Research article Special Issues

Existence and nonexistence outcomes for a third-order $ q $-difference equation

  • Published: 21 November 2025
  • MSC : 39A13, 47H10

  • In this paper, using the Schauder and the Banach fixed point (FP) theorems, we examine the existence and uniqueness of solutions in the Banach space $ C([0, 1]) $ for a boundary value problem (BVP) of non-linear third-order $ q $-difference equations with the $ q $-integral boundary condition. Then, we impose the sufficient condition that allows us to deduce a nonexistence result. Furthermore, we offer some examples to support our main outcomes.

    Citation: Nihan Turan, Aynur Şahin. Existence and nonexistence outcomes for a third-order $ q $-difference equation[J]. AIMS Mathematics, 2025, 10(11): 27044-27057. doi: 10.3934/math.20251188

    Related Papers:

  • In this paper, using the Schauder and the Banach fixed point (FP) theorems, we examine the existence and uniqueness of solutions in the Banach space $ C([0, 1]) $ for a boundary value problem (BVP) of non-linear third-order $ q $-difference equations with the $ q $-integral boundary condition. Then, we impose the sufficient condition that allows us to deduce a nonexistence result. Furthermore, we offer some examples to support our main outcomes.



    加载中


    [1] S. Alkan, A. Seçer, A collocation method for solving boundary value problems of fractional order, Sakarya Univ. J. Sci., 22 (2018), 1601–1608. https://doi.org/10.16984/saufenbilder.352088 doi: 10.16984/saufenbilder.352088
    [2] S. Çetinkaya, A. Demir, Time fractional equation with non-homogenous Dirichlet boundary conditions, Sakarya Univ. J. Sci., 24 (2020), 1185–1190. https://doi.org/10.16984/saufenbilder.749168 doi: 10.16984/saufenbilder.749168
    [3] B. Durak, H. Ö. Özer, A. Sezgin, L. E. Sakman, Approximate solutions of nonlinear boundary value problems by collocation methods compared to newer methods, Sakarya Univ. J. Sci., 27 (2023), 1345–1354. https://doi.org/10.16984/saufenbilder.1342645 doi: 10.16984/saufenbilder.1342645
    [4] A. T. Deresse, A. S. Bekela, T. T. Dufera, MT-PINNs: Multi-term physics-informed neural networks for solving initial boundary value problems of 2D and 3D nonlinear telegraph equations, Bound Value Probl., 2025 (2025), 1–29. https://doi.org/10.1186/s13661-025-02062-2 doi: 10.1186/s13661-025-02062-2
    [5] A. A. Samarski, Some problems in the modern theory of differential equations, Differ. Uravn., 16 (1980), 1221–1228.
    [6] P. Shi, Weak solution to evolution problem with a nonlocal constraint, SIAM J. Math. Anal., 24 (1993), 46–58. https://doi.org/10.1137/0524004 doi: 10.1137/0524004
    [7] B. Cahlon, D. M. Kulkarni, P. Shi, Stepwise stability for the heat equation with a nonlocal constraint, SIAM J. Math. Anal., 32 (1995), 571–593. https://doi.org/10.1137/0732025 doi: 10.1137/0732025
    [8] M. Dehghan, On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation, Numer. Meth. Part. D. E., 21 (2005), 24–40. https://doi.org/10.1002/num.20019 doi: 10.1002/num.20019
    [9] A. Atangana, J. F. Botha, A generalized groundwater flow equation using the concept of variable-order derivative, Bound. Value Probl., 2013 (2013), 1–11. https://doi.org/10.1186/1687-2770-2013-53 doi: 10.1186/1687-2770-2013-53
    [10] A. Boucherif, S. M. Bouguima, Z. Benbouziane, N. Al-Malki, Third order problems with nonlocal conditions of integral type, Bound. Value Probl., 2014 (2014), 137. https://doi.org/10.1186/s13661-014-0137-z doi: 10.1186/s13661-014-0137-z
    [11] W. Xie, H. Pang, The shooting method and integral boundary value problems of third-order differential equation, Adv. Differ. Equ., 2016 (2016), 138. https://doi.org/10.1186/s13662-016-0824-4 doi: 10.1186/s13662-016-0824-4
    [12] A. Cabada, N. D. Dimitrov, Third-order differential equations with three-point boundary conditions, Open Math., 19 (2021), 11–31. https://doi.org/10.1515/math-2021-0007 doi: 10.1515/math-2021-0007
    [13] S. Smirnov, Existence of a unique solution for a third-order boundary value problem with nonlocal conditions of integral type, Nonlinear Anal.-Model., 26 (2021), 914–927. https://doi.org/10.15388/namc.2021.26.23932 doi: 10.15388/namc.2021.26.23932
    [14] S. Smirnov, Multiplicity of positive solutions for a third-order boundary value problem with nonlocal conditions of integral type, Miskolc Math. Notes, 25 (2024), 967–975. https://doi.org/10.18514/MMN.2024.4433 doi: 10.18514/MMN.2024.4433
    [15] S. S. Almuthaybiri, C. C. Tisdell, Existence and uniqueness of solutions to third-order boundary value problems: analysis in closed and bounded sets, Differ. Equ. Appl., 12 (2020), 291–312. https://dx.doi.org/10.7153/dea-2020-12-19 doi: 10.7153/dea-2020-12-19
    [16] O. Zikirov, M. Sagdullayeva, Solvability of nonlocal problem with integral condition for third order equation, J. Math. Sci., 284 (2024), 287–298. https://doi.org/10.1007/s10958-024-07350-3 doi: 10.1007/s10958-024-07350-3
    [17] S. Sergeev, Quantization scheme for modular $q$-difference equations, Theor. Math. Phys., 142 (2005), 422–430. https://doi.org/10.1007/s11232-005-0033-x doi: 10.1007/s11232-005-0033-x
    [18] C. R. Adams, On the linear ordinary $q$-difference equation, Ann. Math., 30 (1928), 195–205. https://doi.org/10.2307/1968274 doi: 10.2307/1968274
    [19] B. Ahmad, Boundary value problems for nonlinear third-order $q$-difference equations, Electron. J. Differ. Equ., 2011 (2011), 1–7.
    [20] B. Ahmad, J. J. Nieto, On nonlocal boundary value problems of nonlinear $q$-difference equations, Adv. Differ. Equ., 2012 (2012), 1–10. https://doi.org/10.1186/1687-1847-2012-81 doi: 10.1186/1687-1847-2012-81
    [21] C. Yu, J. Wang, Eigenvalue of boundary value problem for nonlinear singular third-order $q$-difference equations, Adv. Differ. Equ., 2014 (2014), 1–10. https://doi.org/10.1186/1687-1847-2014-21 doi: 10.1186/1687-1847-2014-21
    [22] B. Ahmad, J. J. Nieto, Basic theory of nonlinear third-order $q$-difference equations and inclusions, Math. Model. Anal., 18 (2013), 122–135. https://doi.org/10.3846/13926292.2013.760012 doi: 10.3846/13926292.2013.760012
    [23] G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge University Press, Cambridge, 1990.
    [24] V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002.
    [25] X. Li, Z. Han, S. Sun, Existence of positive solutions of nonlinear fractional $q$-difference equation with parameter, Adv. Differ. Equ., 2013 (2013), 1–13. https://doi.org/10.1186/1687-1847-2013-260 doi: 10.1186/1687-1847-2013-260
    [26] V. Berinde, Iterative approximation of fixed points, Springer-Verlag Berlin Heidelberg, 2007.
    [27] A. Şahin, Z. Kalkan, H. Arısoy, On the solution of a nonlinear Volterra integral equation with delay. Sakarya Univ. J. Sci., 21 (2017), 1367–1376. https://doi.org/10.16984/saufenbilder.305632
    [28] S. Khatoon, I. Uddin, M. Başarır, A modified proximal point algorithm for a nearly asymptotically quasi-nonexpansive mapping with an application, Comput. Appl. Math., 40 (2021), 1–19. https://doi.org/10.1007/s40314-021-01646-9 doi: 10.1007/s40314-021-01646-9
    [29] A. Şahin, E. Öztürk, G. Aggarwal, Some fixed-point results for the $KF$-iteration process in hyperbolic metric spaces, Symmetry, 15 (2023), 1–16. https://doi.org/10.3390/sym15071360 doi: 10.3390/sym15071360
    [30] Z. Kalkan, A. Şahin, A. Aloqaily, N. Mlaiki, Some fixed point and stability results in $b$-metric-like spaces with an application to integral equations on time scales, AIMS Math., 9 (2024), 11335–11351. https://doi.org/10.3934/math.2024556 doi: 10.3934/math.2024556
    [31] R. Precup, Methods in nonlinear integral equations, Kluwer, Dordrecht, 2002.
    [32] D. R. Smart, Fixed point theorems, Cambridge University Press, 1980.
    [33] S. Banach, Sur les opérations dans les ensembles abstraites et leurs applications aux équations intégrales, Fund. Math., 3 (1922), 133–181.
    [34] P. N. Sadjang, On the fundamental theorem of $(p, q)$-calculus and some $(p, q)$-Taylor formulas, Result. Math., 73 (2018), 1–21. https://doi.org/10.1007/s00025-018-0783-z doi: 10.1007/s00025-018-0783-z
    [35] N. Turan, M. Başarır, A. Şahin, On the solutions of the second-order $(p, q)$-difference equation with an application to the fixed-point theory, AIMS Math., 9 (2024), 10679–10697. https://doi.org/10.3934/math.2024521 doi: 10.3934/math.2024521
    [36] Ö. B. Özen, E. Çetin, Ö. Ülke, A. Şahin, F. S. Topal, Existence and uniqueness of solutions for $(p, q)$-difference equations with integral boundary conditions, Electron. Res. Arch., 33 (2025), 3225–3245. https://doi.org/10.3934/era.2025142 doi: 10.3934/era.2025142
    [37] C. Yu, J. Li, J. Wang, Existence and uniqueness criteria for nonlinear quantum difference equations with $p$-Laplacian, AIMS Math., 7 (2022), 10439-10453. https://doi.org/10.3934/math.2022582 doi: 10.3934/math.2022582
    [38] C. Yu, S. Wang, J. Wang, J. Li, Solvability criterion for fractional $q$-integro-difference system with Riemann-Stieltjes integrals conditions, Fractal Fract. 6 (2022), 1–21. https://doi.org/10.3390/fractalfract6100554
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(263) PDF downloads(32) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog