Research article Special Issues

Fractional-order analysis of voltage and current propagation in lossy transmission lines with thermal feedback

  • Published: 21 November 2025
  • MSC : 34A08, 65M70, 94C05, 97Mxx

  • Transmission lines form the backbone of power and communication networks, yet their behavior cannot be predicted by classical transmission line theory, which neglects thermal feedback and fractional-order dynamics. To address these limitations, we develop an advanced fractal-fractional electro-thermal model of a lossy transmission line to analyze voltage and current propagation under thermal feedback. The model is based on the fractal-fractional derivative in the sense of Caputo and integrates the effects of series resistance, inductance, conductance, and capacitance together with temperature-dependent feedback. The coupled governing equations are derived as fractal-fractional order partial differential equations based on Kirchoff's current law (KCL) and Kirchoff's voltage law (KVL). The equations are solved numerically using the local radial basis functions (LRBF) scheme, a meshfree numerical technique, to investigate the spatio-temporal profiles of voltage, current, and temperature. The numerical results demonstrate that higher resistance and conductance increase both the attenuation and heating, while increasing capacitance reduces voltage propagation but enhances the current propagation. Furthermore, fractional and fractal orders enrich the analysis by introducing memory and dispersive effects. Overall, this study offers a more realistic and predictive framework for evaluating lossy transmission systems, with direct implications for improving reliability, thermal management, and performance in modern electrical and communication infrastructures.

    Citation: Saqib Murtaza, Lilia El Amraoui, Aceng Sambas, Ahmed Mir, Chemseddine Maatki, Muhammad N. Khan, Badr M. Alshammari, Lioua Kolsi. Fractional-order analysis of voltage and current propagation in lossy transmission lines with thermal feedback[J]. AIMS Mathematics, 2025, 10(11): 27191-27216. doi: 10.3934/math.20251195

    Related Papers:

  • Transmission lines form the backbone of power and communication networks, yet their behavior cannot be predicted by classical transmission line theory, which neglects thermal feedback and fractional-order dynamics. To address these limitations, we develop an advanced fractal-fractional electro-thermal model of a lossy transmission line to analyze voltage and current propagation under thermal feedback. The model is based on the fractal-fractional derivative in the sense of Caputo and integrates the effects of series resistance, inductance, conductance, and capacitance together with temperature-dependent feedback. The coupled governing equations are derived as fractal-fractional order partial differential equations based on Kirchoff's current law (KCL) and Kirchoff's voltage law (KVL). The equations are solved numerically using the local radial basis functions (LRBF) scheme, a meshfree numerical technique, to investigate the spatio-temporal profiles of voltage, current, and temperature. The numerical results demonstrate that higher resistance and conductance increase both the attenuation and heating, while increasing capacitance reduces voltage propagation but enhances the current propagation. Furthermore, fractional and fractal orders enrich the analysis by introducing memory and dispersive effects. Overall, this study offers a more realistic and predictive framework for evaluating lossy transmission systems, with direct implications for improving reliability, thermal management, and performance in modern electrical and communication infrastructures.



    加载中


    [1] F. Rachidi, A review of field-to-transmission line coupling models with special emphasis to lightning-induced voltages on overhead lines, IEEE T. Electromagn. C., 54 (2012), 898–911. https://doi.org/10.1109/TEMC.2011.2181519 doi: 10.1109/TEMC.2011.2181519
    [2] A. J. Fairbanks, A. M. Darr, A. L. Garner, A review of nonlinear transmission line system design, IEEE Access, 8 (2020), 148606–148621. https://doi.org/10.1109/ACCESS.2020.3015715 doi: 10.1109/ACCESS.2020.3015715
    [3] F. D. Paolo, Networks and devices using planar transmissions lines, CRC Press, 2018. https://doi.org/10.1201/9781315220369
    [4] S. G. Talocia, H. M. Huang, A. E. Ruehli, F. Canavero, I. M. Elfadel, Transient analysis of lossy transmission lines: An efficient approach based on the method of characteristics, IEEE T. Adv. Packaging, 27 (2004), 45–56. https://doi.org/10.1109/TADVP.2004.825467 doi: 10.1109/TADVP.2004.825467
    [5] A. J. Gruodis, C. S. Chang, Coupled lossy transmission line characterization and simulation, IBM J. Res. Dev., 25 (1981), 25–41. https://doi.org/10.1147/rd.251.0025 doi: 10.1147/rd.251.0025
    [6] C. H. Kannan, V. Venugopal, P. Mathur, D. G. Kurup, Accurate modeling and performance analysis of a two-port coaxial transmission line for material characterization, In: 2024 IEEE 6th PhD Colloquium on Emerging Domain Innovation and Technology for Society (PhD EDITS), 2024. https://doi.org/10.1109/PhDEDITS64207.2024.10838651
    [7] H. Cory, S. H. Shiran, The importance of losses in the coupling of transmission lines, IEEE T. Electromagn. C., 30 (1988), 567–570. https://doi.org/10.1109/15.8772 doi: 10.1109/15.8772
    [8] A. R. Djordjevic, T. K. Sarkar, R. F. Harrington, Analysis of lossy transmission lines with arbitrary nonlinear terminal networks, IEEE T. Microw. Theory, 34 (1986), 660–666. https://doi.org/10.1109/TMTT.1986.1133414 doi: 10.1109/TMTT.1986.1133414
    [9] E. G. Ribas, C. D. Martinez, M. J. G. Morales, Complex analysis of the lossy-transmission line theory: A generalized smith chart, Turk. J. Elec. Engin., 14 (2006), 173–194.
    [10] H. Mooijweer, Derivation of the telegraphers' equations, In: Microwave Techniques, London, 1971. https://doi.org/10.1007/978-1-349-01065-3_9
    [11] M. G. M. Hussain, Mathematical model for the electromagnetic conductivity of lossy materials, J. Electromagnet. Wave., 19 (2005), 271–279. https://doi.org/10.1163/1569393054497311 doi: 10.1163/1569393054497311
    [12] O. M. Bamigbola, M. M. Ali, M. O. Oke, Mathematical modeling of electric power flow and the minimization of power losses on transmission lines, Appl. Math. Comput., 241 (2014), 214–221. https://doi.org/10.1016/j.amc.2014.05.039 doi: 10.1016/j.amc.2014.05.039
    [13] V. I. Korzyuk, J. V. Rudzko, Classical solution of the first mixed problem for the telegraph equation with a nonlinear potential, Differ. Equ., 58 (2022), 175–186. https://doi.org/10.1134/S0012266122020045 doi: 10.1134/S0012266122020045
    [14] D. P. Patil, S. Borse, D. Kapadi, Applications of Emad-Falih transform for general solution of telegraph equation, Int. J. Adv. Res. Sci. Eng. Technol., 9 (2022), 19450–19454.
    [15] S. Hussen, M. Uddin, M. R. Karim, An efficient computational technique for the analysis of telegraph equation, J. Eng. Adv., 3 (2022), 104–112. https://doi.org/10.38032/jea.2022.03.005 doi: 10.38032/jea.2022.03.005
    [16] G. M. Alam, S. A. Avdonin, N. B. Avdonina, Solving forward and control problems for telegrapher's equations on metric graphs, Math. Rep., 24 (2022), 3–21.
    [17] M. E. Köksal, Recent developments of numerical methods for analyzing telegraph equations, Arch. Comput. Methods Eng., 30 (2023), 3509–3527. https://doi.org/10.1007/s11831-023-09909-w doi: 10.1007/s11831-023-09909-w
    [18] K. K. Ali, M. S. Mohamed, M. Maneea, Advanced semi-analytical techniques for the q-fractional Ivancevic option pricing model, Ain Shams Eng. J., 16 (2025), 103645. https://doi.org/10.1016/j.asej.2025.103645 doi: 10.1016/j.asej.2025.103645
    [19] U. Younas, J. Muhammad, M. A. S. Murad, D. K. Almutairi, A. Khan, T. Abdeljawad, Investigating the truncated fractional telegraph equation in engineering: Solitary wave solutions, chaotic and sensitivity analysis, Res. Eng., 25 (2025), 104489. https://doi.org/10.1016/j.rineng.2025.104489 doi: 10.1016/j.rineng.2025.104489
    [20] J. Malinzi, A mathematical model for oncolytic virus spread using the telegraph equation, Commun. Nonlinear Sci., 102 (2021), 105944. https://doi.org/10.1016/j.cnsns.2021.105944 doi: 10.1016/j.cnsns.2021.105944
    [21] K. A. Abro, A. Atangana, I. Q. Memon, A. Aziz, Analytical and fractional model for power transmission of lossy transmission line, Int. J. Model. Simul., 2024 (2024), 1–10. https://doi.org/10.1080/02286203.2024.2377898 doi: 10.1080/02286203.2024.2377898
    [22] Z. Ahmad, S. Crisci, S. Murtaza, G. Toraldo, Numerical insights of fractal-fractional modeling of magnetohydrodynamic Casson hybrid nanofluid with heat transfer enhancement, Math. Method. Appl. Sci., 47 (2024), 9046–9066. https://doi.org/10.1002/mma.10059 doi: 10.1002/mma.10059
    [23] A. Atangana, J. F. Gómez‐Aguilar, Numerical approximation of Riemann‐Liouville definition of fractional derivative: From Riemann‐Liouville to Atangana‐Baleanu, Numer. Meth. Part. D. E., 34 (2018), 1502–1523. https://doi.org/10.1002/num.22195 doi: 10.1002/num.22195
    [24] C. Shu, H. Ding, K. S. Yeo, Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier-Stokes equations, Comput. Method. Appl. M., 192 (2003), 941–954. https://doi.org/10.1016/S0045-7825(02)00618-7 doi: 10.1016/S0045-7825(02)00618-7
    [25] G. E. Fasshauer, Meshfree approximation methods with Matlab, World Scientific, 2007.
    [26] H. Wendland, Local polynomial reproduction and moving least squares approximation, IMA J. Numer. Anal., 21 (2001), 285–300. https://doi.org/10.1093/imanum/21.1.285 doi: 10.1093/imanum/21.1.285
    [27] P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Commun. Pure Appl. Math., 7 (1954), 159–193. https://doi.org/10.1002/cpa.3160070112 doi: 10.1002/cpa.3160070112
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(181) PDF downloads(18) Cited by(0)

Article outline

Figures and Tables

Figures(19)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog