variances.

As can be seen from Figure 13, the variance of Sy,,, is the largest, meaning that the dispersion
degree of the candidates (or alternatives) is also the largest. The variances of Sg, S;, and S;; are
also relatively high. The score difference between 7, and 13 is relatively small, which may explain
the ranking difference between S;; and the other SFs.

In order to compare the deviation of each SF still further, each of the 11 groups of scores based
on the normalized data was sorted from the best (No. 1) to the worst (No. 5). The deviation of the
scores between the two neighboring rankings and the averages between them were calculated and
given in Table 4.

As can be seen from Table 4, both the average deviation and the individual deviation of Sygy
are the largest amongst all the SFs. Sygy,, makes it easier to distinguish each alternative and thus
facilitates the work of the decision-makers, a conclusion also confirmed by Figure 14.
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Table 4. Normalized deviation sequence of comprehensive indices.

S(No.4) S(No.3) S(No.2) S(No.1) o

Score Average value of the deviation
—S(No.5) —S(No.4) —S(No.3) — S(No.2)

Sy 0.0437 0.0373 0.0082 0.0665 0.0389

Swe  0.0366 0.0332 0.0073 0.0628 0.0350

Swi  0.0186 0.0237 0.0048 0.0606 0.0269

Sg 0.0540 0.0450 0.0088 0.0793 0.0468

Se 0.0529 0.0420 0.0109 0.0781 0.0460

SeL 0.0373 0.0540 0.0060 0.0769 0.0436

Ser 0.0285 0.0245 0.0045 0.0404 0.0245

Sep 0.0411 0.0360 0.0063 0.0572 0.0352

Skc 0.0501 0.0379 0.0146 0.0727 0.0438

Scy 0.0345 0.0329 0.0053 0.0611 0.0334

Syew 0.0615 0.0548 0.0121 0.0817 0.0525

(No.
B S(No.1)-5(No.2) 0.05

~
3
3
5
0.08 0.04 3
el =
g b
5 3
5 E
S 006 003 F
8 2
g 5
= '3
g E
" 004 002 =
g
L
=
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Figure 14. Sequence deviation of normalized comprehensive indices.
5.2. Case 2

To further validate the effectiveness of the score function proposed in this paper, we will
compare and analyze it with Chen's method [19]. Chen [19] outlined an IVIFV decision-making
matrix A = ([u{j,uzrj], [vi_j,v;’j])gx3 (see Example 5.4 in [19]) with three alternatives ry,1,,and 3.
For each alternative, there are three attributes, g,, g,, and g3, and their weights are W;, W,, and
W5. The specifications are

([0.30,0.30], [0.10,0.10]), ([0.60,0.60], [0.25,0.25]), ([0.80,0.80], [0.20,0.20])
A = ([0.20,0.20], [0.15,0.15]), ([0.68,0.68], [0.20,0.20]), ([0.45,0.45], [0.50,0.50]) |,
([0.20,0.20], [0.45,0.45]), ([0.70,0.70], [0.05,0.05]), ([0.60,0.60], [0.30,0.30])
W, = ([0.25,0.25],[0.25,0.25]), W, = ([0.35,0.35], [0.40,0.40]),

—_—

and
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W, = ([0.30,0.30], [0.65,0.65]).

In [7], the scores of the alternatives are Sy (17) = 19.909, S.y (1) = 18.586, and Sy (13) =
19.176, and the ranking resultis r; > 13 > 15.

We replaced Sqy with Sygy, without changing the calculation steps, which are indicated
below.
Step 1. W; is calculated by Syzy and W, (i = 1,2,3) is normalized by Eq (34).

By calculating W;, we can get the real number weights W,:

W, =-0.293, W, = —0.384, W, = —2.091.

After the normalization of Wl, we have W, = 0.106, W, = 0.139,W; = 0.755, and

_ W
=1
Xi=1W;

=]

(34)

Step 2. The weighted decision-making matrix D = (07;)3><3 is calculated by the power operator
given by Chen [19]:

+ W

d; = ([ug™. w111 - A - v, 1 - @ - v)")). (35)

The result is

D=
([0.880,0.880], [0.011,0.011]), ([0.932,0.932], [0.039,0.039]), ([0.845,0.845], [0.155,0.155])
([0.843,0.843],[0.017,0.017]), ([0.948,0.948],[0.030,0.030]), ([0.547,0.547], [0.408,0.408]) |.
([0.843,0.843].[0.061,0.0611), ([0.952,0.952], [0.007,0.0071), ([0.680,0.680], [0.236,0.236])

)

Step 3. The score of each element in D is calculated and cost is turned into benefit in matrix D:

—_ SNEW(EI;), if Gj is a benefit — type attribute, (36)
Y 9 — SNEW(dU), if Gj is a cost — type attribute.
The score of each element in D given by Sygy 18
SNEW(@) = 3.887, SNEW(dzZ) = 3.941, SNEW(@) = 3.534,
SNEW(dE) = 3.805, SNEW(cLZZ) = 3.965, SNEW(dE) = 0.866,
SNEW(d31) = 3746, SNEW(d32) = 3981, SNEW(d33) = 2.553.
The normalized matrix is
. 3.887,3.941,3.534
M =(d,), . =|3.8053.965 0866 |
3.746,3.981, 2.553
Step 4. The score of alternatives is calculated in Eq (37):
SC(r) = X1 dy (37)
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The results are
SNEW(rl) = 11363, SNEW(TZ) = 8636, and SNEw(r3) = 10.28.

It is easy to see that Sypyw (11) > Syew (13) > Syew (12).
Step 5. The ranking result of alternatives is obtained.

According to the score of alternatives, the ranking result is r; > r3 > r,, which is the same as
the ranking in [19]. Eq (33) is used to calculate the variances of Sy and Sygy,, which are 0.0060 for
Scy and 0.0196 for Sygy. We can also get Sgy(17) — Sy (1) = 0.733, Scy(1r3) — Sey () = 0.590,
Snew (1) — Syew (r3) = 1.083, and Sy (13) — Syew (1) =1.644. 1t is evident that 1.083 is greater
than 0.733 and 1.644 is greater than 0.590, making Sygy exhibit better ability of discrimination
than Scy.

We then used Sy, Swe, Swi. Se> S¢» Ser> Scrs Scp» Skc to replace Scy in decision-making
matrix A. The alternative scores and ranking results are shown in Table 5.

Table 5. Alternative scores and ranking results of the SFs.

Score  S(ry) S(ry) S(r3) Ranking result
Sx 2.5481 1.9679 2.3215 =TTy
Swe 2.5374 1.9474 2.2543 T>T3 >,
Swi 1.3264 1.0874 1.2918 T>T3>T,
S 2.6886 2.5258 2.5888 T>T3>T,
S¢ 2.6886 2.5258 2.5888 T3>
Se 5.8012 5.1126 5.4046 =TTy
Ser 5.5899 5.4123 5.4592 T>T3>T,
Seo 14.0204 13.5674 13.6728 =TTy
Scy 19.9151 18.5883 19.1778 >3 >T,
Svew  11.3626 8.6361 10.2799 ry>T3>T,

It can be seen from Table 5 that Sy, Sywc, Swr, Sg. Sg» Ser> Scrs Scp, Scy, and Sygy have
the same ranking. It further confirms the feasibility and effectiveness of Sygy,. However, we find
that Sk (W;) = 0.4688, Sk (W,) = —0.0586, and Sk (W5) = —0.3666 cannot be normalized by
Eq (34). Thus, Sk, is not suitable for the settings of decision-making matrix A.

Sx, Swe, Swi,> Sg> S¢» Scrs Scrs Scp, Scy, and Sygy were normalized by Eq (31) to
calculate the variances indicated in Eq (33). The results are shown in Table 6 and Figure 15.

Table 6. Normalized scores and variances.

Score S(ry) S(ry) S(r3) Variance
Sy 1.7741 1.4840 1.6608 0.0143
Swe 1.7687 1.4737 1.6272 0.0145
Swi 1.3264 1.0874 1.2918 0.0111
Sg 2.6886 2.5258 2.5888 0.0045
Sq 2.6886 2.5258 2.5888 0.0045
SeL 23117 2.0187 2.1429 0.0144
Ser 2.7950 2.7062 2.7296 0.0014
Sep 3.2551 3.1419 3.1682 0.0023
Scy 2.7022 2.5126 2.5968 0.0060
SNEW 1.9203 1.5795 1.7850 0.0196
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As can be seen from Table 6, the highest score and the largest variance are found at the
normalized Sygy,, which implies that it is more efficient for Sygy to distinguish the differences
between alternatives and Sygy, has greater applicability. The largest variance at Sygy, can also be
seen from Figure 15 meaning that the dispersion degree of the alternatives is also the largest.

Scores of integrated indexes

3.5

0.025

0.019

0.013

Variance of scores

0.006

0.000

=
. A;
30fE0 A3
2.5
2.0
L5
1.0
0.3
0.0
Sx Swe Swe Ss Se Se Scr Sco Scr Swew

Score function

Figure 15. Comparison of normalized scores and variances.

The deviation of the scores between two neighboring rankings and the averages of them were
calculated and given Table 7.

Table 7. Normalized deviation sequence of alternative score.

S(No.2) — S(No.1)

S(No.3) — S(No.2)

Average value of the deviation

SNEW

0.1768
0.1535
0.2044
0.0630
0.0630
0.1242
0.0234
0.0264
0.0842
0.2055

0.1133
0.1415
0.0346
0.0998
0.0998
0.1687
0.0654
0.0869
0.1053
0.1353

0.1451
0.1475
0.1195
0.0814
0.0814
0.1465
0.0444
0.0567
0.0948
0.1704

As can be seen from Table 7 and Figure 16, both the average deviation and individual deviation
of Sygw are the largest among the SFs. It makes Sygy, more outstanding in distinguishing each
alternative and facilitating decision-makers to select an alternative.
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Figure 16. Sequence deviation of the normalized alternative score.
5.3. Sensitivity analysis of the IVIFS-SF in Case 1

In order to further investigate this new SF, we use Case 1 to analyze the effects of the
parameters in Sygy. When «a,y, f,and § change from 0.2 to 1.0 in Eq (22), the scores of the five
alternatives described in Case 1 are shown in Figure 17.

2.75 275
— A
2.50 2.50 == Az
Az
2.25 2.25 —— Aq
—— As
o 2.00 o 2.00
S 3
o 175 “2 o175
1.50 1.50
1.25 1.25
1.00 1.00
02 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.2 03 0.4 0.5 06 07 08 0.9 1.0
(a) Parameter o (b) Parameter B
2.75 2.75
2.50 2.50
2.25 2.25
o 2.00 2 2.00
=3 (=}
3 S
v 1.75 v 1.75
1.50 1.50
1.25 1.25
1.00 1.00
0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
(c) Parameter y (d) Paramcter &

Figure 17. Sorting results for the alternatives with Sy,,, parameter change.

As can be seen from Figure 17, when parameters of a,y,[5, and § are changed in Eq (22),
Svew does not change drastically and the ranking of alternatives remains unaffected. The reason for
this is that when the parameters change, the EvValue of the alternative changes very little, leading
to only a slight weight change. Similarly, when 6 changes, the change in the weight of the discrete
points is also small and the ranking of the alternatives is not affected here either.
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Another element of our sensitivity analysis was our investigation of the influence of the number
of discrete points on the alternative ranking. Figure 18 shows the scores for Sygy, when k varies
from 2 to 20.

275 A

Score

1.00

k

Figure 18. The scores of the alternatives when parameter k of Sygy,, changes.

When k changes from 2 to 3, the ranking order of the alternatives does not change despite the
change of the scores. When £ is greater than 3, the alternatives in this case have invisible fluctuations
and the ranking order remains unchanged.

From Case 1 and comparation analysis, Sygy, obtained the same optimal alternative as the
other SFs and the same ranking results. At the same time, of all of the SFs, Syg, achieved the
highest dispersion degree between the alternatives and the greatest deviation in neighboring score
values. Therefore, these results have clearly shown that Sygy, outperforms the other compared SFs.

6 Conclusions

Building upon the interval-valued evaluation method (IVEM) derived from prospect theory, this
study proposes a novel score function for interval-valued intuitionistic fuzzy sets (IVIFS-SF). The
proposed IVEM framework transforms an interval [a, b] into a crisp numerical value by integrating
the value function and probability weight function from prospect theory. This methodology not only
establishes a quantitative relationship between interval values and crisp numbers but also effectively
models the psychological decision-making process of human evaluators. To facilitate the systematic
evaluation and selection of score functions for IVIFVs, we introduce two comprehensive assessment
metrics: pass rate and variance. Extensive comparative analyses demonstrate that the IVIFS-SF
achieves superior performance, attaining the highest pass rate and largest variance among existing
score function (SF) and accuracy function (AF) methods—all without requiring additional accuracy
functions. Empirical case studies confirm that while the IVIFS-SF identifies the same optimal
alternative as competing methods, it maintains its advantage in terms of variance. Furthermore,
sensitivity analysis validates the robustness of the IVIFS-SF across the parameter space of prospect
theory.

While the IVIFS-SF has demonstrated promising performance in terms of pass rate optimization
and variance reduction within synthetic datasets, thereby addressing some limitations of conventional
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SF and AF methodologies, it still faces significant challenges in managing IVIFV-related uncertainty.
For instance, the proposed score function remains unable to distinguish certain IVIFVs, which is an
inherent limitation of this scoring approach. Developing new interpretability measurement methods
will be a valuable research direction. As a fundamental aspect of IVIFS research, the measurement
method of the IVIFS provides the basis for further studies. In this paper, the interval [a,b] is
divided into k (k = 1) equally spaced segments, and the case of randomly partitioned k-segment
intervals will also be investigated.
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