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Abstract: As a fundamental tool for interval-valued intuitionistic fuzzy sets (IVIFSs), the score 

function (SF) plays a pivotal role in quantifying interval-valued intuitionistic fuzzy values (IVIFVs) 

and facilitating their comparative analysis. However, a notable limitation of existing SFs is their 

potential to assign identical scores to distinct IVIFVs, thereby compromising the discrimination 

capability. To address this challenge, this study introduces IVIFS-SF, a novel score function 

grounded in prospect theory, and proposes two innovative assessment methodologies. First, we 

employed prospect theory to develop an interval-valued evaluation method (IVEM), which converts 

the interval into a crisp number. Second, using IVEM, we developed the new score function 

IVIFS-SF and present its properties. Third, we put forward pass rate and variance as metrics to 

analyze and compare SFs. Rigorous comparative analysis demonstrated that IVIFS-SF achieves 

superior performance in both pass rate and variance metrics when benchmarked against existing 

state-of-the-art SFs. Furthermore, sensitivity analysis confirmed the robustness of IVIFS-SF across 

the parameter spectrum of prospect theory. Empirical case studies revealed that while IVIFS-SF 

identifies the same optimal alternative as competing SFs, it exhibits the highest variance among them, 

suggesting enhanced discriminative power. 
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1. Introduction 

Interval-valued intuitionistic fuzzy sets (IVIFSs) [1], which extend both interval-valued fuzzy 

sets (IVFSs) [2] and intuitionistic fuzzy sets (IFSs) [3], provide a more flexible representation of 

uncertainty. They have been extensively applied in areas such as intelligent decision-making, target 

selection, and risk assessment [4,5]. When measuring the interval-valued intuitionistic fuzzy value 

(IVIFV) [1], commonly used methods include the score function (SF), distance, similarity, and 

entropy [6–8]. Unlike other measures, the SF can derive a crisp value directly from a single IVIFV. 

Consequently, researchers have placed considerable emphasis on studying the SF and its properties. 

However, the single, one-dimensional output of the SF makes it mathematically challenging to 

distinguish among all possible IVIFVs, which inherently possess a complex four-dimensional 

structure. Therefore, numerous studies have been conducted to enhance the discriminative ability of 

the SF in practical applications and to mitigate its mathematical limitations. The SF for the IVIFV 

was first proposed by Xu [9], can intuitively reflect the positive and negative attitudes of 

decision-makers, and has been widely used [10]. However, Xu also noted that some IVIFVs cannot 

be distinguished using this method [9]. To enhance the comparative ability of two IVIFVs, the 

accuracy function (AF) was then introduced. Despite their wide application in multi-attribute group 

decision-making (MADM) problems [4,11,12], it has been observed that some IVIFVs still cannot be 

effectively distinguished using the SF and AF [11,12]. For example, 𝑎1  and 𝑎2  cannot be 

distinguished when 𝑎1 = ([0.2, 0.6], [0.3, 0.4]) and 𝑎2 = ([0.3, 0.5], [0.2, 0.5]). In order to improve 

the comparative ability of IVIFVs by using the SF and AF, researchers have continued exploring 

some new SFs and AFs. However, they still show some degree of indistinguishability when 𝑎3 =

([0.45,0.45], [0.45,0.45])  and 𝑎4 = ([0.35, 0.35], [0.35,0.35])  [13], and when 𝑎5 =

([0.3,0.45], [0.27,0.51])  and 𝑎6 = ([0.15, 0.55], [0.32,0.37])  [14]. To enhance the 

distinguishability of IVIFVs and effectively utilize the SF in MADM, extensive investigations into 

score function techniques have been conducted in recent years [15–17]. For example, Kumar [17] 

developed an SF based on set pair analysis theory (SPA), and while building on Kumar’s work, 

Wu [18] outlined one based on the beta function. Chen made improvements to this work a year later 

[19], but when 𝑎7 = ([0.3,0.45], [0.27,0.51]), 𝑎8 = ([0.15, 0.55], [0.32,0.37]), and the calculation 

results retain four decimal places, the SF cannot distinguish 𝑎7 and 𝑎8. Chen and Tsai [20] then 

presented improved SFs for the IVIFV that could easily distinguish IVIFVs rounded to two decimal 

places, and Chen [15,19] and Wu [18] studied SFs without the need of AFs to efficiently solve 

MADM problems. The details of these works are given in Section 4.2 and detailed explanations of 

the problems are given in Section 2.3. Cheng [16] studied the measurement method based on the 

Gold Rule and T-S theory. This successfully solved the measurement problem when  𝑠 =

([𝑎, 𝑏], [𝑐, 𝑑]) meets the condition of 𝑎 = 𝑏 = 𝑐 = 𝑑. However, it is necessary to determine the 

value of the parameter k based on the actual application environment. Our investigation indicates that 

existing SFs inadequately capture the uncertainties inherent in the membership and non-membership 

intervals, as well as in the dynamic nature of decision-making. Hence, addressing interval 

uncertainty remains a crucial challenge. 

To overcome the limitations of existing score functions (SFs), researchers have incorporated 

entropy-based techniques into the design of SFs for IVIFVs [21–23]. Specifically, Ye [22] proposed 

an SF that combines entropy and the correlation coefficient. Wei [21] introduced SFs that integrate 

entropy and similarity, a combination that has proven not only superior to the SF developed by Bai 
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[24] but also widely applied in fuzzy decision-making applications. However, Guo [25] identified 

several shortcomings of these SFs. In efforts to enhance the processing capabilities of SFs, some 

researchers have introduced SFs based on knowledge measures and entropy. For example, Guo [25] 

proposed an SF based on membership, non-membership, and hesitation of the IVIFV. Kumar [26] 

studied the SF for transportation models. While Nguyen [27] investigated SFs based on knowledge 

measurement, in [28] he then investigated the SF by using a generalized p-Norm. However, when the 

norm value is p = 1, 𝑎9 = ([0.0,0.4], [0.0,0.5]), and 𝑎10 = ([0.1,0.3 ], [0.1,0.4]), the Nguyen SF 

[28] fails to compare 𝑎9 and 𝑎10. Although entropy- and knowledge-based approaches have shown 

promise in constructing SFs for IVIFVs, the SFs of their products do not adequately reflect the 

psychological change process. 

Despite these challenges, researchers have discovered that prospect theory effectively captures 

the psychological changes decision-makers experience [29]. Decision-makers tend to exhibit risk 

aversion when facing gains and show a preference for risk when facing losses. As the frequency of 

gains and losses increases for decision-makers, the marginal value of each subsequent gain or loss 

diminishes [30]. Consequently, the integration of fuzzy theory has received substantial attention 

[31,32], leading to significant methodological advances [33]. For instance, Fan [34] proposed a 

MEREC-MABAC approach for evaluating the performance of wearable health technology devices 

within a prospect-theory-based framework. Wang put forward a decision method based on prospect 

theory [12]. Gao [35] also developed an SF based on prospect theory, but could not distinguish 

IVIFVs with equal membership and non-membership. Wang et al. [36] proposed an SF based on the 

prospect value function, in which the reference point corresponds to the expected value of multiple 

IVIFVs and the resulting output is an interval. When there is only one IVIFV, this SF degenerates 

into a membership interval minus a non-membership interval value, which cannot be converted into 

a crisp number. Moreover, it fails to account for the dynamic psychological transition that 

decision-makers undergo when shifting from support to opposition. 

In general, existing SFs for IVIFSs have demonstrated strong applicability in areas such as 

decision-making, evaluation, and intelligent analysis, but they also have several shortcomings. Some 

SFs can rapidly calculate and intuitively reflect the positive and negative attitudes of 

decision-makers, yet they fail to distinguish and compare a large number of different IVIFVs. Some 

SFs incorporate entropy-based measures, but they are not able to reflect the psychological change 

process of decision-makers. Therefore, the main research drivers behind this paper are summarized 

as follows. 

(1) Although some functions can map the interval [𝑎, 𝑏] ([𝑎, 𝑏]  ⊆  [0,1]) to a crisp number, 

they fail to reflect the psychology of decision-makers. This paper will use prospect theory to study 

the interval mapping function and map [𝑎, 𝑏] to a crisp number. 

(2) Many existing SFs of IVIFVs struggle to compare two IVIFVs with obvious differences. 

Despite the use of AFs to enhance the distinction of IVIFVs, a significant number of them remain 

incomparable (see Section 2.3). It is necessary to develop a new SF to improve the ability to compare 

IVIFVs without requiring an AF, thus enhancing the practical applicability of IVIFVs. 

(3) Although researchers [36] have proposed SFs based on prospect theory before, their methods 

do not fully account for the prospect values of interior points in an interval, nor do their SFs result in 

a crisp number. Our proposal in this paper is to develop an SF that considers the prospect values of 

interior points and yields a crisp number. 
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(4) The selection and development of SFs need a set of standards and methods for comparison. 

To the best of our knowledge, no study has proposed an evaluation method or criteria for evaluating 

SFs, a gap which this paper aims to fill. 

Inspired by prospect theory [29], this paper transforms continuous decision-making information 

into crisp numbers that can also reflect the decision-making psychology of decision-makers. An 

interval-valued evaluation method (IVEM) based on prospect theory is thus proposed to transform 

the IVIFV into an intuitionistic fuzzy value (IFV). The key contributions of this paper are: 

(1) The development of an IVEM based on prospect theory, which can improve the 

discriminative ability in practical applications and mitigating mathematical limitations. 

(2) The transformation of the IFN based on the IVEM. 

(3) The design of an IVIFS-SF and the investigation of its properties based on the IVEM. 

(4) The proposal of pass rate and variance as the SFs assessment methods, where a generated 

dataset is used for illustration. 

(5) A comparative analysis and verification of the IVIFS-FS with the state-of-the-art SFs 

through a case study. 

The remaining sections of this paper are organized as follows. Section 2 provides a background 

discussion of prospect theory, Section 3 describes the IVEM that has been developed as a result of 

that theory, Section 4 develops a new SF and SF assessment methods, Section 5 verifies the proposed 

SF with a case study, and concluding remarks are found in the final section. 

2. Preliminary 

2.1. IVIFS 

Definition 1 [1]. Let 𝑋 be the universe. The IVIFS 𝐴 on 𝑋 is defined in Eq (1): 

𝐴 = {(𝑥, 𝑢𝐴(𝑥), 𝑣𝐴(𝑥))|𝑥 ∈ 𝑋}.                          (1) 

In Eq (1), the membership function is an interval mapping: 𝑢𝐴(𝑥) = [𝑢𝐴
−(𝑥), 𝑢𝐴

+(𝑥)] ⊆ [0,1] 

and the non-membership function is a mapping of interval value: 𝑣𝐴(𝑥) = [𝑣𝐴
−(𝑥), 𝑣𝐴

+(𝑥)] ⊆ [0,1]. 

They satisfy 𝑢𝐴
−(𝑥) ≥ 0, 𝑣𝐴

−(𝑥) ≥ 0, and 0 ≤ 𝑢𝐴
+(𝑥) + 𝑣𝐴

+(𝑥) ≤ 1. The hesitation degree of A is 

𝜌𝐴(𝑥) = [𝜋𝐴
−(𝑥), 𝜋𝐴

+(𝑥)] = [1 − 𝑢𝐴
+(𝑥) − 𝑣𝐴

+(𝑥),1 − 𝑢𝐴
−(𝑥) − 𝑣𝐴

−(𝑥)].            (2) 

In [12], 𝑎 = ([𝑢−, 𝑢+], [𝑣−, 𝑣+]) is regarded as an interval-valued intuitionistic fuzzy value 

(IVIFV) where [𝑢−, 𝑢+] ⊆ [0,1], [𝑣−, 𝑣+] ⊆ [0,1], and 𝑢+ + 𝑣+ ≤ 1. 

Definition 2 [9]. Let 𝑎𝑖 = ([𝑢𝑎1
− , 𝑢𝑎1

+ ], [𝑣𝑎1
− , 𝑣𝑎1

+ ]) be a set of IVIFVs and 𝜔 = (𝜔1, 𝜔2, ⋯ , 𝜔𝑛) be 

the weight vector satisfying ∑ 𝜔𝑖
𝑛
𝑖=1 = 1, 𝜔𝑖 ≥ 0, 𝑖 = 1,2,⋯ , 𝑛. The IIFWA operator is defined as 

IIFWA (𝑎1, 𝑎2, ⋯ , 𝑎𝑛) = ([1 − ∏𝑖=1
𝑛  (1 − 𝑢𝑖

−)𝜔𝑖 , 1 − ∏𝑖=1
𝑛  (1 − 𝑢𝑖

+)𝜔𝑖], [∏𝑖=1
𝑛  (𝑣𝑖

−)𝜔𝑖 , ∏𝑖=1
𝑛  (𝑣𝑖

+)𝜔𝑖]). (3) 

2.2. Prospect theory 

In prospect theory [29], the value of a prospect is evaluated relative to a reference point from 

decision-makers. The prospect value function is S-shaped, being concave in the gain domain and 

convex in the loss domain, as illustrated in Figure 1. 
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Figure 1. Value function of prospect theory. 

In prospect theory, it has been observed that different decision-makers may have different 

choices for the same problem, as their subjective preferences influence the resulting decision 

outcomes. The prospect value is thus jointly determined by the value function and probabilistic 

weight function as shown in Eq (4). 

𝑉 = 𝑣(Δ𝑥)𝑤(𝑝),                              (4) 

where 𝑉 represents the prospect value, 𝜐(∆𝑥) represents the value function of a decision-maker’s 

subjective feelings, and 𝑤(𝑝) represents the weight function of probability. If we define ∆𝑥 as 

𝑥𝑖 − 𝑥∗, where 𝑥∗ is the reference point and 𝑥𝑖 represents the evaluation point, the calculation of 

𝜐(∆𝑥) is shown in Eq (5). 

𝑉(Δ𝑥) = {
(Δ𝑥)𝛼 , Δ𝑥 ≥ 0,

−𝜃(−Δ𝑥)𝛽 , Δ𝑥 < 0.
                           (5) 

In Eq (5), when ∆𝑥 ≥ 0, it is expressed as gain. Otherwise, it is regarded as loss. 𝛼(0 < 𝛼 <
1) and 𝛽(0 < 𝛽 < 1) are the risk attitude coefficients, which are shown in Figure 1 as the degree 

of concavity and convexity of the value function in the gain domain and the loss domain, 

respectively. They reflect the decreasing speed of the decision-maker’s sensitivity. The larger their 

values are, the more likely the decision-makers are to take risks. 𝜃 is the loss avoidance coefficient, 

which is the steepness of the value function in the loss domain in Figure 1, that is, it reflects the 

degree of loss avoidance of a decision-maker. When 𝜃 > 1, it indicates a decision-maker’s loss 

aversion. 

In Eq (4), the probability weight function 𝑤(𝑝) is determined by the probability of occurrence 

p of the event 𝑥𝑖, which is a monotonically increasing function as shown in Eq (6). In Eq (6), 𝛾 > 0 

and 𝛿 > 0 represent the risk attitude coefficients of the gain domain and the loss domain, 

respectively, 

𝑤(𝑝) = {

𝑝𝛾

(𝑝𝛾+(1−𝑝)𝛾)1/𝛾
, Δ𝑥 ≥ 0,

𝑝𝛿

(𝑝𝛿+(1−𝑝)𝛿)
1/𝛿 , Δ𝑥 < 0.

                        (6) 
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2.3. Analysis of existing score functions 

Since the first SF of IVIFSs was proposed in 2007 [9], over forty have been developed and 

investigated. However, many of these methods still have several shortcomings. To illustrate the 

performance of existing SFs, we scrutinize ten of them focusing on their indistinguishability. 

The score function 𝑆𝑥 of the IVIFVs proposed by Xu [9] has a simple calculation process and 

obtains results easily. Definition 3 shows that at present, it is one of the most widely used SFs, while 

Example 1 demonstrates its indistinguishability. 

Definition 3. Let 𝑎 = ([𝑢−, 𝑢+], [𝑣−, 𝑣+]) be an IVIFV. The 𝑆𝑋 is defined in Eq (7): 

𝑆𝑋(𝑎) =
𝑢−+𝑢+−𝑣−−𝑣+

2
.                              (7) 

Example 1. Let 𝑎11 = ([0.25, 0.3], [0.4, 0.6])  and 𝑎12 = ([0.15, 0.4], [0.5, 0.5]) . We can get 

𝑆𝑋(𝑎11) = 𝑆𝑋(𝑎12) = −0.45, indicating that 𝑆𝑋 cannot distinguish 𝑎11 and 𝑎12. Although Xu [9] 

proposed the improved AF 𝐻𝑋(𝛼) =
1

2
(𝑢− + 𝑢+ + 𝑣− + 𝑣+) , the calculation 𝐻𝑋(𝑎11) =

𝐻𝑋(𝑎12) = 0.775 fails to distinguish 𝑎11 and 𝑎12. At the same time, for any two 𝑎𝑖 and 𝑎𝑗, when 

𝑢𝑖
− + 𝑢𝑖

+ − 𝑣𝑖
− + 𝑣𝑖

+ = 𝑢𝑗
− + 𝑢𝑗

+ − 𝑣𝑗
− + 𝑣𝑗

+, 𝑆𝑋 cannot distinguish 𝑎𝑖 and 𝑎𝑗. 

Wang and Chen [13] proposed a score function 𝑆𝑊𝐶, which not only integrates the support and 

opposition attitudes of decision-makers, but also considers the intersection of membership and 

non-membership as shown in Definition 4. Wei [7] pointed out that the parameters 𝑢+ and 𝑣− in 

𝑆𝑊𝐶  do not satisfy monotonicity when 𝑢− = 𝑢+ = 𝑣− = 𝑣+. As shown in Example 2, IVIFVs 

cannot be distinguished. 

Definition 4. Let 𝑎 = ([𝑢−, 𝑢+], [𝑣−, 𝑣+]) be an IVIFV. The 𝑆𝑊𝐶 is 

𝑆𝑊𝐶(𝑎) =
(𝑢−+𝑢+)(𝑢−+𝑣−)−(𝑣−+𝑣+)(𝑢++𝑣+)

2
.                     (8) 

Example 2. Let 𝑎13 = ([0.45, 0.45], [0.45, 0.45])  and 𝑎14 = ([0.35, 0.35], [0.35, 0.35]) . This 

gives us 𝑆𝑊𝐶(𝑎13) = 0, 𝑆𝑊𝐶(𝑎14) = 0, and a 𝑆𝑊𝐶  that cannot distinguish 𝑎13 and 𝑎14. At the 

same time, for any two 𝑎𝑖  and 𝑎𝑗, when 𝑢𝑖
− = 𝑢𝑖

+ = 𝑣𝑖
− = 𝑣𝑖

+, 𝑢𝑗
− = 𝑢𝑗

+ = 𝑣𝑗
− = 𝑣𝑗

+, 𝑆𝑊𝐶 cannot 

distinguish 𝑎𝑖 and 𝑎𝑗. 

Wei and Li [7] proposed an information-based score function 𝑆𝑊𝐿 as shown in Definition 5. 

Their 𝑆𝑊𝐿  comprehensively reflects the multiple relationships between membership and 

non-membership of IVIFVs. Example 3 gives the indistinguishability in this case. 

Definition 5. Let 𝑎 = ([𝑢−, 𝑢+], [𝑣−, 𝑣+]) be an IVIFV. The 𝑆𝑊𝐿 is 

𝑆WL(𝑎) = [1 + 𝑢
− + 𝑢+ − 𝑣− − 𝑣+ + 0.5(|𝑢− − 𝑣−| + |𝑢+ − 𝑣+|)][(1 + 𝑢− + 𝑣−)𝑒𝑢

−−𝑣−+𝑢−+𝑢+/

𝑒3 + (1 + 𝑢+ + 𝑣+)𝑒𝑢
+−𝑣+−𝑣−−𝑣+/𝑒][(2 − 𝑣− − 𝑣+)/(4 − 𝑢− − 𝑢+ − 𝑣− − 𝑣+)]/16.        (9) 

Example 3. Let 𝑎15 = ([0.05 ,0.07], [0.1, 0.55]) and 𝑎16 = ([0.23, 0.27], [0.45,0.61]). This gives 

us 𝑆𝑊𝐿(𝑎15) = 𝑆𝑊𝐿(𝑎16) = 0.0049, thus making 𝑆𝑊𝐿 unable to distinguish 𝑎15 and 𝑎16. At the 

same time, when 𝑎1 = ([0.05,0.07], [0.1,0.55]) , 𝑎𝑖 = ([0.05 + 𝑘, 0.07 + 1.111𝑘], [0.1 +
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1.944𝑘, 0.55 + 0.333𝑘])(−0.05 ≤ 𝑘 ≤ 0.263), and the score value is rounded to two decimal 

places, there are some 𝑎𝑗 that 𝑆𝑊𝐿 cannot distinguish 𝑎1 and 𝑎𝑗. 

Bai [24] proposed a score function 𝑆𝐵 based on the unknown degree as shown in Definition 6, 

but when 𝑢− = 𝑢+ = 0, 𝑆𝐵 is always 0 as shown in Example 4. 

Definition 6. Let 𝑎 = ([𝑢−, 𝑢+], [𝑣−, 𝑣+]) be an IVIFV. The 𝑆𝐵 is shown in Eq (10): 

𝑆𝐵(𝑎) =
𝑢−+𝑢−(1−𝑢−−𝑣−)+𝑢++𝑢+(1−𝑢+−𝑣+)

2
.                     (10) 

Example 4. Let 𝑎17 = ([0,0], [0.2,0.5])  and 𝑎18 = ([0,0], [0.1,0.2]) . 𝑆𝐵(𝑎17) = 𝑆𝐵(𝑎18) = 0 

indicates that 𝑆𝐵 fails to distinguish 𝑎17 and 𝑎18. At the same time, for any two 𝑎𝑖 and 𝑎𝑗,when 

𝑢𝑖
− = 𝑢𝑖

+ = 0 and 𝑢𝑗
− = 𝑢𝑗

+ = 0, 𝑆𝐵 = 0. So 𝑆𝐵 cannot distinguish 𝑎1 and 𝑎𝑗. 

Garg [11] generalized score function 𝑆𝐺 as shown in Definition 7. However, as shown in 

Example 5, when 𝑢− = 𝑢+ = 0, 𝑆𝐺 is always 0 regardless of the values of 𝑘1 or 𝑘2. 

Definition 7. Let 𝑎 = ([𝑢−, 𝑢+], [𝑣−, 𝑣+]) be an IVIFV. The 𝑆𝐺 is 

𝑆𝐺(𝑎) =
𝜇−+𝜇+

2
+ 𝑘1𝜇

−(1 − 𝜇− − 𝑣−) + 𝑘2𝜇
+(1 − 𝜇+ − 𝑣+), and 𝑘1 + 𝑘2 = 1, 𝑘1, 𝑘2 ≥ 0. (11) 

Example 5. Let 𝑎19 = ([0,0], [0.3,0.5])  and 𝑎20 = ([0,0], [0,0]) . This gives us 𝑆𝐺(𝑎19) =

𝑆𝐺(𝑎20) = 0 and an 𝑆𝐺  that cannot distinguish 𝑎19  and 𝑎20 . At the same time, for any two 

𝑎𝑖 and 𝑎𝑗, when 𝑢𝑖
− = 𝑢𝑖

+ = 0 and 𝑢𝑗
− = 𝑢𝑗

+ = 0, 𝑆𝐺 = 0. So 𝑆𝐺 cannot distinguish 𝑎1 and 𝑎𝑗. 

Gao and Liu [35] proposed a score function 𝑆𝐺𝐿, which reflects the degree of support by 

measuring the difference between the midpoint values of the membership and non-member degrees. 

By taking into account the effect of the degree of hesitation, it describes the integrated information of 

the IVIFV as indicated in Definition 8. When 𝑢𝑎
− + 𝑢𝑎

+ = 𝑢𝑏
− + 𝑢𝑏

+ and 𝑣𝑎
− + 𝑣𝑎

+ = 𝑣𝑏
− + 𝑣𝑏

+, 𝑆𝐺𝐿 

cannot distinguish between the two IVIFVs as shown in Example 6. 

Definition 8. Let 𝑎 = ([𝑢−, 𝑢+], [𝑣−, 𝑣+]) be an IVIFV. The 𝑆𝐺𝐿 is 

𝑆𝐺𝐿(𝑎) =
exp {[𝑢−+𝑢+−𝑣−−𝑣+]/2}

[1−𝑢−−𝑣−+1−𝑢+−𝑣+]/2+1
.                            (12) 

Example 6. Let 𝑎21 = ([0,0.4], [0.4,0.6]) and 𝑎22 = ([0.2,0.2], [0.3,0.7]). We have 𝑆𝐺𝐿(𝑎20) =
𝑆𝐺(𝑎21) = 0.5699, which implies that 𝑆𝐺𝐿 cannot distinguish 𝑎20 and 𝑎21. At the same time, 

there exist two 𝑎𝑖  and 𝑎𝑗 , 𝑎𝑖 ∊ 𝐴  and 𝑎𝑗 ∊ 𝐴,  and 𝐴 = ([0.1 + 𝑘1, 0.3 − 𝑘1], [0.4 + 𝑘2, 0.6 −

𝑘2]), {(𝑘1, 𝑘2) ∈ ℝ
2| − 0.1 ≤ 𝑘1 ≤ 0.1,−0.2 ≤ 𝑘2 ≤ 0.1}, and 𝑆𝐺𝐿  cannot distinguish 𝑎𝑖  and 𝑎𝑗 

when value is rounded to 1. 

Chen and Tsai [20] proposed a score function 𝑆𝐶𝑇 as defined in Definition 9 to consider the 

hesitation, but the shortcoming of this approach is given in Example 7. 

Definition 9. Let 𝑎 = ([𝑢−, 𝑢+], [𝑣−, 𝑣+]) be an IVIFV. The 𝑆𝐶𝑇 is 

𝑆𝐶𝑇(𝑎) =
√𝑢−+√𝑢++√1−𝑣−+√1−𝑣+

2
.                             (13) 

Example 7. Let 𝑎23 = ([0.1,0.2], [0.0,0.8])  and 𝑎24 = ([0.0,0.1], [0.0,0.2]) . This gives 

𝑆𝐶𝑇(𝑎23) = 𝑆𝐶𝑇(𝑎24) = 1.1053, which means that 𝑆𝐶𝑇  cannot distinguish 𝑎23 and 𝑎24. At the 

same time, there exist two 𝑎𝑖 and 𝑎𝑗, 𝑎𝑖  ∊ 𝐴 and 𝑎𝑗 ∊ 𝐴 and 𝐴 = ([0.1 + 𝑘1, 0.25 − 𝑘1], [0.12 +
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𝑘2, 0.43 − 𝑘2]), {(𝑘1, 𝑘2) ∈ ℝ
2|0 ≤ 𝑘1 ≤ 0.05,0 ≤ 𝑘2 ≤ 0.06}, and the score value is rounded to 1 

decimal places. 𝑆𝐶𝑇 cannot distinguish 𝑎𝑖 and 𝑎𝑗. 

Chen and Deng [15] proposed a score function 𝑆𝐶𝐷 as presented in Definition 10, which 

extends 𝑆𝑋 and 𝑆𝐶𝑇 by improving the comparison ability of IVIFVs. As shown in Example 8, 

however, 𝑆𝐶𝐷 is also insufficient to distinguish two IVIFVs under specific scenarios. 

Definition 10. Let 𝑎 = ([𝑢−, 𝑢+], [𝑣−, 𝑣+]) be an IVIFV. The 𝑆𝐶𝐷 is 

𝑆𝐶𝐷(𝑎) =
𝑢−−𝑣−+𝑢+−𝑣+

2
+
sin (𝑢−×

𝜋

2
)+sin (𝑢+×

𝜋

2
)+sin ((1−𝑣−)×

𝜋

2
)+sin ((1−𝑣+)×

𝜋

2
)

2
+ 2.        (14) 

Example 8. Let 𝑎25 = ([0.42,0.71], [0.07,0.08])  and 𝑎26 = ([0.61,0.71], [0.2,0.24]) . 

𝑆𝐶𝐷(𝑎25) = 𝑆𝐶𝐷(𝑎26) = 4.239 indicates that 𝑆𝐶𝐷  cannot distinguish 𝑎25 and 𝑎26. At the same 

time, for any two 𝑎𝑖 and 𝑎𝑗, 𝑎𝑖 ∊ 𝐴, and 𝑎𝑗 ∊ 𝐴, and 𝐴 = ([0.5,0.5], [0.1 + 𝑘, 0.5 − 𝑘]), −0.2 ≤
𝑘 ≤ 0.1, and the score value is rounded to 3 decimal places. 𝑆𝐶𝐷 cannot distinguish 𝑎𝑖 and 𝑎𝑗. 

Kumar and Chen [17] proposed a score function 𝑆𝐾𝐶 as presented in Definition 11. It uses 

membership and non-member degrees and the degree of hesitation to construct the connection 

number CN. In Eq (15), A represents the same degree, B represents the degree of difference, and C 

represents the degree of opposites. Example 9 shows where 𝑆𝐾𝐶 is insufficient. 

Definition 11. Let 𝑎 = ([𝑢−, 𝑢+], [𝑣−, 𝑣+]) be an IVIFV. The 𝑆𝐾𝐶 is 

𝐶𝑁(𝑎) = 𝐴 + 𝐵𝑖 + 𝐶𝑗, 

𝑆𝐾𝐶(𝐶𝑁(𝑎)) = {
(𝐴 − 𝐶)(1 − 𝐵), if 𝐴 ≠ 𝐶,
𝐴(1 + 𝐵), if 𝐴 = 𝐶,

 

𝐴 = 𝑢− + 𝑢+ − 𝑢−𝑢+ − (
𝑢−𝑣++𝑢+𝑣−

2
),                     (15) 

𝐶 = 𝑣− + 𝑣+ − 𝑣−𝑣+ − (
𝑢−𝑣++𝑢+𝑣−

2
), 

𝐵 = 1 − 𝐴 − 𝐶. 

Example 9. Let 𝑎27 = ([0.49,0.52], [0.01,0.48]) and 𝑎28 = ([0.08,0.7], [0.22,0.3]). 𝑆𝐾𝐶(𝑎27) =

𝑆𝐾𝐶(𝑎28) = 0.27, implies that 𝑆𝐾𝐶 cannot distinguish 𝑎27 and 𝑎28. At the same time, there exist 

two 𝑎𝑖  and 𝑎𝑗 , 𝑎𝑖 ∊ 𝐴  and 𝑎𝑗 ∊ 𝐴 , and 𝐴 = ([0.40 + 𝑘1, 0.60 − 𝑘1], [0.16 + 𝑘2, 0.34 − 𝑘2 +

0.3𝑘1]), {(𝑘1, 𝑘2) ∈ ℝ
2| − 0.1 ≤ 𝑘1 ≤ 0.1,−0.05 ≤ 𝑘2 ≤ 0.05}, and the score value is rounded to 3 

decimal places. 𝑆𝐾𝐶 cannot distinguish 𝑎𝑖 and 𝑎𝑗. 

Chen and Yu [19] proposed a score function 𝑆𝐶𝑌 based on the expected value of an interval. It 

not only considers the membership and non-membership relationships of the interval, but also 

considers their cross relationships as shown in Definition 12. Example 10 shows a case of 

indistinguishability. 

Definition 12. Let 𝑎 = ([𝑢−, 𝑢+], [𝑣−, 𝑣+]) be an IVIFV. The 𝑆𝐶𝑌 is shown in Eq (16): 

𝑆𝐶𝑌 = √𝑢
− + 𝑢+ + (1 − 𝑣−) + (1 − 𝑣+) + (𝑢− ×

3

5
+ 𝑢+ ×

2

5
) [1 − (𝑣− ×

3

5
+ 𝑣+ ×

2

5
)] +

√𝑢−+√1−𝑣−

2−(𝑢)−×(1−𝑣−))
+

√𝑢++√1−𝑣+

2−(𝑢+×(1−𝑣+))
+ 1.                       (16) 
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Example 10. Let 𝑎29 = ([0.27,0.37], [0.53,0.53])  and 𝑎30 = ([0.23,0.27], [0.18,0.69]) . This 

gives us 𝑆𝐶𝑌(𝑎29) = 𝑆𝐶𝑌(𝑎30) = 3.7546 and shows that 𝑆𝐶𝑌  cannot distinguish 𝑎29  and 𝑎30 . 

According to Definition 12, we can see that the 𝑆𝐶𝑌  lacks theoretical guidance and has 

unpredictable discrimination blind spots in high-dimensional spaces, leading to indistinguishable 

IVIFNs. 

3. An interval-valued evaluation method (IVEM) based on prospect theory 

In this section, prospect theory is introduced to evaluate [𝑎, 𝑏] that satisfies [𝑎, 𝑏] ⊆ [0,1] 

(0 ≤ 𝑎 ≤ 𝑏 ≤ 1). 

3.1. An interval-valued attitude analysis based on prospect theory 

The interval [𝑎, 𝑏] is equally divided into 𝑘（𝑘 ≥ 1）segments, with the length of each segment 

being 𝑑 = (𝑏 − 𝑎)/𝑘. The midpoint of each segment is selected to represent its judgment value; that 

is, we use 𝑥𝑖 to represent the evaluation value of the 𝑖𝑡ℎ segment. If the decision-makers have the 

same attitude toward any points on [𝑎, 𝑏], the weights of each point on [𝑎, 𝑏] are equal, whereas 

any arbitrary method of division is equivalent. 

In Figure 2, for example, the interval is equally divided into 𝑘  segments, where 𝑥𝑖 =
[𝑎+𝑖∗𝑑+𝑎+(𝑖−1)∗𝑑]

2
, (𝑖 = 1,2, …𝑘) . The weight of 𝑥𝑖  is equal, namely 𝑤𝑖 = 1/𝑘 . The weighted 

average of [𝑎, 𝑏] can then be derived to be 
𝑎+𝑏

2
. This calculation process is shown in Eq (17). 

∑ 𝑥𝑖 ×
1

𝑘

𝑘
𝑖=1 = ∑

𝑎+𝑖×
𝑏−𝑎

𝑘
+𝑎+(𝑖−1)×

𝑏−𝑎

𝑘

2𝑘

𝑘
𝑖=1 . 

= 𝑎 −
𝑏−𝑎

2𝑘
+∑

𝑖×(𝑏−𝑎)

𝑘2
𝑘
𝑖=1 = 𝑎 −

𝑏−𝑎

2𝑘
+
(𝑏−𝑎)

𝑘2
∑ 𝑖𝑘
𝑖=1 = 𝑎 −

𝑏−𝑎

2𝑘
+
(𝑏−𝑎)

𝑘2

(𝑘+1)𝑘

2
=

𝑎+𝑏

2
. (17) 

It can be seen from Eq (17) that, when the decision-makers have the same attitude toward each 

part of the interval, the midpoint of [𝑎, 𝑏] becomes the evaluation value, which is inconsistent with 

the uncertainty of the interval. Therefore, the weights of 𝑥𝑖 should not be the same when [𝑎, 𝑏] is 

equally divided. 

 

Figure 2. Interval segmentation process. 

Prospect theory [29] is well able to reflect the change process of decision-makers’ attitudes 

within [𝑎, 𝑏]. As shown in Figure 1, the curve of the prospect value function takes the reference 

point as the base point to separate the loss domain and the gain domain. The membership and 

non-membership of IVIFVs are subsets of [0,1] and meet 0 ≤ 𝑢𝐴
+(𝑥) + 𝑣𝐴

+(𝑥) ≤ 1. When the 

endpoint of the membership (non-membership) is greater than the midpoint 0.5, the decision-makers 

usually think that the degree of support is greater than (less than) the degree of opposition. Thus, in 

this paper, 0.5 is taken as the reference point for prospect theory to separate the loss domain from the 

gain domain. The translated prospect theory curve is shown in Figure 3. By taking any point from 
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[𝑎, 𝑏] on the horizontal axis, a vertical line passing through this point intersects the prospect 

theoretical function curve L. The ordinate value corresponding to the intersection point is thus the 

prospect value. 

 

Figure 3. Mapping between the interval and prospect curve. 

Figure 3 has 𝑥1 = 𝑎 and 𝑥𝑘 = 𝑏. The prospect values corresponding to 𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑘 are 

𝑉1, 𝑉2, 𝑉3, ⋯ , 𝑉𝑘. It can be seen that for any point 𝑥𝑖, the weight of 𝑥𝑖 is set to be 𝑤𝑖 =
𝑉𝑖

∑ 𝑉𝑖
𝑘
𝑖=1

, (𝑖 =

1,2,⋯ , 𝑘). The evaluation value of [𝑎, 𝑏] is calculated by the weighted average, defined as 𝐸 =

∑ 𝑥𝑖
𝑘
𝑖=1 𝑤𝑖. It is easy to verify that 𝐸 is not necessarily equal to 

𝑎+𝑏

2
. Therefore, the prospect value 

of 𝑥𝑖 is used to calculate the weight of decision-maker that can overcome the shortcomings of equal 

weight on [𝑎, 𝑏]. In addition, the prospect value of 𝑥𝑖 can effectively capture the changes in the 

decision-maker’s attitude. 

3.2. IVEM based on the prospect value function 

Since the interval [𝑎, 𝑏] is continuous, Eq (6) cannot be directly used to calculate the prospect 

value. Drawing inspiration from the concept of a hesitation fuzzy set [37], we fuse the finite number 

of evaluation values that can be used to express the decision-makers’ attitudes. These fused data, 

derived from interval discretization, are then used to obtain the evaluation value of the interval. 

There are two common methods to discretize the interval: equal division and random division. The 

equal division method not only accurately reflects the decision-makers’ attitudes but is also simpler 

to calculate. Since the weights of each point are different, the equal division method will be adopted 

in this study. 

Suppose [𝑎, 𝑏](0 ≤ 𝑎 ≤ 𝑏 ≤ 1) to be an arbitrary interval. We use Eq (18) to discretize the 

interval [𝑎, 𝑏] into 𝑘(𝑘 ≥ 2) points. The set of discrete points is 𝑋 = {𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑘−1, 𝑥𝑘}. 

When 𝑘 = 2, 𝑋 contains only the endpoints 𝑎 and 𝑏. 

𝑥𝑖 = 𝑎 + (𝑖 − 1)
𝑏−𝑎

𝑘−1
.                             (18) 

For any point 𝑥𝑖, as defined in Eq (6), both the reference point and the parameter k need to be 

considered when calculating its prospect value. When the decision-makers select different reference 

points, their subjective perception values are different. Thus, the prospect values are also different. 
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For all discrete points, however, the prospect value ratio of 𝑥𝑖 does not change, a claim that will be 

proved in Section 3.3 For the convenience of calculation, the reference point in this paper is set 

to 0.5. 

Each real number 𝑥𝑖 in 𝑋 is independent of the others. The probability of drawing 𝑥𝑖 is equal, 

that is, 𝑝𝑖 = 1/𝑘. By substituting 𝑝𝑖 , 𝑥i, and 𝑥∗ = 0.5 into Eqs (4)–(6), we can calculate the 

prospect value of 𝑥i in Eq (19), where parameters 𝛼, 𝛾, 𝛽, 𝛿, and 𝜃 have the same meaning as 

those in Eqs (5) and (6). 

𝑉(𝑥𝑖) =

{
  
 

  
 (𝑥𝑖 − 𝑥∗)

𝛼
(
1

𝑘
)
𝛾

((
1

𝑘
)
𝛾
+(1−(

1

𝑘
))
𝛾

)
1/𝛾 , (𝑥𝑖 − 𝑥∗) ≥ 0,

−𝜃(𝑥∗ − 𝑥𝑖)
𝛽

(
1

𝑘
)
𝛿

((
1

𝑘
)
𝛿
+(1−(

1

𝑘
))
𝛿

)

1
𝛿

, (𝑥𝑖 − 𝑥∗) < 0.

                (19) 

When 𝑎 = 𝑏, the interval degenerates into a real number 𝑎 or 𝑏 denoted as [𝑎, 𝑎] or [𝑏, 𝑏]. 
In this case, the equal division of the interval is still the point itself and the probability of drawing 𝑥𝑖 
is 𝑝𝑖 = 1. Substituting 𝑥𝑖 = 𝑎 and 𝑝𝑖 = 1 into Eqs (4)–(6), the prospect value of point 𝑎 or 𝑏 

can be obtained using Eq (20): 

𝑣(𝑎) = {
(𝑥𝑖 − 𝑥∗)

𝛼 , (𝑥𝑖 − 𝑥∗) ≥ 0,

−𝜃(𝑥∗ − 𝑥𝑖)
𝛽, (𝑥𝑖 − 𝑥∗) < 0,

                       (20) 

where 𝑥∗ is the reference point. The meanings of 𝛼 and 𝛽 are explained in Eq (5). Combining Eqs 

(19) and (20), Eq (21) gives the prospect value of any discrete point on [𝑎, 𝑏]. 

𝑉(𝑥𝑖) =

{
 
 
 
 

 
 
 
 (𝑥𝑖 − 𝑥∗)

𝛼
(
1

𝑘
)
𝛾

((
1

𝑘
)
𝛾
+(1−(

1

𝑘
))
𝛾

)
1/𝛾 , (𝑥𝑖 − 𝑥∗) ≥ 0,

−𝜃(𝑥∗ − 𝑥𝑖)
𝛽

(
1

𝑘
)
𝛿

((
1

𝑘
)
𝛿
+(1−(

1

𝑘
))
𝛿

)

1
𝛿

, (𝑥𝑖 − 𝑥∗) < 0,

(𝑥𝑖 − 𝑥∗)
𝛼 , (𝑥𝑖 − 𝑥∗) ≥ 0 and 𝑎 = 𝑏 = 𝑥𝑖 ,

−𝜃(𝑥∗ − 𝑥𝑖)
𝛽 , (𝑥𝑖 − 𝑥∗) < 0 and 𝑎 = 𝑏 = 𝑥𝑖 .

               (21) 

As shown in Eq (21), the parameter 𝑘 directly influences the prospect value of 𝑥𝑖. From 

the intuitive perspective of the decision-makers, the smaller the discrete number is, the smaller 

the prospect value discrimination of 𝑥i becomes, while the value of 𝑘 depends on the actual 

situation. In Section 4.3.2, we discuss whether or not 𝑘 can take the value greater than or equal 

to 20. 

As illustrated in Figure 3, the interval [𝑎, 𝑏]  lies within [0,1] . The prospect value 

calculated by Eq (21) increases monotonously, which means that it cannot directly reflect the 

attitude of the decision-makers. Instead, by taking the x-axis as the symmetric axis, the gain part 

of curve 𝐿 is mirrored below 𝑦 = 0 as shown in Figure 4. The corresponding formula is given 

in Eq (22). The curve 𝑆 only indirectly reflects the attitude of the decision-makers because part 

of 𝑆 is the symmetry of curve 𝐿. 
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Figure 4. Curve S of transforming prospect theory. 

𝑉(𝑥𝑖) =

{
 
 
 
 

 
 
 
 0 − (𝑥𝑖 − 𝑥∗)

𝛼
(
1

𝑘
)
𝛾

((
1

𝑘
)
𝛾
+(1−(

1

𝑘
))
𝛾

)

1
𝛾

, (𝑥𝑖 − 𝑥∗) ≥ 0 and 𝑎 < 𝑥𝑖 ≤ 𝑏,

−𝜃(𝑥∗ − 𝑥𝑖)
𝛽

(
1

𝑘
)
𝛿

((
1

𝑘
)
𝛿
+(1−(

1

𝑘
))
𝛿

)

1
𝛿

, (𝑥𝑖 − 𝑥∗) < 0 and 𝑎 ≤ 𝑥𝑖 < 𝑏,

0 − (𝑥𝑖 − 𝑥∗)
𝛼 , (𝑥𝑖 − 𝑥∗) ≥ 0 and 𝑎 = 𝑏 = 𝑥𝑖 ,

−𝜃(𝑥∗ − 𝑥𝑖)
𝛽 , (𝑥𝑖 − 𝑥∗) < 0 and 𝑎 = 𝑏 = 𝑥𝑖 ,

       (22) 

Similarly, in Eq (22), 𝑥∗ represents the reference point and 1/𝑘 represents the probability 

of each point. The prospect value 𝑉(𝑥i) of 𝑥i is calculated by Eq (22). It can be seen from 

Figure 4 that all prospect values are negative. We introduce 𝑊𝑒𝑖𝑔ℎ𝑡(𝑥i) as the weight of 𝑥𝑖 in 

Definition 13 to normalize the prospect values. 

Definition 13. The weight of 𝑥𝑖(𝑖 = 1,2,⋯ , 𝑘) on interval [𝑎, 𝑏] is denoted by 𝑊𝑒𝑖𝑔ℎ𝑡(𝑥i): 

𝑊𝑒𝑖𝑔ℎ𝑡(𝑥𝑖) =

{
 
 

 
 

𝑉(𝑥𝑖)−min
𝑗
 (𝑉(𝑥𝑗))

∑𝑖=1
𝑘  [𝑉(𝑥𝑖)−min

𝑗
 (𝑉(𝑥𝑗))]

, ∑𝑖=1
𝑘   [𝑉(𝑥𝑖) − min

𝑗
 (𝑉(𝑥𝑗))] ≠ 0,

1

𝑘
, ∑𝑖=1

𝑘   [𝑉(𝑥𝑖) − min
𝑗
 (𝑉(𝑥𝑗))] = 0,

         (23) 

where min
𝑗
 (𝑉(𝑥𝑗))  represents the minimum prospect value of all discrete points and 𝑉(𝑥𝑗) 

represents the prospect value of 𝑥𝑗. It can be seen that 𝑊𝑒𝑖𝑔ℎ𝑡(𝑥𝑖) ≥ 0 and ∑ 𝑊𝑒𝑖𝑔ℎ𝑡(𝑥𝑖)
𝑘
𝑖=1 = 1. 

According to Eq (23), the weight of each point can be calculated by using the transformed 

prospect value function and the evaluation value of [𝑎, 𝑏] can be obtained by taking the weighted 

average given by Eq (24). In this paper, the weighted average of the discrete points on [𝑎, 𝑏] is 

regarded as the evaluation value 𝐼𝑛𝑉𝑎𝑙𝑢𝑒 of [𝑎, 𝑏]: 

𝐼𝑛𝑉𝑎𝑙𝑢𝑒 = ∑𝑖=1
𝑘  𝑥𝑖 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡(𝑥𝑖).                      (24) 

When 
𝑎+𝑏

2
= 𝑥∗ = 0.5 for any [𝑎, 𝑏], after the discretization by Eq (18), the weight of each 

discrete point can be obtained by Eq (23). It is found that the closer 𝑥𝑖 locates to the reference point 
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𝑥∗, the greater weight the point obtains. The change in the decision-maker’s psychological state is 

consistent with prospect theory. When 
𝑎+𝑏

2
≠ 0.5, however, the weight of the endpoint 𝑎 or 𝑏 of 

[𝑎, 𝑏] is the largest, making it difficult to map the change process of the decision-maker’s attitude. 

Therefore, it is necessary to translate [𝑎, 𝑏] to make the midpoint of the interval equal 0.5. In this 

sense, the decision-maker has a greater weight near the midpoint of the interval. The length of 

translation, 𝑀𝑜𝑣𝑒𝐿𝑒𝑛𝑔𝑡ℎ, is defined in Eq (25). 

𝑀𝑜𝑣𝑒𝐿𝑒𝑛𝑔𝑡ℎ =
1

2
−
𝑎+𝑏

2
.                           (25) 

If the 𝑀𝑜𝑣𝑒𝐿𝑒𝑛𝑔𝑡ℎ is less than (greater than) 0, [𝑎, 𝑏] is shifted to the left (right) to get a 

new interval [𝑎̃, 𝑏̃]. With Eq (24), the evaluation value 𝐼𝑛𝑉𝑎𝑙𝑢𝑒 of [𝑎̃, 𝑏̃] can be obtained and 

with Eq (26), the evaluation value 𝐸𝑣𝑉𝑎𝑙𝑢𝑒 of [𝑎, 𝑏] can be obtained: 

𝐸𝑣𝑉𝑎𝑙𝑢𝑒 = 𝐼𝑉𝐸𝑀([𝑎, 𝑏]) = 𝐼𝑛𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑜𝑣𝑒𝐿𝑒𝑛𝑔𝑡ℎ.               (26) 

In summary, the calculation of the 𝐸𝑣𝑉𝑎𝑙𝑢𝑒  of [𝑎, 𝑏]  includes six steps: (1) [𝑎, 𝑏]  is 

converted to [𝑎̃, 𝑏̃] by using Eq (25), where 𝑎̃ and 𝑏̃ satisfy 
𝑎̃+𝑏̃

2
= 0.5; (2) [𝑎̃, 𝑏̃] is discretized 

into set 𝑋 = {𝑥i|𝑖 = 1,2, … , 𝑘} by Eq (18); (3) the prospect value 𝑉(𝑥i) of 𝑥i is calculated by Eq 

(22); (4) the weight 𝑊𝑒𝑖𝑔ℎ𝑡(𝑥𝑖) of 𝑥𝑖 is derived by Eq (23); (5) the 𝐼𝑛𝑉𝑎𝑙𝑢𝑒 is calculated by Eq 

(24); and (6) the 𝐸𝑣𝑉𝑎𝑙𝑢𝑒 of [𝑎, 𝑏] is obtained by Eq (26). 

3.3. IVIFS-SF and its properties 

For an arbitrary IVIFV 𝑎 = ([𝑢−, 𝑢+], [𝑣−, 𝑣+]) , 0 ≤ 𝑢− ≤ 𝑢+ , 0 ≤ 𝑣− ≤ 𝑣+  and 𝑢+ +

𝑣+ ≤ 1 are satisfied. The membership, non-membership, and hesitation intervals of 𝑎 are 𝑢𝑎 =

[𝑢−, 𝑢+] , 𝑣𝑎 = [𝑣
−, 𝑣+],  and 𝜌𝑎 = [1 − 𝑢

+ − 𝑣+, 1 − 𝑢− − 𝑣−] , respectively. According to the 

IVEM, 𝑢𝑎 and 𝑣𝑎 can be transformed into two crisp numbers: 𝑢 and 𝑣. The evaluation value 𝑢 

of 𝑢𝑎 is 

𝑢 = ∑𝑖=1
𝑘  𝑥𝑖 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡(𝑥𝑖) +

𝑢−+𝑢+−1

2
.                       (27) 

Equation (27) first shifts 𝑢𝑎  by 
(𝑢−+𝑢+)−1

2
 to get the interval [𝑢− −

(𝑢−+𝑢+)−1

2
, 𝑢+ −

(𝑢−+𝑢+)−1

2
)]. Equation (18) is then used to get the k discrete points 𝑥i(𝑖 = 1,2,⋯ , 𝑘). The weight 

𝑊𝑒𝑖𝑔ℎ𝑡(𝑥i) of 𝑥𝑖 is obtained according to Eq (23). 

Similarly, the evaluation value 𝑣 of 𝑣𝑎 can be derived. 𝑣𝑎 is translated by 
(𝑣−+𝑣+)−1

2
 to the 

interval [𝑣− −
(𝑣−+𝑣+)−1

2
, 𝑣+ −

(𝑣−+𝑣+)−1

2
)] before applying Eq (18). The calculation of 𝑣 is 

𝑣 = ∑𝑖=1
𝑘  𝑥𝑖 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡(𝑥𝑖) +

𝑣−+𝑣+−1

2
.                      (28) 

Then, 𝑢 and 𝑣 can be obtained by calculating the membership interval and non-membership 

interval of the IVIFV through Eqs (27) and (28). As shown in Theorem 1, we have 0 ≤ 𝑢 + 𝑣 ≤ 1. 

Theorem 1. For an arbitrary 𝑎 = ([𝑢−, 𝑢+], [𝑣−, 𝑣+]) of the IVIFV, the evaluation values of its 

membership and non-membership intervals are 𝑢 and 𝑣 that satisfy 0 ≤ 𝑢 + 𝑣 ≤ 1. 
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Proof. According to the interval value evaluation Eq (26), we have 𝑢 ≥ 0 and 𝑣 ≥ 0. If both 0 ≤

𝑢 ≤ 𝑢+ and 0 ≤ 𝑣 ≤ 𝑣+ hold, Theorem 1 can be proved. Below, we will first prove 𝑢 ≤ 𝑢+. 

To calculate the evaluation value 𝑢 of [𝑢−, 𝑢+], the translation is first calculated. From Eq 

(18), the interval after translation of [𝑢−, 𝑢+] becomes [𝑢− +
1−(𝑢−+𝑢+)

2
, 𝑢+ +

1−(𝑢−+𝑢+)

2
]. The k 

discrete points are (𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑘−1, 𝑥𝑘)  and meet 𝑢− +
1−(𝑢−+𝑢+)

2
= 𝑥1 ≤ 𝑥2 ≤ ⋯ , 𝑥𝑘−1 ≤

𝑥𝑘 = 𝑢
+ +

1−(𝑢−+𝑢+)

2
. Therefore, we get 

∑𝑖=1
𝑘  𝑥𝑖 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡(𝑥𝑖) ≤ ∑𝑖=1

𝑘  𝑥𝑘 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡(𝑥𝑖). 

Given the weight of each point 𝑊𝑒𝑖𝑔ℎ𝑡(𝑥𝑖) > 0 and ∑ 𝑊𝑒𝑖𝑔ℎ𝑡(𝑥𝑖)
𝑘
𝑖=1 = 1, we have 

∑𝑖=1
𝑘  𝑥𝑖 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡(𝑥𝑖) ≤ ∑𝑖=1

𝑘  𝑥𝑘 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡(𝑥𝑖) ≤ 𝑥𝑘 ∗ ∑𝑖=1
𝑘 𝑊𝑒𝑖𝑔ℎ𝑡(𝑥𝑖) = 𝑥𝑘 = 𝑢

+ −
𝑢− + 𝑢+ − 1

2
. 

Substituting 𝑥𝑘 = 𝑢
+ −

𝑢−+𝑢+−1

2
 into Eq (27) leads to 

𝑢 = ∑𝑖=1
𝑘  𝑥𝑖 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡(𝑥𝑖) +

𝑢− + 𝑢+ − 1

2
≤ 𝑥𝑘 +

𝑢− + 𝑢+ − 1

2
. 

By rearranging the above equation, we have 

𝑢 ≤ (𝑢+ −
𝑢− + 𝑢+ − 1

2
) +

𝑢− + 𝑢+ − 1

2
= 𝑢+. 

That is to say, 𝑢 ≤ 𝑢+ is established and 0 ≤ 𝑢 ≤ 𝑢+ holds. 

Using the same method, we can prove 0 ≤ 𝑣 ≤ 𝑣+. Thus, it is easy to see 0 ≤ 𝑢 + 𝑣 ≤ 𝑢+ +

𝑣+. Since 0 ≤ 𝑢+ + 𝑣+ ≤ 1 and 0 ≤ 𝑢 + 𝑣 ≤ 1 are now established, Theorem 1 is proved.  

□ 

Remark 1. According to Theorem 1, using the IVEM, the 𝐸𝑣𝑉𝑎𝑙𝑢𝑒 of the membership and 

non-membership intervals of the IVIFV can be obtained, which satisfy 0 ≤ 𝑢 + 𝑣 ≤ 1. By defining 

the hesitation degree as 𝜌 = 1 − 𝑢 − 𝑣, the corresponding IFV can be constructed. Therefore, the 

IVEM based on prospect theory can not only reflect the psychological change process of the 

decision-makers, but also transform the IVIFV into an IFV. 

Corollary 1. For an arbitrary 𝑎 = ([𝑢−, 𝑢+], [𝑣−, 𝑣+]) of the IVIFV, if we have 𝑢𝑎 = [𝑢
−, 𝑢+] and 

𝑣𝑎 = [𝑣
−, 𝑣+], 𝐼𝑉𝐸𝑀(𝑢𝑎) = 𝑢 and 𝐼𝑉𝐸𝑀(𝑣𝑎) = 𝑣 can be obtained by Eq (26). 𝑎𝑖 = (𝑢, 𝑣) is an 

IFV, where 𝑢 and  𝑣  are the membership and non-membership of 𝑎𝑖 , respectively, and the 

hesitation degree is 𝜌 = 1 − 𝑢 − 𝑣. 

Remark 2. For an arbitrary 𝑎 = ([𝑢−, 𝑢+], [𝑣−, 𝑣+]) of the IVIFV, the evaluation values of its 

membership, non-membership, and hesitation are 𝑢, 𝑣, and 𝜌𝐼𝑉, respectively. As can be seen in 

Example 11, 𝑢 + 𝑣 + 𝜌𝐼𝑉 may be greater than 1. 

Example 11. For 𝑎31 = ([0.2,0.3], [0.4,0.5]) , it is possible to get 𝑢𝑎31 = [0.2,0.3] , 𝑣𝑎31 =

[0.4,0.5], and 𝜌𝑎31 = [0.2,0.4]. If the results are rounded to 4 decimal places, 𝐼𝑉𝐸𝑀(𝑢𝑎31) = 𝑢 =
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0.2578 , 𝐼𝑉𝐸𝑀(𝑣𝑎31) = 𝑣 = 0.4578,  and 𝐼𝑉𝐸𝑀(𝜌𝑎31) = 𝜌𝐼𝑉 = 0.3155  are obtained. We then 

have 𝑢 + 𝑣 + 𝜌𝐼𝑉 = 1.0311 > 1 and 𝜌 = 1 − 𝑢 − 𝑣 = 0.1844 < 𝜌𝐼𝑉. 

Example 11 demonstrates that the IFV can be constructed by using the evaluation values 𝑢 and 

𝑣. As Wang suggested [36], this method adjusts the degree of hesitation and enables the construction 

of a new IFV. 

According to Corollary 1, any IVIFV can be transformed into a new IFV score function. 

Consequently, the evaluation value of the IVIFV can be used to develop a new SF. In other words, a 

new SF can be developed by using the membership and non-membership of the IFV. In the practical 

decision-making process, the decision-makers typically prefer options that have the highest positive 

part, and the lowest negative and hesitation parts. If the deviation between the membership and 

non-membership becomes greater and the hesitation value becomes smaller, the corresponding 

alternative is better. According to the above analysis, an IVIFS-SF, 𝑆𝑁𝐸𝑊, based on the sine function 

and cosine function is designed and defined in Definition 14, which is affected by the hesitation. 

Definition 14. Let 𝑎 = ([𝑢−, 𝑢+], [𝑣−, 𝑣+]) be an IVIFV, and 𝑢 and 𝑣 are the evaluation values 

of the interval membership and non-membership obtained by Eqs (27) and (28). The IVIFS-SF of 𝑎 

is defined in Eq (29): 

𝑆𝑁𝐸𝑊 = [sin ((𝑢 − 𝑣)
𝜋

2
) + 1] [cos ((1 − 𝑢 − 𝑣)

𝜋

2
) + 3] − 4,           (29) 

where 𝑢 − 𝑣  is the deviation between the evaluation values of interval membership and 

non-membership. 1 − 𝑢 − 𝑣  represents the degree of hesitation after evaluation. When 𝑢 − 𝑣 

equals 0, as the degree of hesitation decreases, the score increases, indicating a better alternative. For 

convenience, IVIFS-SF is regarded as 𝑆𝑁𝐸𝑊 in this paper. The calculation process is illustrated in 

Example 12. 

Example 12. Suppose 𝑎32 = ([0.25, 0.3], [0.4, 0.6]). First, the membership degree [0.25, 0.3] of 

𝑎5 is translated to [0.475, 0.525] by Eq (25). It is then discretized by Eq (18). Equation (23) is 

used to calculate the weight of each discrete point and Eq (24) is used to calculate the weighted 

average value of the discrete points. Finally, we use Eq (27) to compute the evaluation value, which 

is 𝑢 = 0.2789 for [0.25, 0.3]. Similarly, the evaluation value of the non-membership of 𝑎25 is 

𝑣 = 0.5155. 𝑆𝑁𝑒𝑤 = −1.4858 of 𝑎32 can be obtained by Eq (29). 

For an arbitrary 𝑎 = ([𝑢−, 𝑢+], [𝑣−, 𝑣+]) of the IVIFV, it can be seen from Eq (29) that the 

minimum value of 𝑆𝑁𝐸𝑊 is −4 and the maximum value is 4. More specifically, four properties of 

𝑆𝑁𝐸𝑊 can be given. 

Property 1. −4 ≤ 𝑆𝑁𝐸𝑊(𝑎) ≤ 4. 

Property 2. If 𝑎 = ([0,0], [1,1]), then 𝑢 = 0, 𝑣 = 1, and 𝑆𝑁𝐸𝑊(𝑎) = −4. 

Property 3. If 𝑎 = ([1,1], [0,0]), then 𝑢 = 1, 𝑣 = 0, and 𝑆𝑁𝐸𝑊(𝑎) = 4. 

Property 4. If 𝑎 = ([0.5,0.5], [0.5,0.5]), then 𝑢 = 0.5, 𝑣 = 0.5, and 𝑆𝑁𝐸𝑊(𝑎) = 0. 

Using the IVEM, the evaluations of [0,0], [1,1], and [0.5,0.5] are 0, 1, and 0.5, respectively. 

For Properties 2–4, the corresponding score values can be obtained by substituting the evaluation of 

𝑢 and 𝑣 into Eq (29). These results are easy to deduce and prove, so their proofs have been omitted. 

The proof of Property 1 is as follows. 
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Proof. The partial derivative of 𝑆𝑁𝐸𝑊 with respect to 𝑢 is calculated to prove the monotonicity of 

𝑆𝑁𝐸𝑊 for the evaluation value 𝑢 of interval membership. 

∂𝑆𝑁𝐸𝑊(𝑎)

∂𝑢
=
∂ [sin (

𝜋(𝑢 − 𝑣)
2

) + 1] [cos (
𝜋(1 − 𝑢 − 𝑣)

2
) + 3]

∂𝑢
 

=
𝜋

2
[cos (

𝜋(𝑢 − 𝑣)

2
)(cos (

𝜋(1 − 𝑢 − 𝑣)

2
) + 3) + (sin (

𝜋(𝑢 − 𝑣)

2
) + 1) sin (

𝜋(1 − 𝑢 − 𝑣)

2
)]. 

According to Theorem 1, we have 0 ≤ 𝑢 ≤ 1, 0 ≤ 𝑣 ≤ 1, and 0 ≤ 𝑢 + 𝑣 ≤ 1, which indicates 

cos (
𝜋(𝑢−𝑣)

2
) ≥ 0, (cos (

𝜋(1−𝑢−𝑣)

2
) + 3) ≥ 0, (sin (

𝜋(𝑢−𝑣)

2
) + 1) ≥ 0, and sin (

𝜋(1−𝑢−𝑣)

2
) ≥ 0. 

Hence, we have 

∂𝑆𝑁𝐸𝑊(𝑎)

∂𝑢
=

𝜋

2
[cos (

𝜋(𝑢−𝑣)

2
) (cos (

𝜋(1−𝑢−𝑣)

2
) + 3) + (sin (

𝜋(𝑢−𝑣)

2
) + 1) sin (

𝜋(1−𝑢−𝑣)

2
)] ≥ 0. 

Next, we calculate the partial derivative of 𝑆𝑁𝐸𝑊(𝑎) with respect to the non-membership degree 

evaluation value 𝑣. The following results can be obtained: 

∂𝑆𝑁𝐸𝑊(𝑎)

∂𝑣
=
∂ [sin (

𝜋(𝑢 − 𝑣)
2

) + 1] [cos (
𝜋(1 − 𝑢 − 𝑣)

2
) + 3]

∂𝑣
 

= −
𝜋

2
[cos (

𝜋(𝑢 − 𝑣)

2
)(cos (

𝜋(1 − 𝑢 − 𝑣)

2
) + 3) − (1 + sin (

𝜋(𝑢 − 𝑣)

2
)) cos (

𝜋(𝑢 + 𝑣)

2
)] 

= −
𝜋

2
[cos (

𝜋(𝑢 − 𝑣)

2
) cos (

𝜋(1 − 𝑢 − 𝑣)

2
) + 3cos (

𝜋(𝑢 − 𝑣)

2
) − cos (

𝜋(𝑢 + 𝑣)

2
) 

−sin (
𝜋(𝑢−𝑣)

2
) cos (

𝜋(𝑢+𝑣)

2
)] 

= −
𝜋

2
[sin(π𝑣) + 3 cos (

π(𝑢 − 𝑣)

2
) − cos (

π(𝑢 + 𝑣)

2
)] 

= −
𝜋

2
[sin(π𝑣) + 2 cos (

π(𝑢 − 𝑣)

2
) + cos (

π(𝑢 − 𝑣)

2
) − cos (

π(𝑢 + 𝑣)

2
)] 

= −
𝜋

2
[sin(π𝑣) + 2 cos (

π(𝑢−𝑣)

2
) + 2sin

π𝑣

2
sin

π𝑢

2
]. 

According to Theorem 1, we have 0 ≤ 𝑢 ≤ 1, 0 ≤ 𝑣 ≤ 1, and 0 ≤ 𝑢 + 𝑣 ≤ 1, which indicates 

sin(π𝑣) ≥ 0,  2sin
π𝑣

2
sin

π𝑢

2
≥ 0 , and −1 ≤ 𝑢 − 𝑣 ≤ 1 . From that it is possible to get 

2cos (
π(𝑢−𝑣)

2
) ≥ 0. 

By applying Theorem 1 again, each sub-item in the above equation is greater than 0. Thus, the 

partial derivative of 𝑆𝑁𝐸𝑊(𝑎) with respect to 𝑣 is less than 0, that is, 

∂𝑆𝑁𝐸𝑊(𝑎)

∂𝑣
 

= −
𝜋

2
[cos (

𝜋(𝑢 − 𝑣)

2
)(cos (

𝜋(1 − 𝑢 − 𝑣)

2
) + 3) − (sin (

𝜋(𝑣 − 𝑢)

2
) + 1) sin (

𝜋(1 − 𝑢 − 𝑣)

2
)] ≤ 0. 

Given the monotonicity of 𝑆𝑁𝐸𝑊(𝑎) with respect to the evaluation values 𝑢 and 𝑣, Definition 1 

and Theorem 1, when 𝑎 = ([0,0], [1,1]), 𝑢 = 0, and 𝑣 = 1, 𝑆𝑁𝐸𝑊(𝑎) reaches the minimum value 

of −4. When 𝑎 = ([1,1], [0,0]), 𝑢 = 0, and 𝑣 = 1, 𝑆𝑁𝐸𝑊(𝑎) reaches the maximum value of 4. 

Thus, for an arbitrary 𝑎, the property −4 ≤ 𝑆𝑁𝐸𝑊(𝑎) ≤ 4 holds. 

□ 
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4. Comparison analysis and sensitivity analysis of the IVIFS-SF 

Assessment methods of SFs are introduced in Section 4.1. The IVISF-SF is compared with 

other SFs in Section 4.2. Sensitivity analysis of the IVIFS-SF is presented in Section 4.3. For the 

prospect theory that we will use in this paper, Kahneman and Tversky [30] have obtained the values 

of the empirical parameters (𝛼 = 0.88, 𝛾 = 0.61, 𝛽 = 0.88, 𝜃 = 2.25, and 𝛿 = 0.69). 

4.1. Assessment methods for SFs 

To assist researchers in selecting or developing more suitable SFs, we will construct a method 

for evaluating them. This approach includes introducing pass rate and variance as criteria for 

assessing SFs. Two synthetic datasets are generated for comparative analysis. 

4.1.1. SF pass rate 

Each of the SFs was used to calculate the scores of the IVIFVs in the dataset. The ratio between 

the number of IVIFVs that can be distinguished from each other and the total number of IVIFVs in 

the dataset is defined as the pass rate 𝑃, as shown in Eq (30). 

𝑃 =
diff𝑁𝑢𝑚𝑏𝑒𝑟(𝐼𝑉𝐼𝐹𝑉𝑠)

Total(IVIFVs)
,                             (30) 

where 𝑑𝑖𝑓𝑓𝑁𝑢𝑚𝑏𝑒𝑟(𝐼𝑉𝐼𝐹𝑉𝑠) is the number of IVIFVs with different scores in the dataset and 

𝑇𝑜𝑡𝑎𝑙(𝐼𝑉𝐼𝐹𝑉𝑠) is the total number of IVIFVs in the dataset. For some cases, IVIFVs cannot be 

counted into 𝑑𝑖𝑓𝑓𝑁𝑢𝑚𝑏𝑒𝑟(𝐼𝑉𝐼𝐹𝑉𝑠) and the scores cannot be calculated by the SF because the 

denominator is 0 [38]. 

4.1.2. SF variance 

For different score functions, when the pass rate is the same, the greater the difference of scores 

in the actual application, the easier it is for decision-makers to distinguish. Therefore, on the basis of 

the pass rate, we introduce the variance of the score function to further measure the difference 

between score functions. Considering the different ranges of the SFs, the score values were 

normalized in Eq (31), where S(𝑎𝑖) is the score of any IVIFV 𝑎𝑖 in the dataset, and 𝑆𝑐𝑜𝑟𝑒𝑀𝑎𝑥 and 

𝑆𝑐𝑜𝑟𝑒𝑀𝑖𝑛 are the maximum and minimum scores in the dataset: 

𝑆𝑐𝑜𝑟𝑒Norm
𝑖 =

S(𝑎𝑖)-ScoreMin

ScoreMax−ScoreMin
.                         (31) 

Based on 𝑆𝑐𝑜𝑟𝑒Norm
𝑖 , the expected values and the variances of all the IVIFVs’ scores in the 

dataset were calculated by Eqs (32) and (33). 

ScoreNorm
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

∑𝑖=1
𝑛  𝑆𝑐𝑜𝑟𝑒Norm

𝑖

𝑛
,                            (32) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑𝑖=1
𝑛  (𝑆𝑐𝑜𝑟𝑒Norm

𝑖 −ScoreNorm
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

2

𝑛
,                       (33) 
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where 𝑛 is the number of IVIFVs in the dataset. Some IVIFVs were excluded from the variance 

calculation, as their scores cannot be computed by the SF due to a denominator of 0. 

4.1.3. Synthetic dataset 

IVIFVs rounded to two decimal places are widely used in the actual decision-making process. 

Therefore, before calculating the pass rate and variance of the SF, we constructed an IVIFV dataset 

with two decimal places denoted as IVIFDataSet1, such as 𝑎33 = ([0.35,0.45], [0.15,0.55]). This 

gives us a dataset with 4,598,126 IVIFVs. The construction process adopted the exhaustive attack 

method and the algorithm was implemented in the Python programming language. The pseudo-code 

is shown in Algorithm 1, where step = 0.01 ranges from 0 to 1. This process ensures that both the 

membership and non-membership are exhausted and no duplication occurs. 

Algorithm 1. Generate IVIFDataSet1. 

Input: step=0.01 

Output: IVIFDataSet1 

1:  Create DataFrame IVIFDataSet1 

2:  for 𝑢− = 0 → 𝑢− = 1 do 

3:      𝑢−+= 𝑠𝑡𝑒𝑝 

4:      for 𝑢+ = 𝑢− → 𝑢+ = 1 do 

5:          𝑢++= 𝑠𝑡𝑒𝑝 

6:          for 𝑣− = 0 → 𝑣− = 1 do 

7:              𝑣−+= 𝑠𝑡𝑒𝑝 

8:              for  𝑣+ = 𝑣− → 𝑣+ = 1 do 

9:                  𝑣++= 𝑠𝑡𝑒𝑝 

10:                 if  𝑢+ + 𝑣+ ≤ 1  then 

11:                   IVIFDataSet1 append (𝑢−, 𝑢+, 𝑣−, 𝑣+) 

12:                 end if 

13:             end for 

14:          end for 

15:      end for 

16: end for 

17: return IVIFDataSet1 

To systematically evaluate the pass rate and variance of different score functions, we 

constructed a random dataset named IVIFDataSet2. This dataset comprises 10 million randomly 

generated IVIFVs, generated using Algorithm 2. The algorithm operates through the following core 

steps: (1) Generate a batch data (BatchData) containing 1.5 million quadruples (𝑎, 𝑏, 𝑐, 𝑑) with each 

element satisfying 0 ≤ 𝑎, 𝑏, 𝑐, 𝑑 ≤ 1; (2) filter the BatchData to extract quadruples that meet the 

IVIFVs definition, forming a valid batch data (VBatchData); and (3) select IVIFVs from 

VBatchData that are not already present in IVIFDataSet2 and add them to the dataset. This process 

iterates until IVIFDataSet2 reaches its target size of 10 million IVIFVs. Algorithm 2 is shown as 

follows. 
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Algorithm 2. Randomly generate IVIFDataSet2. 

Input: TargetNumber = 10,000,000. 

Output: IVIFDataSet2. 

1. GenerateNumber = 0, BatchData=1,500,000, IVIFDataSet2=Null; 

2: While (GenerateNumber < TargetNumber) do 

3:     Randomly generate BatchData of [a,b,c,d] with 7 decimal places retained; 

4:     Get VBatchData that satisfy the constraints of IVIFVs from BatchData; 

5:     for (i=1; i <= size(VBatchData); i++) do 

6:         if (VBatchData[i] not in IVIFDataSet2 && GenerateNumber < TargetNumber) then 

7:             Add VBatchData[i] to IVIFDataSet2; 

8:             GenerateNumber++; 

9:             end if 

10:         end if 

11:     end for 

12: end while 

13: return IVIFDataSet2; 

4.2. Comparison analysis of the IVIFS-SF 

To validate the effectiveness of the proposed score function in this paper, this section presents a 

comparative analysis using two synthetic datasets and examples present in Section 2.3. The synthetic 

datasets are used to evaluate the general performance and the examples are used to test the extreme 

robustness. 

4.2.1. Comparison analysis on the synthetic dataset 

The pass rates and variances of each score function under three synthetic datasets are shown in 

Figure 5. The greater the variances are, the higher the dispersion of the score values becomes and the 

better the discrimination of the SFs perform. The results demonstrate that the proposed score 

function performed best compared with 𝑆𝑋, 𝑆𝑊𝐶 , 𝑆𝑊𝐿 , 𝑆𝐵, 𝑆𝐺 , 𝑆𝐺𝐿 , 𝑆𝐶𝑇 , 𝑆𝐶𝐷, 𝑆𝐾𝐶 , and 𝑆𝐶𝑌. 

As can be seen from Figure 5, the score function proposed in this paper is reliable and effective. 

The subgraphs (a) and (b) in Figure 5 indicate that 𝑆𝑁𝐸𝑊 can distinguish more IVIFVs than 

𝑆𝑋, 𝑆𝑊𝐶 , 𝑆𝑊𝐿 , 𝑆𝐵 , 𝑆𝐺 , 𝑆𝐺𝐿 , 𝑆𝐶𝑇 , 𝑆𝐶𝐷, 𝑆𝐾𝐶 , and 𝑆𝐶𝑌, reducing the number of indistinguishable IVIFVs 

from 68,972 to 32,186 on IVIFDataSet1 and from 370,000 to 160,000 on IVIFDataSet2. From the 

subgraphs (c) and (d) in Figure 5, 𝑆𝑁𝐸𝑊 achieves enhanced discriminative capability than other SFs 

with higher dispersion of the score values, indicating superior separation performance. From the 

comparative experimental results on the synthetic dataset, the proposed score function is reliable and 

has strong discrimination ability. 
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Figure 5. Comparison results on synthetic datasets. 

4.2.2. Comparison analysis on examples 

It can be seen in Examples 1 to 10 that there are scenarios that cannot be distinguished by the 

SFs given in Section 2.3. This is primarily due to the loss of fuzzy information in the process of 

converting IVIFVs, which can lead to the failure of distinguishing two obviously different IVIFVs. 

At this point in our test, 𝑆𝑋, 𝑆𝑊𝐶 , 𝑆𝑊𝐿 , 𝑆𝐵 , 𝑆𝐺 , 𝑆𝐺𝐿 , 𝑆𝐶𝑇 , 𝑆𝐶𝐷, 𝑆𝐾𝐶 , 𝑆𝐶𝑌,  and 𝑆𝑁𝐸𝑊 were used for 

computing all of the 10 groups of IVIFVs given in Section 2.3. The results are shown in Table 1. 

As show in Table 1, 𝑆𝑁𝐸𝑊  is able to distinguish all 10 groups of IVIFVs. 𝑆𝑋  fails to 

distinguish two groups (𝑎11, 𝑎12, and 𝑎21, 𝑎22), while 𝑆𝑊𝐶, 𝑆𝐵, 𝑆𝐺, and 𝑆𝐺𝐿 fail to distinguish two 

groups. The remaining SFs present the indistinguishability of one group. Thus, in terms of 

distinguishability, 𝑆𝑁𝐸𝑊 outperforms the other compared SFs. 
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Table 1. Comparison of evaluation methods and related score functions. 
IVIF

Vs 
𝑆𝑋 𝑆𝑊𝐶  𝑆𝑊𝐿 𝑆𝐵 𝑆𝐺  𝑆𝐺𝐿 𝑆𝐶𝑇  𝑆𝐶𝐷 𝑆𝐾𝐶  𝑆𝐶𝑌 𝑆𝑁𝐸𝑊 

𝑎11
𝑎12

 𝑎11 = 𝑎12 𝑎11 = 𝑎12 𝑎11 < 𝑎12 𝑎11 > 𝑎12 𝑎11 > 𝑎12 𝑎11 = 𝑎12 𝑎11 > 𝑎12 𝑎11 < 𝑎12 𝑎11 < 𝑎12 𝑎11 > 𝑎12 𝑎11 < 𝑎12 

𝑎13
𝑎14

 𝑎13 > 𝑎14 𝑎13 = 𝑎14 𝑎13 > 𝑎14 𝑎13 > 𝑎14 𝑎13 > 𝑎14 𝑎13 > 𝑎14 𝑎13 > 𝑎14 𝑎13 > 𝑎14 𝑎13 > 𝑎14 𝑎13 > 𝑎14 𝑎13 > 𝑎14 

𝑎15
𝑎16

 𝑎15 > 𝑎16 𝑎15 > 𝑎16 𝑎15 = 𝑎16 𝑎15 < 𝑎16 𝑎15 < 𝑎16 𝑎15 < 𝑎16 𝑎15 < 𝑎16 𝑎15 < 𝑎16 𝑎15 > 𝑎16 𝑎15 < 𝑎16 𝑎15 < 𝑎16 

𝑎17
𝑎18

 𝑎17 < 𝑎18 𝑎17 < 𝑎18 𝑎17 < 𝑎18 𝑎17 = 𝑎18 𝑎17 = 𝑎18 𝑎17 < 𝑎18 𝑎17 < 𝑎18 𝑎17 < 𝑎18 𝑎17 < 𝑎18 𝑎17 < 𝑎18 𝑎17 < 𝑎18 

𝑎19
𝑎20

 𝑎19 < 𝑎20 𝑎19 < 𝑎20 𝑎19 < 𝑎20 𝑎19 = 𝑎20 𝑎19 = 𝑎20 𝑎19 < 𝑎20 𝑎19 < 𝑎20 𝑎19 < 𝑎20 𝑎19 < 𝑎20 𝑎19 < 𝑎20 𝑎19 < 𝑎20 

𝑎21
𝑎22

 𝑎21 = 𝑎22 𝑎21 < 𝑎22 𝑎21 > 𝑎22 𝑎21 < 𝑎22 𝑎21 < 𝑎22 𝑎21 = 𝑎22 𝑎21 < 𝑎22 𝑎21 > 𝑎22 𝑎21 > 𝑎22 𝑎21 < 𝑎22 𝑎21 > 𝑎22 

𝑎23
𝑎24

 𝑎23 < 𝑎24 𝑎23 < 𝑎24 𝑎23 < 𝑎24 𝑎23 > 𝑎24 𝑎23 > 𝑎24 𝑎23 > 𝑎24 𝑎23 = 𝑎24 𝑎23 < 𝑎24 𝑎23 < 𝑎24 𝑎23 < 𝑎24 𝑎23 < 𝑎24 

𝑎25
𝑎26

 𝑎25 > 𝑎26 𝑎25 < 𝑎26 𝑎25 > 𝑎26 𝑎25 > 𝑎26 𝑎25 > 𝑎26 𝑎25 < 𝑎26 𝑎25 > 𝑎26 𝑎25 = 𝑎26 𝑎25 > 𝑎26 𝑎25 > 𝑎26 𝑎25 > 𝑎26 

𝑎27
𝑎28

 𝑎27 > 𝑎28 𝑎27 > 𝑎28 𝑎27 > 𝑎28 𝑎27 > 𝑎28 𝑎27 > 𝑎28 𝑎27 > 𝑎28 𝑎27 > 𝑎28 𝑎27 > 𝑎28 𝑎27 = 𝑎28 𝑎27 > 𝑎28 𝑎27 > 𝑎28 

𝑎29
𝑎30

 𝑎29 < 𝑎30 𝑎29 > 𝑎30 𝑎29 < 𝑎30 𝑎29 > 𝑎30 𝑎29 > 𝑎30 𝑎29 > 𝑎30 𝑎29 > 𝑎30 𝑎29 > 𝑎30 𝑎29 > 𝑎30 𝑎29 = 𝑎30 𝑎29 > 𝑎30 

4.3. Sensitivity analysis of the IVIFS-SF 

4.3.1. Sensitivity analysis of the IVEM 

For the prospect theory that we will use in this paper, Kahneman and Tversky [30] have 

obtained the values of the empirical parameters (𝛼 = 0.88, 𝛾 = 0.61, 𝛽 = 0.88, 𝜃 = 2.25, and 𝛿 =

0.69). We will then discuss the reference point and the discrete point numbers of the IVEM. 

(1) Impact on the reference point 

When the reference point shifts, the impact of prospect value of the interval, weight of the 

discretized points, and 𝐸𝑣𝑉𝑎𝑙𝑢𝑒 of the interval will be analyzed, respectively. 

We compare how the selection of different reference points influences the change in prospect 

value of the discretized points. Figure 6 presents one of the experimental results, where the randomly 

generated data was 𝑐1 = [0.2, 0.6] and was discretized into 21 points. 

In Figure 6, the value lines for all of the reference points are overlapped, which means that 

when the reference point ranges from 0 to 0.9, the prospect value of each discrete point is unchanged. 

Therefore, the changes in the reference point do not affect the prospect value. 

Using the same setting, we compare the change in weight of the discretized points when 

different reference points are selected. The corresponding weight change of each discrete point in the 

interval [0.2, 0.6] is shown in Figure 7. 

Similarly, in Figure 7, the weight change lines of the reference points are overlapped, which 

means that when the reference point ranges from 0 to 0.9, the weight of each discrete point is 

unchanged. Therefore, the change of reference point does not affect the weight. 

We consider an arbitrary interval [𝑎, 𝑏] and compare the changing status of the 𝐸𝑣𝑉𝑎𝑙𝑢𝑒 of 

each interval when selecting different reference points. An experiment was selected with intervals 

𝐶1 = [0.2, 0.6], 𝐶2 = [0.3, 0.5] , 𝐶3 = [0.15, 0.8], 𝐶4 = [0.3, 0.7] , and 𝐶5 = [0.1, 0.85] , which 

were discretized into 21 points. The results are shown in Figure 8. 
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Figure 6. Change in prospect value for different reference points. 

 

Figure 7. Change in weight for different reference points. 

 

Figure 8. Change in 𝐸𝑣𝑉𝑎𝑙𝑢𝑒 for different reference points. 
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From Figure 8, the change in the reference point has no impact on the interval 𝐸𝑣𝑉𝑎𝑙𝑢𝑒. Thus, 

the change in the reference point does not affect the prospect value, the interval 𝐸𝑣𝑉𝑎𝑙𝑢𝑒, or the 

weight of the discrete point. 

(2) Impact on the prospect value of discrete points 

We took a random interval [0.4,0.8], discretized it into 𝑘 points, and analyzed the change in the 

prospect value when varying the number of discrete points. We used the interval [0.4,0.8]. The 

change in prospect value is shown in Figure 9. 

 

Figure 9. Change in prospect value for different discrete point numbers. 

It can be seen from Figure 9 that with the increase in the number of discrete points k, the 

function curve gradually becomes smooth. The description of each discrete point on the interval 

[0.4,0.8] becomes more detailed, which mimics the true attitude of the decision-makers. 

The experiment conducted 100 independent trials, with each trial randomly generating an 

interval. We then took an arbitrary interval and examined the change in the 𝐸𝑣𝑉𝑎𝑙𝑢𝑒 for different 𝑘. 

For the selected interval [0.45,0.8], the change is shown in Figure 10. 

 

Figure 10. Change in interval 𝐸𝑣𝑉𝑎𝑙𝑢𝑒 for different discrete point numbers. 

As can be seen from Figure 10, the 𝐸𝑣𝑉𝑎𝑙𝑢𝑒 decreases with the increase of 𝑘. When 𝑘 < 20, 

the 𝐸𝑣𝑉𝑎𝑙𝑢𝑒 decreases, but it changes gently and gradually converges around 0.645 when 𝑘 ≥
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20. The 𝐸𝑣𝑉𝑎𝑙𝑢𝑒 is always greater than the midpoint 0.625 of the interval [0.45,0.8], which 

further explains that the midpoint of the interval cannot reflect the fuzziness of the interval. 

4.3.2. Sensitivity analysis of the IVIFS-SF 

In this section, the reference point 𝑥∗ and the number of discrete points 𝑘 are investigated for 

𝑆𝑁𝐸𝑊 by using the settings 𝛼 = 0.88, 𝛾 = 0.61, 𝛽 = 0.88, 𝜃 = 2.25, and 𝛿 = 0.69. 

(1) Influence of 𝒙∗ on 𝑺𝑵𝑬𝑾 

This experiment was repeated 100 times. This led to the random generation of 15 IVIFVs for 

each experiment, noted as 𝑏1, 𝑏2, … , 𝑏15 . The membership and non-membership intervals of 

𝑏1, 𝑏2, … , 𝑏15 were discretized to 𝑘 = 21 points. When 𝑥∗ (reference point) ranged from 0 to 1, the 

scores of 𝑆𝑁𝐸𝑊 were observed to be stable in each experiment. This means that the change of the 

reference point does not affect the score of each 𝑏𝑖 (i = 1, 2, …, 15). Figure 11 presents the results 

from one of the experiment iterations, where the randomly generated data is 

𝑏1 = ([0.04, 0.16], [0.09, 0.40]), 𝑏2 = ([0.02, 0.02], [0.56, 0.71]), 

𝑏3 = ([0.12, 0.17], [0.15, 0.39]), 𝑏4 = ([0.12, 0.25], [0.41, 0.49]), 

𝑏5 = ([0.22, 0.31], [0.20, 0.36]), 𝑏6 = ([0.01, 0.62], [0.33, 0.37]), 

𝑏7 = ([0.00, 0.56], [0.19, 0.23]), 𝑏8 = ([0.21, 0.26], [0.02, 0.02]), 

𝑏9 = ([0.17, 0.24], [0.11, 0.67]), 𝑏10 = ([0.16, 0.23], [0.01, 0.39]), 

𝑏11 = ([0.28, 0.42], [0.19, 0.24]), 𝑏12 = ([0.26, 0.66], [0.03, 0.19]), 

𝑏13 = ([0.09, 0.20], [0.57, 0.60]), 𝑏14 = ([0.32, 0.51], [0.41, 0.41]), 

𝑏15 = ([0.21, 0.55], [0.09, 0.23]). 

 

Figure 11. Scores for different reference points. 

(2) Influence of parameter 𝒌 on 𝑺𝑵𝑬𝑾 

Similarly, we ran another 100 experiments with 15 IVIFVs (𝑑1, 𝑑2, … , 𝑑15) in each experiment 

by letting 𝑥∗ = 0.5 and varying 𝑘 from 3 to 30. In one of the experiments, when 3 ≤ 𝑘 ≤ 10, the 

scores of 𝑑𝑖 (𝑖 = 1, 2, … , 15) fluctuated greatly and seemed to cross over. When 𝑘 > 15, there 

were almost no fluctuations in the scores and the order of the scores did not change. In this sense, it 
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seemed better to take 𝑘 > 15. We in fact used 𝑘 = 21 for all the experiments in this paper. 

Figure 12 presents the results from another of the experiment iterations: 

𝑑1 = ([0.38, 0.69], [0.07, 0.08]), 𝑑2 = ([0.05, 0.09], [0.59, 0.62]), 

𝑑3 = ([0.57, 0.79], [0.02, 0.11]), 𝑑4 = ([0.35, 0.38], [0.34, 0.34]), 

𝑑5 = ([0.25, 0.32], [0.35, 0.42]), 𝑑6 = ([0.19, 0.37], [0.39, 0.60]), 

𝑑7 = ([0.04, 0.58], [0.24, 0.41]), 𝑑8 = ([0.03, 0.31], [0.63, 0.66]), 

𝑑9 = ([0.18, 0.49], [0.19, 0.27]), 𝑑10 = ([0.01, 0.02], [0.52, 0.94]), 

𝑑11 = ([0.18, 0.20], [0.32, 0.32]), 𝑑12 = ([0.14, 0.19], [0.65, 0.65]) 

𝑑13 = ([0.02, 0.23], [0.19, 0.52]), 𝑑14 = ([0.25, 0.85], [0.01, 0.08]), 

𝑑15 = ([0.06, 0.06], [0.24, 0.47]). 

 

Figure 12. Scores for different numbers of discrete points. 

From Figure 12, it is possible to see that 𝑆𝑁𝐸𝑊(𝑑7) >  𝑆𝑁𝐸𝑊(𝑑4)  and 𝑆𝑁𝐸𝑊(𝑑14) >

𝑆𝑁𝐸𝑊(𝑑3) when 𝑘 ≤ 7, but 𝑆𝑁𝐸𝑊(𝑑7) <  𝑆𝑁𝐸𝑊(𝑑4) and 𝑆𝑁𝐸𝑊(𝑑14) <  𝑆𝑁𝐸𝑊(𝑑3) when 𝑘 > 7. 

5. Cases 

Two cases are presented for comparison and analysis of the proposed IVIFS-SF in this section. 

An alternative sensitivity analysis of the IVIFS-SF is also provided in Case 1. For the prospect 

theory that we will use in this paper, Kahneman and Tversky [30] have obtained the values of the 

empirical parameters (𝛼 = 0.88, 𝛾 = 0.61, 𝛽 = 0.88, 𝜃 = 2.25, and 𝛿 = 0.69). 

5.1. Case 1 

The problem of cadre selection [9] is used to verify the proposed SF in Case 1. In the problem, 

there are five candidates 𝐴𝑖 (𝑖 = 1, 2,⋯ , 5)  and six assessment indices 𝐺𝑗 (𝑗 = 1, 2,⋯ , 6) 

including ideology and morality (𝐺1), work attitude (𝐺2), work style (𝐺3), cultural level and 

knowledge structure (𝐺4), leadership ability (𝐺5), and pioneering ability (𝐺6). The index weight 

vector is 𝜔 = (0.20,0.10,0.25,0.10,0.15,0.20)𝑇. As a result of the consultation with the masses and 

their subsequent recommendations, the five candidates are evaluated according to the 
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above-mentioned six indices. This is then followed by statistical processing. Specifically, there are 

four steps necessary to rank the candidates. 

Step 1. After the normalization [9], the decision matrix 𝐷 of the IVIFVs is obtained. 

([0.2.0.3],[0.4,0.5]), ([0.6,0.7],[0.2.0.3]), ([0.4,0.5],[0.2.0.4]), ([0.7,0.8],[0.1,0.2]), ([0.1,0.3],[0.5,0.6]), ([0.5,0.7],[0.2,0.3])

([0.6.0.7],[0.2.0.3]), ([0.5,0.6],[0.1.0.3]), ([0.6.0.7],[0.2.0.3]), (

D =

[0.6.0.7],[0.1,0.2]), ([0.3,0.4],[0.5,0.6]), ([0.4,0.7],[0.1,0.2])

([0.4,0.5],[0.3.0.4]), ([0.7,0.8],[0.1,0.2]), ([0.5,0.6],[0.3,0.4]), ([0.6,0.7],[0.1,0.3]), ([0.4,0.5],[0.3,0.4]), ([0.3,0.5],[0.1,0.3])

([0.6.0.7],[0.2,0.3]), ([0.5,0.7],[0.1,0.3]), ([0.7,0.8],[0.1,0.2]), ([0.3,0.4],[0.1,0.2]), ([0.5,0.6],[0.1,0.3]), ([0.7,0.8],[0.1,0.2])

([0.5,0.6],[0.3,0.4]), ([0.3,0.4],[0.3,0.5]), ([0.6,0.7],[0.1,0.3]), ([0.6,0.8],[0.1,0.2]), ([0.6,0.7],[0.2,0.3]), ([0.5,0.6],[0.2,0.4])

 
 
 
 
 
 
 
 

. 

Step 2. The IIFWA [9] operator is used to aggregate the information. The evaluation value of the 

corresponding candidate 𝐴𝑖, 𝑟𝑖 (𝑖 = 1, 2,⋯ , 5), can be then obtained: 

𝑟1 = ([0.4165,0.5597], [0.2459,0.3804]), 𝑟2 = ([0.5176,0.6574], [0.1739,0.2947]), 

𝑟3 = ([0.4703,0.5900], [0.1933,0.3424]), 𝑟4 = ([0.6070,0.7203], [0.1149,0.2400]), 

and 

𝑟5 = ([0.5375,0.6536], [0.1772,0.3402]). 

Step 3. 𝑟𝑖  is used to calculate 𝑆𝑋 , 𝑆𝑊𝐶 , 𝑆𝑊𝐿 , 𝑆𝐵 , 𝑆𝐺 , 𝑆𝐺𝐿 , 𝑆𝐶𝑇 , 𝑆𝐶𝐷 , 𝑆𝐾𝐶 , 𝑆𝐶𝑌  and 𝑆𝑁𝑒𝑤  is 

denoted as (𝑖 = 1, 2,⋯ , 5) as shown in Table 2. 

Table 2. Comprehensive index scores of candidates. 

Score 𝑆(𝑟1) 𝑆(𝑟2) 𝑆(𝑟3) 𝑆(𝑟4) 𝑆(𝑟5) Ranking result 

𝑆𝑋 0.1749 0.3532 0.2623 0.4862 0.3369 A4 > A2 > A5 > A3 > A1 

𝑆𝑊𝐶 0.0289 0.1831 0.1021 0.3087 0.1686 A4 > A2 > A5 > A3 > A1 

𝑆𝑊𝐿 0.0392 0.0862 0.0577 0.1468 0.0814 A4 > A2 > A5 > A3 > A1 

𝑆𝐵 0.5752 0.6831 0.6292 0.7624 0.6743 A4 > A2 > A5 > A3 > A1 

𝑆𝐺 0.5645 0.6702 0.6174 0.7483 0.6593 A4 > A2 > A5 > A3 > A1 

𝑆𝐺𝐿 0.9937 1.2083 1.0815 1.4032 1.2223 A4 > A5 > A2 > A3 > A1 

𝑆𝐶𝑇 1.5245 1.6395 1.5815 1.7202 1.6305 A4 > A2 > A5 > A3 > A1 

𝑆𝐶𝐷 3.7408 4.0745 3.9054 4.3032 4.0494 A4 > A2 > A5 > A3 > A1 

𝑆𝐾𝐶 0.2060 0.4112 0.3062 0.5565 0.3820 A4 > A2 > A5 > A3 > A1 

𝑆𝐶𝑌 4.6913 5.2011 4.9330 5.6290 5.1636 A4 > A2 > A5 > A3 > A1 

𝑺𝑵𝑬𝑾 1.0405 2.0680 1.5327 2.7213 1.9710 𝐀𝟒 > 𝐀𝟐 > 𝐀𝟓 > 𝐀𝟑 > 𝐀𝟏 

Step 4. Candidates are ranked according to the 𝑆(𝑟𝑖). 

As can be seen from Table 2, only the ranking of 𝑆𝐺𝐿 is slightly different from the others, while 

the remaining 10 SFs give a consistent ranking. The results verify that 𝑆𝑁𝑒𝑤 is accurate. 

The 11 groups of scores were normalized by Eq (31) to calculate the variances indicated by Eq 

(33). The results are shown in Table 3 and Figure 13. 

As can be seen from Table 3, the normalized 𝑟4 of 𝑆𝑁𝐸𝑊 has the second highest score and the 

largest variance, which makes it easier for 𝑆𝑁𝐸𝑊 to distinguish the differences among alternatives. 

𝑆𝑁𝐸𝑊 thus has better applicability than the other SFs. 
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Table 3. Normalized scores and variances. 

Score 𝑆(𝑟1) 𝑆(𝑟2) 𝑆(𝑟3) 𝑆(𝑟4) 𝑆(𝑟5) Variance 

𝑆𝑋 0.5875 0.6766 0.6312 0.7431 0.6684 0.0027 

𝑆𝑊𝐶 0.5145 0.5916 0.5510 0.6543 0.5843 0.0022 

𝑆𝑊𝐿 0.0392 0.0862 0.0577 0.1468 0.0814 0.0013 

𝑆𝐵 0.5752 0.6831 0.6292 0.7624 0.6743 0.0038 

𝑆𝐺 0.5645 0.6702 0.6174 0.7483 0.6593 0.0037 

𝑆𝐺𝐿 0.2663 0.3576 0.3036 0.4405 0.3635 0.0035 

𝑆𝐶𝑇 0.7623 0.8197 0.7908 0.8601 0.8152 0.0011 

𝑆𝐶𝐷 0.6852 0.7686 0.7264 0.8258 0.7624 0.0022 

𝑆𝐾𝐶 0.6030 0.7056 0.6531 0.7783 0.6910 0.0034 

𝑆𝐶𝑌 0.5273 0.6002 0.5619 0.6613 0.5948 0.0020 

𝑺𝑵𝑬𝑾 0.6301 0.7585 0.6916 0.8402 0.7464 0.0049 

 

Figure 13. Comparison of normalized scores and variances. 

As can be seen from Figure 13, the variance of 𝑆𝑁𝑒𝑤 is the largest, meaning that the dispersion 

degree of the candidates (or alternatives) is also the largest. The variances of 𝑆𝐵, 𝑆𝐺 , and 𝑆𝐺𝐿 are 

also relatively high. The score difference between 𝑟2 and 𝑟5 is relatively small, which may explain 

the ranking difference between 𝑆𝐺𝐿 and the other SFs. 

In order to compare the deviation of each SF still further, each of the 11 groups of scores based 

on the normalized data was sorted from the best (No. 1) to the worst (No. 5). The deviation of the 

scores between the two neighboring rankings and the averages between them were calculated and 

given in Table 4. 

As can be seen from Table 4, both the average deviation and the individual deviation of 𝑆𝑁𝐸𝑊 

are the largest amongst all the SFs. 𝑆𝑁𝐸𝑊 makes it easier to distinguish each alternative and thus 

facilitates the work of the decision-makers, a conclusion also confirmed by Figure 14. 
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Table 4. Normalized deviation sequence of comprehensive indices. 

Score 
S(No. 4)

− S(No. 5) 

S(No. 3)

− S(No. 4) 

S(No. 2)

− S(No. 3) 

S(No. 1)

− S(No. 2) 
Average value of the deviation 

𝑆𝑋 0.0437 0.0373 0.0082 0.0665 0.0389 

𝑆𝑊𝐶 0.0366 0.0332 0.0073 0.0628 0.0350 

𝑆𝑊𝐿 0.0186 0.0237 0.0048 0.0606 0.0269 

𝑆𝐵 0.0540 0.0450 0.0088 0.0793 0.0468 

𝑆𝐺 0.0529 0.0420 0.0109 0.0781 0.0460 

𝑆𝐺𝐿 0.0373 0.0540 0.0060 0.0769 0.0436 

𝑆𝐶𝑇 0.0285 0.0245 0.0045 0.0404 0.0245 

𝑆𝐶𝐷 0.0411 0.0360 0.0063 0.0572 0.0352 

𝑆𝐾𝐶 0.0501 0.0379 0.0146 0.0727 0.0438 

𝑆𝐶𝑌 0.0345 0.0329 0.0053 0.0611 0.0334 

𝑺𝑵𝑬𝑾 0.0615 0.0548 0.0121 0.0817 0.0525 

 

Figure 14. Sequence deviation of normalized comprehensive indices. 

5.2. Case 2 

To further validate the effectiveness of the score function proposed in this paper, we will 

compare and analyze it with Chen's method [19]. Chen [19] outlined an IVIFV decision-making 

matrix 𝐴 = ([𝑢𝑖𝑗
− , 𝑢𝑖𝑗

+], [𝑣𝑖𝑗
− , 𝑣𝑖𝑗

+])
3×3

 (see Example 5.4 in [19]) with three alternatives 𝑟1, 𝑟2, and 𝑟3. 

For each alternative, there are three attributes, 𝑔1, 𝑔2, and 𝑔3, and their weights are 𝑊1, 𝑊2, and 

𝑊3. The specifications are 

𝐴 = (

([0.30,0.30], [0.10,0.10]), ([0.60,0.60], [0.25,0.25]), ([0.80,0.80], [0.20,0.20])

([0.20,0.20], [0.15,0.15]), ([0.68,0.68], [0.20,0.20]), ([0.45,0.45], [0.50,0.50])

([0.20,0.20], [0.45,0.45]), ([0.70,0.70], [0.05,0.05]), ([0.60,0.60], [0.30,0.30])

), 

𝑊1 = ([0.25,0.25], [0.25,0.25]), 𝑊2 = ([0.35,0.35], [0.40,0.40]), 

and 
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𝑊3 = ([0.30,0.30], [0.65,0.65]). 

In [7], the scores of the alternatives are 𝑆𝐶𝑌(𝑟1) = 19.909, 𝑆𝐶𝑌(𝑟2) = 18.586, and 𝑆𝐶𝑌(𝑟3) =

19.176, and the ranking result is 𝑟1 ≻ 𝑟3 ≻ 𝑟2. 

We replaced 𝑆𝐶𝑌  with 𝑆𝑁𝐸𝑊  without changing the calculation steps, which are indicated 

below. 

Step 1. 𝑊𝑖 is calculated by 𝑆𝑁𝐸𝑊 and 𝑊𝑖̃ (𝑖 = 1, 2, 3) is normalized by Eq (34). 

By calculating 𝑊𝑖, we can get the real number weights 𝑊𝑖̃: 

𝑊1̃ = −0.293，𝑊2̃ = −0.384，𝑊3̃ = −2.091. 

After the normalization of 𝑊𝑖̃, we have 𝑊1
̅̅ ̅̅ = 0.106,𝑊2

̅̅ ̅̅ =  0.139,𝑊3
̅̅ ̅̅ =  0.755, and 

𝑊𝑗̅̅ ̅ =
𝑊𝑗̃

∑𝑙=1
3 𝑊𝑗̃  

.                                (34) 

Step 2. The weighted decision-making matrix 𝐷 = (𝑑𝑖𝑗̃)3×3 is calculated by the power operator 

given by Chen [19]: 

𝑑𝑖𝑗̃ = ([𝑢𝑖𝑗
−𝑊𝑗̅̅ ̅̅ , 𝑢𝑖𝑗

+𝑊𝑗̅̅ ̅̅ ], [1 − (1 − 𝑣𝑖𝑗
−)𝑊𝑗̅̅ ̅̅ , 1 − (1 − 𝑣𝑖𝑗

+)𝑊𝑗̅̅ ̅̅ ]).              (35) 

The result is 

𝐷 =

(

([0.880,0.880], [0.011,0.011]), ([0.932,0.932], [0.039,0.039]), ([0.845,0.845], [0.155,0.155])

([0.843,0.843], [0.017,0.017]), ([0.948,0.948], [0.030,0.030]), ([0.547,0.547], [0.408,0.408])
([0.843,0.843]. [0.061,0.061]), ([0.952,0.952], [0.007,0.007]), ([0.680,0.680], [0.236,0.236])

). 

Step 3. The score of each element in 𝐷 is calculated and cost is turned into benefit in matrix 𝐷: 

𝑑𝑖𝑗̅̅ ̅̅ = {
𝑆𝑁𝐸𝑊(𝑑𝑖𝑗̃), 𝑖𝑓 𝐺𝑗  𝑖𝑠 𝑎 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 − 𝑡𝑦𝑝𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒,

9 − 𝑆𝑁𝐸𝑊(𝑑𝑖𝑗̃), 𝑖𝑓 𝐺𝑗  𝑖𝑠 𝑎 𝑐𝑜𝑠𝑡 − 𝑡𝑦𝑝𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒.
               (36) 

The score of each element in 𝐷 given by 𝑆𝑁𝐸𝑊 is 

𝑆𝑁𝐸𝑊(𝑑11̃) = 3.887, 𝑆𝑁𝐸𝑊(𝑑12̃) = 3.941, 𝑆𝑁𝐸𝑊(𝑑13̃) = 3.534, 

𝑆𝑁𝐸𝑊(𝑑21̃) = 3.805, 𝑆𝑁𝐸𝑊(𝑑22̃) = 3.965, 𝑆𝑁𝐸𝑊(𝑑23̃) = 0.866, 

𝑆𝑁𝐸𝑊(𝑑31̃) = 3.746, 𝑆𝑁𝐸𝑊(𝑑32̃) = 3.981, 𝑆𝑁𝐸𝑊(𝑑33̃) = 2.553. 

The normalized matrix is 

𝑀 = (𝑑𝑖𝑗̅̅ ̅̅ )3×3 = (
3.887, 3.941, 3.534
3.805, 3.965, 0.866
3.746, 3.981, 2.553

). 

Step 4. The score of alternatives is calculated in Eq (37): 

𝑆𝐶(𝑟𝑖) = ∑ 𝑑𝑖𝑗̅̅ ̅̅
3
𝑗=1 .                                (37) 
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The results are 

𝑆𝑁𝐸𝑊(𝑟1) = 11.363, 𝑆𝑁𝐸𝑊(𝑟2) = 8.636, and 𝑆𝑁𝐸𝑊(𝑟3) = 10.28. 

It is easy to see that 𝑆𝑁𝐸𝑊(𝑟1) > 𝑆𝑁𝐸𝑊(𝑟3) > 𝑆𝑁𝐸𝑊(𝑟2). 

Step 5. The ranking result of alternatives is obtained. 

According to the score of alternatives, the ranking result is 𝑟1 ≻ 𝑟3 ≻ 𝑟2, which is the same as 

the ranking in [19]. Eq (33) is used to calculate the variances of 𝑆𝐶𝑌 and 𝑆𝑁𝐸𝑊, which are 0.0060 for 

𝑆𝐶𝑌 and 0.0196 for 𝑆𝑁𝐸𝑊. We can also get 𝑆𝐶𝑌(𝑟1) − 𝑆𝐶𝑌(𝑟2) = 0.733, 𝑆𝐶𝑌(𝑟3) − 𝑆𝐶𝑌(𝑟2) = 0.590, 

𝑆𝑁𝐸𝑊(𝑟1) − 𝑆𝑁𝐸𝑊(𝑟3) = 1.083, and 𝑆𝑁𝐸𝑊(𝑟3) − 𝑆𝑁𝐸𝑊(𝑟2) =1.644. It is evident that 1.083 is greater 

than 0.733 and 1.644 is greater than 0.590, making 𝑆𝑁𝐸𝑊 exhibit better ability of discrimination 

than 𝑆𝐶𝑌. 

We then used 𝑆𝑋, 𝑆𝑊𝐶, 𝑆𝑊𝐿, 𝑆𝐵, 𝑆𝐺, 𝑆𝐺𝐿, 𝑆𝐶𝑇, 𝑆𝐶𝐷, 𝑆𝐾𝐶 to replace 𝑆𝐶𝑌 in decision-making 

matrix 𝐴. The alternative scores and ranking results are shown in Table 5. 

Table 5. Alternative scores and ranking results of the SFs. 

Score 𝑆(𝑟1) 𝑆(𝑟2) 𝑆(𝑟3) Ranking result 

𝑆𝑋 2.5481 1.9679 2.3215 𝑟1 ≻ 𝑟3 ≻ 𝑟2 

𝑆𝑊𝐶 2.5374 1.9474 2.2543 𝑟1 ≻ 𝑟3 ≻ 𝑟2 

𝑆𝑊𝐿 1.3264 1.0874 1.2918 𝑟1 ≻ 𝑟3 ≻ 𝑟2 

𝑆𝐵 2.6886 2.5258 2.5888 𝑟1 ≻ 𝑟3 ≻ 𝑟2 

𝑆𝐺 2.6886 2.5258 2.5888 𝑟1 ≻ 𝑟3 ≻ 𝑟2 

𝑆𝐺𝐿 5.8012 5.1126 5.4046 𝑟1 ≻ 𝑟3 ≻ 𝑟2 

𝑆𝐶𝑇 5.5899 5.4123 5.4592 𝑟1 ≻ 𝑟3 ≻ 𝑟2 

𝑆𝐶𝐷 14.0204 13.5674 13.6728 𝑟1 ≻ 𝑟3 ≻ 𝑟2 

𝑆𝐶𝑌 19.9151 18.5883 19.1778 𝑟1 ≻ 𝑟3 ≻ 𝑟2 

𝑺𝑵𝑬𝑾 11.3626 8.6361 10.2799 𝒓𝟏 ≻ 𝒓𝟑 ≻ 𝒓𝟐 

It can be seen from Table 5 that 𝑆𝑋, 𝑆𝑊𝐶, 𝑆𝑊𝐿, 𝑆𝐵, 𝑆𝐺, 𝑆𝐺𝐿, 𝑆𝐶𝑇, 𝑆𝐶𝐷, 𝑆𝐶𝑌, and 𝑆𝑁𝐸𝑊 have 

the same ranking. It further confirms the feasibility and effectiveness of 𝑆𝑁𝐸𝑊. However, we find 

that 𝑆𝐾𝐶(𝑊1) = 0.4688, 𝑆𝐾𝐶(𝑊2) = −0.0586, and 𝑆𝐾𝐶(𝑊3) = −0.3666 cannot be normalized by 

Eq (34). Thus, 𝑆𝐾𝐶 is not suitable for the settings of decision-making matrix 𝐴. 

𝑆𝑋 , 𝑆𝑊𝐶 , 𝑆𝑊𝐿 , 𝑆𝐵 , 𝑆𝐺 , 𝑆𝐺𝐿 , 𝑆𝐶𝑇 , 𝑆𝐶𝐷 , 𝑆𝐶𝑌, and 𝑆𝑁𝐸𝑊  were normalized by Eq (31) to 

calculate the variances indicated in Eq (33). The results are shown in Table 6 and Figure 15. 

Table 6. Normalized scores and variances. 

Score 𝑆(𝑟1) 𝑆(𝑟2) 𝑆(𝑟3) Variance 

𝑆𝑋 1.7741  1.4840  1.6608  0.0143 

𝑆𝑊𝐶 1.7687  1.4737  1.6272  0.0145 

𝑆𝑊𝐿 1.3264  1.0874  1.2918  0.0111 

𝑆𝐵 2.6886  2.5258  2.5888  0.0045 

𝑆𝐺 2.6886  2.5258  2.5888  0.0045 

𝑆𝐺𝐿 2.3117  2.0187  2.1429  0.0144 

𝑆𝐶𝑇 2.7950  2.7062  2.7296  0.0014 

𝑆𝐶𝐷 3.2551  3.1419  3.1682  0.0023 

𝑆𝐶𝑌 2.7022  2.5126  2.5968  0.0060 

𝑺𝑵𝑬𝑾 1.9203  1.5795  1.7850  0.0196 
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As can be seen from Table 6, the highest score and the largest variance are found at the 

normalized 𝑆𝑁𝐸𝑊, which implies that it is more efficient for 𝑆𝑁𝐸𝑊 to distinguish the differences 

between alternatives and 𝑆𝑁𝐸𝑊 has greater applicability. The largest variance at 𝑆𝑁𝐸𝑊 can also be 

seen from Figure 15 meaning that the dispersion degree of the alternatives is also the largest. 

 

Figure 15. Comparison of normalized scores and variances. 

The deviation of the scores between two neighboring rankings and the averages of them were 

calculated and given Table 7. 

Table 7. Normalized deviation sequence of alternative score. 

Score S(No. 2) − S(No. 1) S(No. 3) − S(No. 2) Average value of the deviation 

𝑆𝑋 0.1768 0.1133 0.1451 

𝑆𝑊𝐶 0.1535 0.1415 0.1475 

𝑆𝑊𝐿 0.2044 0.0346 0.1195 

𝑆𝐵 0.0630 0.0998 0.0814 

𝑆𝐺 0.0630 0.0998 0.0814 

𝑆𝐺𝐿 0.1242 0.1687 0.1465 

𝑆𝐶𝑇 0.0234 0.0654 0.0444 

𝑆𝐶𝐷 0.0264 0.0869 0.0567 

𝑆𝐶𝑌 0.0842 0.1053 0.0948 

𝑺𝑵𝑬𝑾 0.2055 0.1353 0.1704 

As can be seen from Table 7 and Figure 16, both the average deviation and individual deviation 

of 𝑆𝑁𝐸𝑊 are the largest among the SFs. It makes 𝑆𝑁𝐸𝑊 more outstanding in distinguishing each 

alternative and facilitating decision-makers to select an alternative. 
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Figure 16. Sequence deviation of the normalized alternative score. 

5.3. Sensitivity analysis of the IVIFS-SF in Case 1 

In order to further investigate this new SF, we use Case 1 to analyze the effects of the 

parameters in 𝑆𝑁𝐸𝑊. When 𝛼, 𝛾, 𝛽, and 𝛿 change from 0.2 to 1.0 in Eq (22), the scores of the five 

alternatives described in Case 1 are shown in Figure 17. 

 

Figure 17. Sorting results for the alternatives with 𝑆𝑁𝑒𝑤 parameter change. 

As can be seen from Figure 17, when parameters of 𝛼, 𝛾, 𝛽, and 𝛿 are changed in Eq (22), 

𝑆𝑁𝐸𝑊 does not change drastically and the ranking of alternatives remains unaffected. The reason for 

this is that when the parameters change, the 𝐸𝑣𝑉𝑎𝑙𝑢𝑒 of the alternative changes very little, leading 

to only a slight weight change. Similarly, when 𝜃 changes, the change in the weight of the discrete 

points is also small and the ranking of the alternatives is not affected here either. 
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Another element of our sensitivity analysis was our investigation of the influence of the number 

of discrete points on the alternative ranking. Figure 18 shows the scores for 𝑆𝑁𝐸𝑊 when k varies 

from 2 to 20. 

 

Figure 18. The scores of the alternatives when parameter k of 𝑆𝑁𝐸𝑊 changes. 

When k changes from 2 to 3, the ranking order of the alternatives does not change despite the 

change of the scores. When k is greater than 3, the alternatives in this case have invisible fluctuations 

and the ranking order remains unchanged. 

From Case 1 and comparation analysis, 𝑆𝑁𝐸𝑊 obtained the same optimal alternative as the 

other SFs and the same ranking results. At the same time, of all of the SFs, 𝑆𝑁𝐸𝑊 achieved the 

highest dispersion degree between the alternatives and the greatest deviation in neighboring score 

values. Therefore, these results have clearly shown that 𝑆𝑁𝐸𝑊 outperforms the other compared SFs. 

6 Conclusions 

Building upon the interval-valued evaluation method (IVEM) derived from prospect theory, this 

study proposes a novel score function for interval-valued intuitionistic fuzzy sets (IVIFS-SF). The 

proposed IVEM framework transforms an interval [a, b] into a crisp numerical value by integrating 

the value function and probability weight function from prospect theory. This methodology not only 

establishes a quantitative relationship between interval values and crisp numbers but also effectively 

models the psychological decision-making process of human evaluators. To facilitate the systematic 

evaluation and selection of score functions for IVIFVs, we introduce two comprehensive assessment 

metrics: pass rate and variance. Extensive comparative analyses demonstrate that the IVIFS-SF 

achieves superior performance, attaining the highest pass rate and largest variance among existing 

score function (SF) and accuracy function (AF) methods—all without requiring additional accuracy 

functions. Empirical case studies confirm that while the IVIFS-SF identifies the same optimal 

alternative as competing methods, it maintains its advantage in terms of variance. Furthermore, 

sensitivity analysis validates the robustness of the IVIFS-SF across the parameter space of prospect 

theory. 

While the IVIFS-SF has demonstrated promising performance in terms of pass rate optimization 

and variance reduction within synthetic datasets, thereby addressing some limitations of conventional 
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SF and AF methodologies, it still faces significant challenges in managing IVIFV-related uncertainty. 

For instance, the proposed score function remains unable to distinguish certain IVIFVs, which is an 

inherent limitation of this scoring approach. Developing new interpretability measurement methods 

will be a valuable research direction. As a fundamental aspect of IVIFS research, the measurement 

method of the IVIFS provides the basis for further studies. In this paper, the interval [𝑎, 𝑏] is 

divided into 𝑘 (𝑘 ≥ 1) equally spaced segments, and the case of randomly partitioned 𝑘-segment 

intervals will also be investigated. 
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