Nonlinear stochastic models play a crucial role in describing complex wave phenomena in multidimensional physical systems. Motivated by this, we investigated the Stochastic Nizhnik-Novikov-Veselov (SNNV) equation to explore its solitary wave dynamics, chaotic behavior, bifurcation structures, sensitivity, and stability characteristics. We used the extended modified auxiliary equation mapping (EMAEM) method, an enhanced analytical framework with greater flexibility and broader solution structures versus conventional methods. With this approach, we derived new families of exact solitary wave solutions, including single, dark, and bright singular solitons. The proposed methods explain dynamical characteristics that were previously unexplored for the SNNV equation. The stochastic model will be converted into a dynamical system using the Galilean transformation. This approach enables exploration of its dynamical behavior via stochastic processes. We used Poincaré maps, phase portraits, and time-series trajectory simulations to establish its strong stochastic behavior, including chaotic behavior. To show that these methods are dynamically stable, we conducted a stability analysis using the Hamiltonian system framework. The proposed study will significantly advance the dynamic interpretation of chaos in the SNNV equation and establish the superiority of EMAEM approach for wave structure formation.
Citation: Hafiz M. A. Siddiqui, Lotfi Jlali, A. Nazir, Syed T. R. Rizvi, Atef F. Hashem, Aly R. Seadawy. Sensitivity, bifurcation behavior, stability and new traveling wave solutions for the stochastic Nizhnik-Novikov-Veselov system[J]. AIMS Mathematics, 2025, 10(11): 26823-26843. doi: 10.3934/math.20251179
Nonlinear stochastic models play a crucial role in describing complex wave phenomena in multidimensional physical systems. Motivated by this, we investigated the Stochastic Nizhnik-Novikov-Veselov (SNNV) equation to explore its solitary wave dynamics, chaotic behavior, bifurcation structures, sensitivity, and stability characteristics. We used the extended modified auxiliary equation mapping (EMAEM) method, an enhanced analytical framework with greater flexibility and broader solution structures versus conventional methods. With this approach, we derived new families of exact solitary wave solutions, including single, dark, and bright singular solitons. The proposed methods explain dynamical characteristics that were previously unexplored for the SNNV equation. The stochastic model will be converted into a dynamical system using the Galilean transformation. This approach enables exploration of its dynamical behavior via stochastic processes. We used Poincaré maps, phase portraits, and time-series trajectory simulations to establish its strong stochastic behavior, including chaotic behavior. To show that these methods are dynamically stable, we conducted a stability analysis using the Hamiltonian system framework. The proposed study will significantly advance the dynamic interpretation of chaos in the SNNV equation and establish the superiority of EMAEM approach for wave structure formation.
| [1] |
W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60 (1992), 650–654. https://doi.org/10.1119/1.17120 doi: 10.1119/1.17120
|
| [2] |
E. Zahran, M. Khater, Modified extended tanh-function method and its applications to the Bogoyavlenskii equation, Appl. Math. Model., 40 (2016), 1769–1775. https://doi.org/10.1016/j.apm.2015.08.018 doi: 10.1016/j.apm.2015.08.018
|
| [3] |
F. Xie, J. Chen, Z. Lü, Using symbolic computation to exactly solve the integrable Broer-Kaup equations in (2+1)-dimensional spaces, Commun. Theor. Phys., 43 (2005), 585. https://doi.org/10.1088/0253-6102/43/4/003 doi: 10.1088/0253-6102/43/4/003
|
| [4] |
I. Inan, Y. Ugurlu, H. Bulut, Auto-Bäcklund transformation for some nonlinear partial differential equation, Optik, 127 (2016), 10780–10785. https://doi.org/10.1016/j.ijleo.2016.08.115 doi: 10.1016/j.ijleo.2016.08.115
|
| [5] |
H. Hu, X. Jia, B. Sang, Painlevé analysis and symmetry group for the coupled Zakharov-Kuznetsov equation, Phys. Lett. A, 375 (2011), 3459–3463. https://doi.org/10.1016/j.physleta.2011.07.058 doi: 10.1016/j.physleta.2011.07.058
|
| [6] |
D. Kumar, R. Agarwal, J. Singh, A modified numerical scheme and convergence analysis for fractional model of Liénard's equation, J. Comput. Appl. Math., 339 (2018), 405–413. https://doi.org/10.1016/j.cam.2017.03.011 doi: 10.1016/j.cam.2017.03.011
|
| [7] |
N. Kudryashov, One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci., 17 (2012), 2248–2253. https://doi.org/10.1016/j.cnsns.2011.10.016 doi: 10.1016/j.cnsns.2011.10.016
|
| [8] |
M. Kaplan, A. Bekir, A. Akbulut, A generalized Kudryashov method to some nonlinear evolution equations in mathematical physics, Nonlinear Dyn., 85 (2016), 2843–2850. https://doi.org/10.1007/s11071-016-2867-1 doi: 10.1007/s11071-016-2867-1
|
| [9] |
A. Bekir, M. Kaplan, Exponential rational function method for solving nonlinear equations arising in various physical models, Chinese J. Phys., 54 (2016), 365–370. https://doi.org/10.1016/j.cjph.2016.04.020 doi: 10.1016/j.cjph.2016.04.020
|
| [10] |
S. Naqvi, I. Aldawish, S. Rizvi, A. Seadawy, Bilinear neural network solutions for nonlinear waves in the Sawada-Kotera model studied in heat transfer, Eur. Phys. J. Plus, 140 (2025), 835. https://doi.org/10.1140/epjp/s13360-025-06781-4 doi: 10.1140/epjp/s13360-025-06781-4
|
| [11] |
N. Cheemaa, H. Siddiqui, B. Nazir, A. Bekir, A. Almehizia, H. Hussein, Stability, sensitivity, chaotic behavior, and phase trajectories evaluation of the Davey-Stewartson stochastic equation, Nonlinear Dyn., 113 (2025), 17209–17225. https://doi.org/10.1007/s11071-025-10912-y doi: 10.1007/s11071-025-10912-y
|
| [12] |
Sirendaoreji, Auxiliary equation method and new solutions of Klein-Gordon equations, Chaos Soliton. Fract., 31 (2007), 943–950. https://doi.org/10.1016/j.chaos.2005.10.048 doi: 10.1016/j.chaos.2005.10.048
|
| [13] |
N. Cheemaa, A. Seadawy, H. Rezazadeh, Bright-dark solitary wave solutions of coupled integrable (2+1)-dimensional Maccari system in applied physics, New Trends in Physical Science Research, 1 (2022), 31–45. https://doi.org/10.9734/bpi/ntpsr/v1/1969B doi: 10.9734/bpi/ntpsr/v1/1969B
|
| [14] | L. Arnold, Random dynamical systems, In: Dynamical systems, Berlin: Springer, 2006, 1–43. https://doi.org/10.1007/BFb0095238 |
| [15] |
W. Mohammed, F. Al-Askar, C. Cesarano, The analytical solutions of the stochastic mKdV equation via the mapping method, Mathematics, 10 (2022), 4212. https://doi.org/10.3390/math10224212 doi: 10.3390/math10224212
|
| [16] |
F. Al-Askar, C. Cesarano, W. Mohammed, Multiplicative Brownian motion stabilizes the exact stochastic solutions of the Davey-Stewartson equations, Symmetry, 14 (2022), 2176. https://doi.org/10.3390/sym14102176 doi: 10.3390/sym14102176
|
| [17] |
F. Al-Askar, C. Cesarano, W. Mohammed, The solitary solutions for the stochastic Jimbo-Miwa equation perturbed by white noise, Symmetry, 15 (2023), 1153. https://doi.org/10.3390/sym15061153 doi: 10.3390/sym15061153
|
| [18] |
R. Alqahtani, M. Babatin, A. Biswas, Bright optical solitons for Lakshmanan-Porsezian-Daniel model by semi-inverse variational principle, Optik, 154 (2018), 109–114. https://doi.org/10.1016/j.ijleo.2017.09.112 doi: 10.1016/j.ijleo.2017.09.112
|
| [19] | A. Biswas, A. Kara, R. Alqahtani, M. Ullah, H. Triki, M. Belic, Conservation laws for optical solitons of Lakshmanan-Porsezian-Daniel model, Proc. Romanian Acad. A, 19 (2018), 39–44. |
| [20] |
J. Manafian, M. Foroutan, A. Guzali, Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model, Eur. Phys. J. Plus, 132 (2017), 494. https://doi.org/10.1140/epjp/i2017-11762-7 doi: 10.1140/epjp/i2017-11762-7
|
| [21] | A. Biswas, Theory of optical couplers, Opt. Quant. Electron., 35 (2003), 221–235. https://doi.org/10.1023/A: 1022852801087 |
| [22] |
A. Biswas, M. Ekici, A. Sonmezoglu, H. Triki, F. Majid, Q. Zhou, et al., Optical solitons with Lakshmanan-Porsezian-Daniel model using a couple of integration schemes, Optik, 158 (2018), 705–711. https://doi.org/10.1016/j.ijleo.2017.12.190 doi: 10.1016/j.ijleo.2017.12.190
|
| [23] |
M. Hubert, G. Betchewe, M. Justin, S. Doka, K. Crepin, A. Biswas, et al., Optical solitons with Lakshmanan-Porsezian-Daniel model by modified extended direct algebraic method, Optik, 162 (2018), 228–236. https://doi.org/10.1016/j.ijleo.2018.02.091 doi: 10.1016/j.ijleo.2018.02.091
|
| [24] |
A. Al Qarni, A. Ebaid, A. Alshaery, H. Bakodah, A. Biswas, S. Khan, et al., Optical solitons for Lakshmanan-Porsezian-Daniel model by Riccati equation approach, Optik, 182 (2019), 922–929. https://doi.org/10.1016/j.ijleo.2019.01.057 doi: 10.1016/j.ijleo.2019.01.057
|
| [25] |
A. Al Qarni, M. Banaja, H. Bakodah, A. Alshaery, Q. Zhou, A. Biswas, et al., Bright optical solitons for Lakshmanan-Porsezian-Daniel model with spatio-temporal dispersion by improved Adomian decomposition method, Optik, 181 (2019), 891–897. https://doi.org/10.1016/j.ijleo.2018.12.172 doi: 10.1016/j.ijleo.2018.12.172
|
| [26] |
W. Liu, D. Qiu, Z. Wu, J. He, Dynamical behavior of solution in integrable nonlocal Lakshmanan-Porsezian-Daniel equation, Commun. Theor. Phys., 65 (2016), 671. https://doi.org/10.1088/0253-6102/65/6/671 doi: 10.1088/0253-6102/65/6/671
|
| [27] |
X. Gao, J. Liu, G. Wang, Inhomogeneity, magnetic auto-Bäcklund transformations and magnetic solitons for a generalized variable-coefficient Kraenkel-Manna-Merle system in a deformed ferrite, Appl. Math. Lett., 171 (2025), 109615. https://doi.org/10.1016/j.aml.2025.109615 doi: 10.1016/j.aml.2025.109615
|
| [28] |
J. Liu, W. Zhu, Y. Wu, G. Jin, Application of multivariate bilinear neural network method to fractional partial differential equations, Results Phys., 47 (2023), 106341. https://doi.org/10.1016/j.rinp.2023.106341 doi: 10.1016/j.rinp.2023.106341
|
| [29] |
S. Ahmed, I. Aldawish, S. Rizvi, A. Seadawy, Iterative investigation of the nonlinear fractional Cahn-Allen and fractional clannish random walker's parabolic equations by using the hybrid decomposition method, Fractal Fract., 9 (2025), 656. https://doi.org/10.3390/fractalfract9100656 doi: 10.3390/fractalfract9100656
|
| [30] |
Z. Liu, J. Li, Bifurcations of solitary waves and domain wall waves for KdV-like equation with higher-order nonlinearity, Int. J. Bifurcat. Chaos, 12 (2002), 397–407. https://doi.org/10.1142/S0218127402004425 doi: 10.1142/S0218127402004425
|
| [31] |
A. Seadawy, A. Ali, T. Radwan, W. Mohammed, K. Ahmed, Solitary wave solutions for the conformable time-fractional coupled Konno-Oono model via applications of three mathematical methods, AIMS Mathematics, 10 (2025), 16027–16044. https://doi.org/10.3934/math.2025718 doi: 10.3934/math.2025718
|
| [32] |
S. Rizvi, I. Alazman, Nimra, A. Seadawy, Elliptic functions and advanced analysis of soliton solutions for the Dullin-Gottwald-Holm dynamical equation with applications of mathematical methods, Symmetry, 17 (2025), 1773. https://doi.org/10.3390/sym17101773 doi: 10.3390/sym17101773
|
| [33] |
J. Yu, F. Yu, L. Li, Soliton solutions and strange wave solutions for (2+1)-dimensional nonlocal nonlinear Schrödinger equation with PT-symmetric term, Appl. Math. Lett., 168 (2025), 109583. https://doi.org/10.1016/j.aml.2025.109583 doi: 10.1016/j.aml.2025.109583
|
| [34] |
L. Li, F. Yu, Some mixed soliton wave interaction patterns and stabilities for Rabi-coupled nonlocal Gross-Pitaevskii equations, Chaos Soliton. Fract., 194 (2025), 116171. https://doi.org/10.1016/j.chaos.2025.116171 doi: 10.1016/j.chaos.2025.116171
|
| [35] |
Q. Qin, L. Li, F. Yu, Dark matter-wave bound soliton molecules and modulation stability for spin-1 Gross-Pitaevskii equations in Bose-Einstein condensates, Chaos Soliton. Fract., 196 (2025), 116365. https://doi.org/10.1016/j.chaos.2025.116365 doi: 10.1016/j.chaos.2025.116365
|
| [36] |
A. Seadawy, N. Cheemaa, Applications of extended modified auxiliary equation mapping method for high-order dispersive extended nonlinear Schrödinger equation in nonlinear optics, Mod. Phys. Lett. B, 33 (2019), 1950203. https://doi.org/10.1142/S0217984919502038 doi: 10.1142/S0217984919502038
|
| [37] |
C. Pan, N. Cheemaa, W. Lin, M. Inc, Nonlinear fiber optics with water wave flumes: dynamics of the optical solitons of the derivative nonlinear Schrödinger equation, Opt. Quant. Electron., 56 (2024), 434. https://doi.org/10.1007/s11082-023-05985-1 doi: 10.1007/s11082-023-05985-1
|
| [38] |
H. Rehman, R. Akber, A. Wazwaz, H. Alshehri, M. Osman, Analysis of Brownian motion in stochastic Schrödinger wave equation using Sardar sub-equation method, Optik, 289 (2023), 171305. https://doi.org/10.1016/j.ijleo.2023.171305 doi: 10.1016/j.ijleo.2023.171305
|
| [39] |
J. Ahmad, Z. Mustafa, S. Rehman, N. Turki, N. Shah, Solitary wave structures for the stochastic Nizhnik-Novikov-Veselov system via modified generalized rational exponential function method, Results Phys., 52 (2023), 106776. https://doi.org/10.1016/j.rinp.2023.106776 doi: 10.1016/j.rinp.2023.106776
|
| [40] |
A. Wazwaz, The sine-cosine method for obtaining solutions with compact and noncompact structures, Appl. Math. Comput., 159 (2004), 559–576. https://doi.org/10.1016/j.amc.2003.08.136 doi: 10.1016/j.amc.2003.08.136
|