A complex bipolar fuzzy set ($ \mathbb{CBFS} $) is an extension of a complex fuzzy set and a $ \mathbb{BF} $ set with a wide range of values. A $ \mathbb{CBFS} $ is differentiated from a $ \mathbb{BF} $ set by the incorporation of negative and positive membership functions to the unit circle in the complex plane, which empowers one to handle the vagueness more effectively. We aim to generalize the notions of $ \mathbb{CBFS}s $ by proposing a general algebraic structure to dealing with complex bipolar ($ \mathbb{CB} $) fuzzy data by integrating the idea of $ \mathbb{CBFS}s $ and subrings. The structure of $ \mathbb{CB} $ fuzzy subrings, such as the $ \mathbb{CB} $ fuzzy ring isomorphism, $ \mathbb{CB} $ fuzzy quotient ring, and $ \mathbb{CB} $ fuzzy ring homomorphism, are examined in this paper. We develop the ($ \delta, \alpha; \sigma, \beta $)-cut of a $ \mathbb{CBFS} $ and explore its algebraic interpretations. Additionally, we describe the $ \mathbb{CB} $ fuzzy support set and demonstrate some significant characteristics associated with this idea. Furthermore, we use the concept of a naturally occurring complex ring homomorphism to describe a $ \mathbb{CB} $ fuzzy homomorphism. Additionally, we prove a $ \mathbb{CB} $ fuzzy homomorphism between the $ \mathbb{CB} $ fuzzy subrings of the ring and the $ \mathbb{CB} $ fuzzy subring of the complex quotient ring. We demonstrate a strong connection among two $ \mathbb{CB} $ fuzzy subrings of complex quotient rings under a specific $ \mathbb{CB} $ fuzzy surjective homomorphism. We construct a complex fuzzy isomorphism between both associated $ \mathbb{CB} $ fuzzy subrings. Furthermore, we introduce three basic results of the $ \mathbb{CB} $ fuzzy isomorphism to explain the relationship between two $ \mathbb{CB} $ fuzzy subrings. Finally, we use a complex bipolar fuzzy subring in decision making.
Citation: Kholood Alnefaie, Sarka Hoskova-Mayerova, Muhammad Haris Mateen, Bijan Davvaz. Incorporating complex bipolar fuzzy set with subrings and application in decision making[J]. AIMS Mathematics, 2025, 10(11): 27073-27102. doi: 10.3934/math.20251190
A complex bipolar fuzzy set ($ \mathbb{CBFS} $) is an extension of a complex fuzzy set and a $ \mathbb{BF} $ set with a wide range of values. A $ \mathbb{CBFS} $ is differentiated from a $ \mathbb{BF} $ set by the incorporation of negative and positive membership functions to the unit circle in the complex plane, which empowers one to handle the vagueness more effectively. We aim to generalize the notions of $ \mathbb{CBFS}s $ by proposing a general algebraic structure to dealing with complex bipolar ($ \mathbb{CB} $) fuzzy data by integrating the idea of $ \mathbb{CBFS}s $ and subrings. The structure of $ \mathbb{CB} $ fuzzy subrings, such as the $ \mathbb{CB} $ fuzzy ring isomorphism, $ \mathbb{CB} $ fuzzy quotient ring, and $ \mathbb{CB} $ fuzzy ring homomorphism, are examined in this paper. We develop the ($ \delta, \alpha; \sigma, \beta $)-cut of a $ \mathbb{CBFS} $ and explore its algebraic interpretations. Additionally, we describe the $ \mathbb{CB} $ fuzzy support set and demonstrate some significant characteristics associated with this idea. Furthermore, we use the concept of a naturally occurring complex ring homomorphism to describe a $ \mathbb{CB} $ fuzzy homomorphism. Additionally, we prove a $ \mathbb{CB} $ fuzzy homomorphism between the $ \mathbb{CB} $ fuzzy subrings of the ring and the $ \mathbb{CB} $ fuzzy subring of the complex quotient ring. We demonstrate a strong connection among two $ \mathbb{CB} $ fuzzy subrings of complex quotient rings under a specific $ \mathbb{CB} $ fuzzy surjective homomorphism. We construct a complex fuzzy isomorphism between both associated $ \mathbb{CB} $ fuzzy subrings. Furthermore, we introduce three basic results of the $ \mathbb{CB} $ fuzzy isomorphism to explain the relationship between two $ \mathbb{CB} $ fuzzy subrings. Finally, we use a complex bipolar fuzzy subring in decision making.
| [1] | L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. http://doi.org/10.1016/S0019-9958(65)90241-X |
| [2] | A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517. http://doi.org/10.1016/0022-247X(71)90199-5 |
| [3] | R. Ameri, R. A. Borzooei, E. Mohammadzadeh, Engel fuzzy subgroups, Ital. J. Pure Appl. Mat., 34 (2015), 251–252. |
| [4] |
W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Set. Syst., 8 (1982), 133–139. http://doi.org/10.1016/0165-0114(82)90003-3 doi: 10.1016/0165-0114(82)90003-3
|
| [5] |
G. M. Addis, N. Kausar, M. Munir, Fuzzy homomorphism theorems on rings, J. Discret. Math. Sci. C., 25 (2022), 1757–1776. http://doi.org/10.1080/09720529.2020.1809777 doi: 10.1080/09720529.2020.1809777
|
| [6] | U. Deniz, Different approximation to fuzzy ring homomorphisms, Sakarya University Journal of Science, 23 (2019), 1163–1172. |
| [7] | A. Emniyet, M. Sahin, Fuzzy normed rings, Symmetry, 10 (2018), 515. http://doi.org/10.3390/sym10100515 |
| [8] | V. Leoreanu-Fotea, B. Davvaz, Fuzzy hyperrings, Fuzzy Set. Syst., 160 (2009), 2366–2378. http://doi.org/10.1016/j.fss.2008.11.007 |
| [9] | M. Motameni, V. Leoreanu-Fotea, R. Ameri, Classes of fuzzy hyperideals, Filomat, 30 (2016), 2329–2341. http://doi.org/10.2298/FIL1608329M |
| [10] |
D. S. Malik, J. N. Mordeson, Fuzzy direct sums of fuzzy rings, Fuzzy Set. Syst., 45 (1992), 83–91. http://doi.org/10.1016/0165-0114(92)90094-K doi: 10.1016/0165-0114(92)90094-K
|
| [11] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. http://doi.org/10.1016/S0165-0114(86)80034-3 |
| [12] | R. Biswas, Intuitionistic fuzzy subgroups, Mathematical Forum, 10 (1989), 39–44. |
| [13] | K. Hur, H. W. Kang, H. K. Song, Intuitionistic fuzzy subgroups and subrings, Honam Math. J., 25 (2003), 19–41. |
| [14] | B. Banerjee, D. K. Basnet, Intuitionistic fuzzy sub rings and ideals, J. Fuzzy Math., 11 (2003), 139–155. |
| [15] |
N. A. Alhaleem, A. G. Ahmad, Intuitionistic fuzzy normed subrings and intuitionistic fuzzy normed ideals, Mathematics, 8 (2020), 1594. http://doi.org/10.3390/math8091594 doi: 10.3390/math8091594
|
| [16] | M. F. Marashdeh, A. R. Salleh, Intuitionistic fuzzy rings, International Journal of Algebra, 5 (2011), 37–47. |
| [17] |
W. Nakkhasen, Intuitionistic fuzzy ideals of ternary near-rings, Int. J. Fuzzy Log. Inte., 20 (2020), 290–297. http://doi.org/10.5391/IJFIS.2020.20.4.290 doi: 10.5391/IJFIS.2020.20.4.290
|
| [18] |
M. Gulzar, D. Alghazzawi, M. H. Mateen, N. Kausar, A certain class of $t$-intuitionistic fuzzy subgroups, IEEE Access, 8 (2020), 163260–163268. http://doi.org/10.1109/ACCESS.2020.3020366 doi: 10.1109/ACCESS.2020.3020366
|
| [19] | M. Yamin, P. K. Sharma, Intuitionistic fuzzy ring with operators, Int. J. Math. Comput. Sc., 6 (2018), 1860–1866. |
| [20] | W. R. Zhang, Bipolar fuzzy sets and relations: A computational framework for cognitive modling and multiagent decision analysis, The North American Fuzzy Information Processing Society Biannual Conference, San Antonio, TX, USA, 1994,305–309. http://doi.org/10.1109/IJCF.1994.375115 |
| [21] | W. R. Zhang, (Yin) (Yang) bipolar fuzzy sets, IEEE World Congress on Computational Intelligence (Cat. No.98CH36228), Anchorage, AK, USA, 1998,835–840. http://doi.org/10.1109/FUZZY.1998.687599 |
| [22] |
W. R. Zhang, L. L. Zhang, Yin Yang bipolar logic and bipolar fuzzy logic, Inform. Sciences, 165 (2004), 265–287. http://doi.org/10.1016/j.ins.2003.05.010 doi: 10.1016/j.ins.2003.05.010
|
| [23] | K. M. Lee, Bipolar valued fuzzy sets and their basic operations, Proceedings of International Conference on Intelligent Technologies, Bangkok, Thailand, 2000,307–317. |
| [24] |
K. M. Lee, Comparision of interval-valued fuzzy sets, intuitionistic fuzzy sets and Bipolar fuzzy sets, Journal of the Korean Institute of Intelligent Systems, 14 (2004), 125–129. http://doi.org/10.5391/jkiis.2004.14.2.125 doi: 10.5391/jkiis.2004.14.2.125
|
| [25] | W. R. Zhang, Yin Yang bipolar relativity: A unifying theory of nature, agents and causality with application in quantum computing, cognitive informatics and life sciencs, Hershey: IGI Global Scientific Publishing, 2011 http://doi.org/10.4018/978-1-60960-525-4 |
| [26] | S. Mondal, M. Pal, Similarity relations, eigenvalues and eigenvectors of bipolar fuzzy matrix, J. Intell. Fuzzy Syst., 30 (2016), 2297–2307. |
| [27] | A. Tahmasbpour, R. Borzooei, H. Rashmanlou, F-Morphism on bipolar fuzzy graphs, J. Intell. Fuzzy Syst., 30 (2016), 651–658. |
| [28] | M. Sarwar, M. Akram, Bipolar fuzzy circuits with applications, J. Intell. Fuzzy Syst., 34 (2018), 547–558. |
| [29] |
Shumaiza, M. Akram, A. N. Al-Kenani, J. C. R. Alcantud, Group decision-making based on the VIKOR method with trapezoidal bipolar fuzzy information, Symmetry, 11 (2019), 1313. http://doi.org/10.3390/sym11101313 doi: 10.3390/sym11101313
|
| [30] |
M. Akram, Shumaiza, A. N. Al-Kenani, Multi-criteria group decision-making for selection of green suppliers under bipolar fuzzy PROMETHEE process, Symmetry, 12 (2020), 77. http://doi.org/10.3390/sym12010077 doi: 10.3390/sym12010077
|
| [31] | M. G. Karunambigai, Metric in bipolar fuzzy graph, World Applied Sciences Journal, 14 (2011), 1920–1927. |
| [32] | T. Mahmood, M. Munir, On bipolar fuzzy subgroups, World Applied Sciences Journal, 27 (2013), 1806–1811. |
| [33] | S. K. Sardar, S. K. Majumder, P. Pal, Bipolar valued fuzzy transalation in semigroups, Mathematica Aeterna, 2 (2012), 597–607. |
| [34] |
Y. B. Jun, S. Z. Song, Foldness of bipolar fuzzy sets and its application in BCK/BCI-algebras, Mathematics, 7 (2019), 1036. http://doi.org/ 10.3390/math7111036 doi: 10.3390/math7111036
|
| [35] |
H. G. Baik, Bipolar fuzzy ideals of near rings, Journal of the Korean Institute of Intelligent Systems, 22 (2012), 394–398. http://doi.org/10.5391/JKIIS.2012.22.3.394 doi: 10.5391/JKIIS.2012.22.3.394
|
| [36] | P. U. Maheswari, K. Arjunan, R. Mangayarkarasi, Notes on bipolar valued fuzzy subrings of a rings, Int. J. Appl. Math. Sci., 9 (2016), 89–97. |
| [37] |
H. Alolaiyan, M. H. Mateen, D. Pamucar, M. K. Mahmmod, F. Arslan, A certain structure of bipolar fuzzy subrings, Symmetry, 13 (2021), 1397. http://doi.org/10.3390/sym13081397 doi: 10.3390/sym13081397
|
| [38] | S. P. Subbian, D. M. Kamaraj, Bipolar polar valued fuzzy ideals of ring and bipolar valued fuzzy ideal extension in subrings, International Journal of Mathematics Trends and Technology, 61 (2018), 155–163. |
| [39] | C. Jana, T. Senapati, K. P. Shum, M. Pal, Bipolar fuzzy soft subalgebras and ideals of $BCK/BCI$-algebras based on bipolar fuzzy points, J. Intell. Fuzzy Syst., 37 (2019), 2785–2795. |
| [40] | C. H. Li, B. G. Xu, H. W. Huang, Bipolar fuzzy abundant semigroups with applications, J. Intell. Fuzzy Syst., 39 (2020), 167–176. |
| [41] | D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE T. Fuzzy Syst., 10 (2002), 171–186. http://doi.org/10.1109/91.995119 |
| [42] | D. E. Tamir, N. D. Rishe, A. Kandel, Complex fuzzy sets and complex fuzzy logic an overview of theory and applications, In: Fifty years of fuzzy logic and its applications, Cham: Springer, 2015,661–681. http://doi.org/10.1007/978-3-319-19683-1_31 |
| [43] | J. J. Buckley, Fuzzy complex numbers, Fuzzy Set. Syst., 33 (1989), 333–345. http://doi.org/10.1016/0165-0114(89)90122-X |
| [44] | H. T. Nguyen, A. Kandel, V. Kreinovich, Complex fuzzy sets: towards new foundations, Ninth IEEE International Conference on Fuzzy Systems. FUZZ-IEEE 2000 (Cat. No.00CH37063), San Antonio, TX, USA, 2000, 1045–1048. http://doi.org/10.1109/FUZZY.2000.839195 |
| [45] |
G. Q. Zhang, T. S. Dillon, K. Y. Cai, J. Ma, J. Lu, Operation properties and $\delta$-equalities of complex fuzzy sets, Int. J. Approx. Reason., 50 (2009), 1227–1249. http://doi.org/10.1016/j.ijar.2009.05.010 doi: 10.1016/j.ijar.2009.05.010
|
| [46] | M. O. Alsarahead, A. G. Ahmad, Complex fuzzy subgroups, Appl. Math. Sci., 11 (2017), 2011–2021. https://doi.org/10.12988/ams.2017.64115 |
| [47] | M. O. Alsarahead, A. G. Ahmad, Complex fuzzy subrings, International Journal of Pure and Applied Mathematics, 117 (2017), 563–577. |
| [48] |
A. M. J. S. Alkouri, A. R. Salleh, Complex intuitionistic fuzzy sets, AIP Conf. Proc., 1482 (2012), 464–470. http://doi.org/10.1063/1.4757515 doi: 10.1063/1.4757515
|
| [49] |
M. Gulzar, M. H. Mateen, D. Alghazzawi, N. Kausar, A novel applications of complex intuitionistic fuzzy sets in group theory, IEEE Access, 8 (2020), 196075–196085. http://doi.org/10.1109/ACCESS.2020.3034626 doi: 10.1109/ACCESS.2020.3034626
|
| [50] | M. O. Alsarahead, A. G. Ahmad, Complex intuitionistic fuzzy subrings, Borneo Science The Journal of Science and Technology, 38 (2023), 1–14. |
| [51] |
M. Gulzar, M. H. Mateen, Y. M. Chu, D. Alghazzawi, G. Abbas, Generalized direct product of complex intuitionistic fuzzy subrings, Int. J. Comput. Int. Sys., 14 (2021), 582–593. http://doi.org/10.2991/ijcis.d.210106.001 doi: 10.2991/ijcis.d.210106.001
|
| [52] |
H. Alolaiyan, H. A. Alshehri, M. H. Mateen, D. Pamucar, M. Gulzar, A novel algebraic structure of $(\alpha, \beta)$-complex fuzzy subgroups, Entropy, 23 (2021), 992. http://doi.org/10.3390/e23080992 doi: 10.3390/e23080992
|
| [53] |
M. Gulzar, D. Alghazzawi, M. H. Mateen, M. Premkumar, On some characterization of $Q$-complex fuzzy subrings, J. Math. Comput. Sci., 22 (2021), 295–305. http://doi.org/10.22436/jmcs.022.03.08 doi: 10.22436/jmcs.022.03.08
|
| [54] | A. U. M. Alkouri, M. O. Massaadeh, M. Ali, On bipolar complex fuzzy sets and its application, J. Intell. Fuzzy. Syst., 39 (2020), 383–397. |
| [55] |
U. Ur Rehman, T. Mahmood, R. Naeem, Bipolar complex fuzzy semigroups, AIMS Mathematics, 8 (2023), 3997–4021. http://doi.org/10.3934/math.2023200 doi: 10.3934/math.2023200
|
| [56] |
U. Ur Rehman, K. Alnefaie, T. Mahmood, Bipolar complex fuzzy near rings, Phys. Scr., 99 (2024), 115254. http://doi.org/10.1088/1402-4896/ad7efe doi: 10.1088/1402-4896/ad7efe
|