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Abstract: Nonlinear stochastic models play a crucial role in describing complex wave phenomena
in multidimensional physical systems. Motivated by this, we investigated the Stochastic Nizhnik-
Novikov-Veselov (SNNV) equation to explore its solitary wave dynamics, chaotic behavior, bifurcation
structures, sensitivity, and stability characteristics. We used the extended modified auxiliary equation
mapping (EMAEM) method, an enhanced analytical framework with greater flexibility and broader
solution structures versus conventional methods. With this approach, we derived new families of exact
solitary wave solutions, including single, dark, and bright singular solitons. The proposed methods
explain dynamical characteristics that were previously unexplored for the SNNV equation. The
stochastic model will be converted into a dynamical system using the Galilean transformation. This
approach enables exploration of its dynamical behavior via stochastic processes. We used Poincaré
maps, phase portraits, and time-series trajectory simulations to establish its strong stochastic behavior,
including chaotic behavior. To show that these methods are dynamically stable, we conducted a
stability analysis using the Hamiltonian system framework. The proposed study will significantly
advance the dynamic interpretation of chaos in the SNNV equation and establish the superiority of
EMAEM approach for wave structure formation.
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1. Introduction

Nonlinear partial differential equations (NLPDEs) are used in many scientific fields and require
trustworthy methods for modeling the underlying physical processes. Selecting the suitable PDE
analysis and result interpretation procedures is essential. Numerous effective strategies have been
developed, as every PDE presents unique challenges, despite the fact that there is no universal
technique that works for all PDEs. Various famous methods include tanh expansion [1], modified
extended tanh expansion [2], Adomian decomposition [3], Bäcklund transformation [4], Painlevé
expansion [5], fractional homotopy analysis [6], Kudryashov’s technique [7, 8], and the exponential
rational function method [9]. Some other pertinent and useful techniques for dealing with such
phenomena include the Khater approach [10] and the enhanced generalized Riccati mapping
approach [11]. In this paper, a newly developed and more powerful technique, the generalized
auxiliary equation mapping method is considered, which is a more generalized and robust version
of the method proposed by Sirendaoreji [12], because the method provides an elegant way to reduce
the computational complexity and helps in finding more generalized nature exact solutions [13].

The SNNV equation is important in stochastic partial differential equation (SPDE) theory. It helps
study time dependence when randomness is present. Such equations model natural phenomena. The
SPDEs generalize deterministic differential equations by adding time-dependent random fluctuations
and have thus proved indispensable tools for system analysis under the influence of noise. The
SNNV equation is widely used across scientific disciplines, including physics, biology, chemistry,
geophysical dynamics, and climatology [14]. Compared to models in determinism, SPDEs include
effects of stochastic influences on system behavior, hence having richer descriptions of time-evolving
systems. The SNNV equation is found is widely used to describe wave dispersion, interactions
between solitons, and stochastic effects on energy distribution. From modulating planar waves, offering
general hyperbolic systems, and long-wave approximation solutions. Solving SPDEs exactly, however,
remains challenging. The challenge has been overcome by several studies for several SPDEs, such as
the mKdV equation [15], the Davey-Stewartson equation [16], and the Jimbo-Miwa equation [17]. We
consider the stochastic Nizhnik-Novikov-Veselov

Ut + kUxxx + rUyyy + sUx + qUy − 3k(UV)x − 3r(UW)y + vUβt = 0, (1.1)

Ux = Vy, Uy = Wx, (1.2)

here, v is the free control parameter, βt is temporal noise (a Wiener process), and k, r, s, and q are
free parameters. The SNNV system is an extension of the KdV equation and is observed in diverse
physical systems, including sound waves in crystal lattices, ion-acoustic waves in plasmas, stably
stratified ocean internal waves, shallow-water wave dynamics, and nonlinear optics. The solitary wave
propagation in ideal conditions is governed by the SNNV equation in the classical case, but realistic
wave interactions in natural systems require a richer description of multiple interacting waves. To
address such complexities, we use the highly effective technique, EMAEM approach, to derive a soliton
solution. This technique is computationally efficient, versatile across nonlinearities, and provides a
precise solution. The versatility of the EMAEM technique makes it an invaluable resource, particularly
for the study of stochastic phenomena in solitons.

Given its significance, researchers have attempted to obtain analytical solutions to the SNNV
equation using various analytical tools, including the semi-inverse variational principle [18],
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conservation law approach [19], tanh expansion approach [20], Lie symmetry analysis [21], modified
simple equation approach [22], modified extended direct algebraic approach [23], and the Riccati
approach [24]. Others include powerful methods such as the Adomian decomposition approach [25],
the integrable nonlocal LPD equation approach [26]. A KMM system with variable coefficients in
deformed ferrite is analyzed near a noncharacteristic movable singular manifold, yielding symbolic
Magnetic Auto-Bäcklund Transformations and Magnetic Soliton Solutions [27]. A multivariate
bilinear neural network is used to get more precise solutions for NLPDEs [28]. These have played vital
roles in solving nonlinear partial differential equations (NLPDEs) found in scientific and engineering
applications, and for which strong tools for accurate modeling are required [29].

A fundamental phenomenon in nonlinear dynamics is bifurcation, which exhibits transitions
between stability and instability. Bifurcation analysis, originally developed by Liu and Li (2002) [30],
is now an accepted methodology for analyzing soliton solutions in systems. Poincaré maps and phase
diagrams, when applied, allow researchers to analyze chaotic behavior in nonlinear systems [31].
Bifurcation analysis is applied in our case to the SNNV equation via a solver, yielding novel solitary
wave solutions that have not been reported before. To analyze chaotic behavior in greater detail, time
series plots, Poincaré maps, and 2D and 3D phase diagrams, representing phase trajectories versus time
through density and stream plots, are used. As an extension of wave models in nonlinear contexts in
classical systems, SNNV is augmented by stochastic disturbances to replicate realistic systems under
the influence of noise [32]. The SNNV equation has applications in several disciplines, including fluid
flow, nonlinear optics, and plasma physics. The EMAEM approach is discovered to offer an excellent
platform for extracting soliton solutions and their behavior under stochastic effects. The sensitivity
of our system to initial conditions, a necessary property of chaotic behavior, is established in our
presentation. We validate our results by performing a stability analysis using the Hamiltonian technique
and systematically presenting them in an organized structure. Furthermore, for readers interested in
recent trends related to nonlinear dynamics and Solitons, see [33–35].

Bifurcation analysis has become a pertinent tool for studying and discussing the behaviour of
nonlinear dynamics, especially transitions between steady and unstable states. It is essential for
studying bifurcation behaviors and soliton solutions in complex systems, and it was first identified
by Liu and Li (2002) [30]. With the use of tools like phase diagrams and Poincarè maps, researchers
can investigate chaotic features. By applying bifurcation analysis to the Stochastic Nizhnik-Novikov-
Veselov equation of nonlinear nature using the unified solver technique mentioned, we visualized
the chaotic behavior of the dynamical system and explores its various solitary wave solutions in the
complex domain, which are not reported in the literature using other techniques. To identify and
display the existence of chaos, time series diagrams, Poincarè maps, and 2D, 3D phase portraits, along
with their tabular and image form, are used. Examples include plasma physics, nonlinear optics, and
fluid mechanics. EMAEM analysis is an efficient technique for solving the given problem, allowing
us to obtain the soliton solution and examine it when subjected to stochastic forcing. The sensitive
dependence of the dynamical system on initial conditions has also been demonstrated. To verify the
correctness of our calculations, we also performed a stability analysis of the obtained solitary wave
solutions using the Hamiltonian technique in tabulated form.

The study focuses on understanding stochastic dynamical behavior in multidimensional nonlinear
systems, where randomness significantly affects both soliton structures and stability. Contrary to
previous proposed studies for deterministic models, we used the EMAEM. This is because EMAEM
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has better capabilities for handling complex nonlinear equations, resulting in more precise results.
The originality and novelty of the proposed study lie in discovering new forms of single, dark, and
bright singular solitons for the SNNV equation, and in studying their characteristics regarding chaos,
bifurcation, and stability.

The article is structured as follows: the SNNV is briefly reviewed in Section 1. Section 2 provides
a detailed explanation of the methodology used in the suggested approach, based on the family of
SNNV equations. In section 3, we look at the system dynamics stability analysis. Section 4 presents
the chaotic behavior of system dynamics. The bifurcation analysis of the SNNV equation is explained
in Section 5. Section 6 discusses the graphical representation of solutions. The SNNV equation’s
sensitivity analysis is looked at in Section 7. Section 8 presents the findings and comments. The
closing remarks are included in Section 9.

2. Overview of EMAEM method

In this section, we concentrate on using the recently developed EMAEM method, presented by
Seadawy and Cheema [36] and Pan et al. [37], to derive more novel and general travelling wave
solutions for the SNNV system.

M(U,Ut,Ux,Uy,Uxx,Uyy,Vx,Wx, βt . . .) = 0. (2.1)

In M(x, y, t), where M is a polynomial, we apply the traveling wave transformation below to explicitly
derive the exact travelling wave solution:

U(x, y, t) = R(X), X =

m∑
i=0

νixi. (2.2)

Equation (1.1) transforms into a nonlinear ODE of the following form using this transformation.

M2(U,U′,U′′,U′′′,V ′,W ′ . . .) = 0. (2.3)

R(X) =

n∑
j=0

a jF j(X) +

−n∑
j=−1

b− jF j(X) +

n∑
j=2

c jF j−2(X)F
′

(X) +

n∑
j=1

d j

(F
′

(X)
F(X)

) j

, (2.4)

where the arbitrary constants a j, b j, c j, and d j must be determined. In this context, the following
generalized solution is fulfilled by F(X).

F
′2

= (
dF
dX

)2 = β1F2(X) + β2F3(X) + β3F4(X), (2.5)

here β1, β2, β3 will be found later.
The transformation is given by

U(x, y, t) = R(X)e(−vβ(t)− v2
2 t), V(x, y, t) = S (X)e(−vβ(t)− v2

2 t), W(x, y, t) = T (X)e(−vβ(t)− v2
2 t), (2.6)

X = lx + my − pt. (2.7)
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Adding Eqs (2.6) and (2.7) into Eq (1.1), we get stochastic ODEs, such(
(kl3 + rm3)R

′′′

+ (sl + qm − p)R
′

− 3kl(RS )
′

− 3rm(RT )
′
)
e(−vβ(t)− v2

2 t) = 0. (2.8)

Now by assuming (e(−vβ(t)− v2
2 t)) = 1, we obtain,

(kl3 + rm3)R
′′′

+ (sl + qm − p)R
′

− 3kl(RS )
′

− 3rm(RT )
′

= 0, (2.9)

lR
′

= mS
′

,mR
′

= T
′

. (2.10)

Integrating Eq (2.10), we obtain,

S =
l
m

R,T =
m
l

R. (2.11)

Substituting Eq (2.11) into Eq (2.9), we have

(kl3 + rm3)R
′′′

+ (sl + qm − p)R
′

− 3(
kl2

m
+

rm2

l
)(R2)′ = 0. (2.12)

After integrating, we have

(kl3 + rm3)R
′′

+ (sl + qm − p)R − 3(
kl2

m
+

rm2

l
)R2 = 0. (2.13)

For the application of the balancing principle, we have

R
′′

+ Q1R − Q2R2 = 0, (2.14)

where Q1 =
sl+qm−p
kl3+rm3 , and Q2 = 3

ml .
Applying the balance principle yields N = 2. Therefore, Eq (2.4) simplifies as follows:

R(X) = a0 + a1F(X) + a2F(X)2 +
b1

F(X)
+

b2

F(X)2 + c2F
′

(X) + d1
F
′

(X)
F(X)

+ d2

(
F
′ (X)

F(X)

)2

, (2.15)

where a0, a1, a2, b1, b2, c2, d1, and d2 are constants to be determined.
Family 1:

a0 =
1
3

f (lm − 3), a1 =
1
2

g(lm − 2), a2 = h(lm − 1), c2 =
√

hlm, b1 = b2 = d1 = 0, d2 = 1. (2.16)

r1(x, y, t)=
1

12
e
(
− tv2

2 −βtv
)
f

3A4 j2

B2 −
6A2

√
f
√

h jlm
g

+4(−3+lm)−6(−2+lm)B+
12 f h(−1+lmB2)

g2

 ,
where

X = lx + my − pt, A = sech
(
1
2

√
f (X + X0)

)
, B = 1 + j tanh

(
1
2

√
f (X + X0)

)
.

r2(x, y, t) = e
(
− tv2

2 −βtv
) 1

2
F
√

hlm

√
f
h

+
1
4

Eg

√
f
h

(lm − 2) +
1
3

f (lm − 3) +
1
4

E2 f (lm − 1) +
F2

E2

 ,
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where

X = lx + my − pt, E =

 j sinh
( √

f (X + X0)
)

cosh
( √

f (X + X0)
)

+ ρ
+ 1

 ,
F =


√

f j cosh
( √

f (X + X0)
)

cosh
( √

f (X + X0)
)

+ ρ
−

√
f j sinh2

( √
f (X + X0)

)(
cosh

( √
f (X + X0)

)
+ ρ

)
2

 .
r3(x, y, t)=e

(
− tv2

2 −βtv
)(f 3/2

√
h jlm(−Hσ+IG)
g(H + σ)2 +

f j2(−Hσ+IG)2

J2(H + σ)4 +
1
3

f (lm−3)+
f 2hJ2(lm−1)

g2 −
1
2

f J(lm−2)
)
,

where

X = lx+my−pt,G = cosh
( √

f (X + X0)
)
,H = sinh

( √
f (X + X0)

)
, I = ρ

√
σ2 + 1+1, J = 1+

(G + I) j
H + σ

.

Family 2:

a0 =
−6 f k−6 f r−p+q+s

6(k + r)
, a1 =a2 =c2 =b1 =b2 =0, d1 =

i(p − q − s)√
−36 f k2−72 f kr−36 f r2

, d2 = i. (2.17)

r4(x, y, t) = e
(
− tv2

2 −βtv
) L + M

sech2
(

1
2

√
f (X + X0)

)
j tanh

(
1
2

√
f (X + X0)

)
+ 1

+
i f j2sech4

(
1
2

√
f (X + X0)

)
4
(

j tanh
(

1
2

√
f (X + X0)

)
+ 1

)
2

 ,
where

X = lx + my − pt, L =
−6 f k − 6 f r − p + q + s

6(k + r)
,M =

i
√

f j(p − q − s)

2
√
−36 f k2 − 72 f kr − 36 f r2

.

r5(x, y, t) = e
(
− tv2

2 −βtv
)  iF(p − q − s)

E
√
−36 f k2 − 72 f kr − 36 f r2

+
−6 f k − 6 f r − p + q + s

6(k + r)
+

iF2

E2

 ,
where

X = lx + my − pt, E =

 j sinh
( √

f (X + X0)
)

cosh
( √

f (X + X0)
)

+ ρ
+ 1

 ,
F =


√

f j cosh
( √

f (X + X0)
)

cosh
( √

f (X + X0)
)

+ ρ
−

√
f j sinh2

( √
f (X + X0)

)(
cosh

( √
f (X + X0)

)
+ ρ

)
2

 .
r6(x, y, t)=e

(
− tv2

2 −βtv
)(
−6 f k−p+q−6 f r+s

6(k + r)
+

i f j2(IG−σH)2

(σ + H)2J2 −
i
√

f j(p − q − s)(IG − σH)

(σ+H)2J
√
−36 f k2−72 f kr−36 f r2

)
,

where

X = lx+my−pt, G =cosh
( √

f (X+X0)
)
, H =sinh

( √
f (X+X0)

)
, I =ρ

√
σ2+1+1, J =1+

(G+I) j
H+σ

.

Family 3:

a1 =
3g − f glm

3 f
, a2 =

3h − f hlm
3 f

, c2 = b1 = b2 = d1 = 0, d2 =
f lm − 3

3 f
, a0 = 1. (2.18)
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r7(x, y, t) =
1

12
e
(
− tv2

2 −βtv
) (

A4 j2( f lm − 3)
B2 −

4B2 f h( f lm − 3)
g2 + 4B( f lm − 3) + 12

)
,

where

X = lx + my − pt, A = sech
(
1
2

√
f (X + X0)

)
, B = 1 + j tanh

(
1
2

√
f (X + X0)

)
.

r8(x, y, t) = e
(
− tv2

2 −βtv
) F2( f lm − 3)

3E2 f
+

E
√

f
h (3g − f glm)

6 f
+

E2(3h − f hlm)
12h

+ 1

 ,
where

X = lx + my − pt, E =

 j sinh
( √

f (X + X0)
)

cosh
( √

f (X + X0)
)

+ ρ
+ 1

 ,
F =


√

f j cosh
( √

f (X + X0)
)

cosh
( √

f (X + X0)
)

+ ρ
−

√
f j sinh2

( √
f (X + X0)

)(
cosh

( √
f (X + X0)

)
+ ρ

)
2

 .
r9(x, y, t) = e

(
− tv2

2 −βtv
) (

f J2(3h − f hlm)
3g2 −

J(3g − f glm)
3g

+
j2( f lm − 3)(−Hσ + IG)2

3J2(H + σ)4 + 1
)
,

where

X = lx+my−pt, G =cosh
( √

f (X+X0)
)
, H =sinh

( √
f (X+X0)

)
, I =ρ

√
σ2+1+1, J =1+

(G+I) j
H+σ

.

Family 4:

a1 =
g
(
3kl3 − l2ms − lm2q + lmp + 3m3r

)
3 f

(
kl3 + m3r

) , a2 = c2 = b1 = b2 = d1 = 0,

d2 =
−3kl3 + l2ms + lm2q − lmp − 3m3r

3 f
(
kl3 + m3r

) , a0 = 1. (2.19)

r10(x, y, t) = e
(
− tv2

2 −βtv
) 1 − D j2sech4

(
1
2

√
f (X + X0)

)
12

(
j tanh

(
1
2

√
f (X + X0)

)
+ 1

)
2
−

1
3

D
(

j tanh
(
1
2

√
f (X + X0)

)
+ 1

) ,
where

X = lx + my − pt,D =
3kl3 − l2ms + lm(p − mq) + 3m3r

kl3 + m3r
.

r11(x, y, t) = e
(
− tv2

2 −βtv
)  (−C)F2

3E2 f
(
kl3 + m3r

) +
ECg

√
f
h

6 f
(
kl3 + m3r

) + 1

 ,
where

X = lx + my − pt, E =

 j sinh
( √

f (X + X0)
)

cosh
( √

f (X + X0)
)

+ ρ
+ 1

 ,
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F =


√

f j cosh
( √

f (X + X0)
)

cosh
( √

f (X + X0)
)

+ ρ
−

√
f j sinh2

( √
f (X + X0)

)(
cosh

( √
f (X + X0)

)
+ ρ

)
2

 ,
C =

(
3kl3 − l2ms + lm(p − mq) + 3m3r

)
.

r12(x, y, t) = e
(
− tv2

2 −βtv
) (
−

C j2(IG − Hσ)2

3J2(H + σ)4 (
kl3 + m3r

) − CJ
3
(
kl3 + m3r

) + 1
)
,

where
X = lx + my − pt,G = cosh

( √
f (X + X0)

)
,H = sinh

( √
f (X + X0)

)
,

I = ρ
√
σ2 + 1 + 1, J = 1 +

(G + I) j
H + σ

,C =
(
3kl3 − l2ms + lm(p − mq) + 3m3r

)
.

3. Stability analysis

The stability of the traveling wave solutions for Eq (2.14) is analyzed using the Hamiltonian method,
as detailed below:

U =

∫ ∞

−∞

R(x)2

2
dx, (3.1)

where D indicates the Hamiltonian-system (HS) momentum and R(x) is a traveling wave solution. This
is the definition of the necessary stability criterion:

∂ D
∂ v

> 0. (3.2)

The wave velocity is represented by v. We use Eqs (3.1) and (3.2) to identify parameters and ranges
where the traveling wave solutions of the HS are stable. Using the necessary stability conditions
in these respective ranges, we derive the following stability features of our solutions. A detailed
classification of all derived solutions along with their stability behavior is provided in Table 1.

Table 1. Stability Analysis of ri(x, y, t) 1 ≤ i ≤ 12.

No. S olution S tability Values o f the variables
1 r1(x, y, t) S table f = 2.3, g = 1.5, j = −1.4, X0 = −1.6, m = 2.7, v = 1, −1 ≤ x, t ≤ 1
2 r2(x, y, t) S table h = −1.1, j = −1.4, v = 3, X0 = 1.2, p = −2.8, y = 1.9, −4 ≤ x, t ≤ 4
3 r3(x, y, t) S table m = 2.5 , v = 2, j = 1, y = 1.5, X0 = 3.3, h = −4, ρ = −3.2, −3 ≤ x, t ≤ 3
4 r4(x, y, t) S table l = −1.5, v = 5, f = 1.3, j = −1.4, y = −1.9, h = −1.3, k = −1.1, −6 ≤ x, t ≤ 6
5 r5(x, y, t) Unstable S ingular solution
6 r6(x, y, t) S table l = 1.7, m = 2, v = 4, f = −0.9, q = −3.2 y = 0.9, X0 = −1.3, −5 ≤ x, t ≤ 5
7 r7(x, y, t) S table f = 3, g = 2.2, v = 5, h = 2.3, j = −3.4, l = −2.5, m = −2.7 −7 ≤ x, t ≤ 7
8 r8(x, y, t) S table l = 0.2, m = 3.8, v = 6, j = −3.5, y = −1.3, X0 = −2.3, −8 ≤ x, t ≤ 8
9 r9(x, y, t) Unstable S ingular solution
10 r10(x, y, t) S table j = −1.4, y = 3.9, v = 8, X0 = −1.6, k = −3.1, g = 1.2, s = 2.4, −9 ≤ x, t ≤ 9
11 r11(x, y, t) Unstable S ingular solution
12 r12(x, y, t) S table j = −5, y = −2.5, v = 6, X0 = −1.3, ρ = 1.2, β = −2.4, −10 ≤ x, t ≤ 10
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4. Chaotic behavior with phase portrait
In this section, we discuss the quasi-periodic chaotic behaviour. The planar dynamical equation’s

perturbation term is
dR
dX

= ω, (4.1)

dω
dX

= −Q1R + Q2R2 + N(X), (4.2)

where N(X) = α sin(βX), α cos(βX), α cosh(βX) and (Ae−0.02X). The two parameters in perturbation
terms are α and β. The amplitude and frequency of an external force applied to a planar dynamical
system are represented by parameters α and β, respectively. The impact of these perturbation terms on
the previously indicated structure Eqs (4.1) and (4.2) is now evaluated. The governing model’s chaotic
behavior is observed when suitable parameter, frequency, and intensity values are considered, as shown
in Figures 1–4. Time series representations of chaotic nature, Poincarè sections, and 2D and 3D phase
portraits are provided.

(a) 2D Phase portraits of
chaotic behavior of dynamical
Eqs (4.1) and (4.2) when a
trigonometric function cos is
considered a perturbation term.

(b) 2D Phase portraits
of chaotic behavior of
dynamical Eqs (4.1) and
(4.2) when a trigonometric
function cosh is considered
a perturbation term.

(c) 2D Phase portraits of chaotic
behavior of dynamical Eqs (4.1)
and (4.2) when a trigonometric
function exp is considered a
perturbation term.

Figure 1. Graphic representation of 2D phase portraits of Eqs (4.1) and (4.2) with different
values of N(X) = α cos(βX), α cosh(βX) and α exp(βX) with α = −0.03.

(a) 3D Phase portraits of chaotic
behavior of dynamical Eqs (4.1) and
(4.2) when a trigonometric function
cos is considered a perturbation
term.

(b) 3D Phase portraits of chaotic
behavior of dynamical Eqs (4.1)
and (4.2) when a trigonometric
function exp is considered a
perturbation term.

(c) 3D Phase portraits of chaotic
behavior of dynamical Eqs (4.1) and
(4.2) when a trigonometric function sin
is considered a perturbation term.

Figure 2. Graphic representation of 3D phase portraits of Eqs (4.1) and (4.2) with different
values of N(X) = α cos(βX), α exp(βX) and α sin(βX) with α = −1.
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(a) Poincare Phase cos (b) Poincare Phase exp (c) Poincare Phase cosh

Figure 3. Graphic representation of 3D phase portraits of Eqs (4.1) and (4.2) with different
values of N(X) = α cos(βX), α exp(βX) and α cosh(βX) with α = 0.08.

(a) Time series Phase sin (b) Time series Phase exp (c) Time series Phase cos

Figure 4. Graphic representation of 3D phase portraits of Eqs (4.1) and (4.2) with different
values of N(X) = α sin(βX), α exp(βX) and α cos(βX), whereas A = 70andB = −70.

5. Bifurcation analysis

The term “bifurcation” refers to the mathematical changes that occur within a system and affect
the kind of solutions the differential equations yield. The mathematical structure of dynamic systems
is frequently examined using it. When a system’s behavior suddenly shifts due to a slight alteration
in its parameter values, this is known as a bifurcation. By addressing local and global aspects of
one-dimensional operator separation in Banach spaces, this concept demonstrates how split equality
issues can be resolved using the theory. The specific arrangement of bifurcating solutions and common
structural features, such as stability, are also investigated. Through the application of the Galilean
transformation, it is possible to convert Eq (2.14) into two systems of equations. Next, using the
Hamiltonian function, Eq (2.14) is transformed into the dynamical form shown below:

dR
dX

= ω, (5.1)

dω
dX

= −Q1R + Q2R2, (5.2)
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H(R, ω) =
1
2
ω2 −

Q1

2
R2 +

Q2

3
R3 = h, (5.3)

where Q1 =
sl+qm−p
kl3+rm3 , Q2 = 3

ml and h is referred to as Hamiltonian Constant.
Furthermore, h, is total energy, 1

2ω
2 is kinetic energy and −Q1

2 R2 +
Q2
3 R3 is the potential energy. For

finding the equilibrium points of system Eq (5.2), the solution for this system is inevitable:

ω = 0, (5.4)
−Q1R + Q2R2 = 0. (5.5)

We get two equilibrium points: R1 = (0, 0), R2 =

(
Q1
Q2

)
.

Jacobian matrix determinant of Eqs (5.1) and (5.2).

J =

∣∣∣∣∣∣ 0 1
−Q1R + Q2R2 0

∣∣∣∣∣∣ ,
J(R, ω) = −(−Q1R + Q2R2). (5.6)

The following claims, which are founded on ideas of planar dynamics, are true: (R, ω) is a saddle point
(R, ω) if J(R, ω) < 0. For J(R, ω) > 0, the center point is at (R, ω). The cuspidal point is at (R, ω)
when J(R, ω) = 0. Here, we adjust the relevant parameter values to illustrate the potential outcomes
and to illustrate the qualitative behavior of the system under different parameter conditions, the phase
portraits are presented in Figure 5:
Case 1. Q1 > 0,Q2 > 0.
Case 2. Q1 > 0,Q2 < 0.
Case 3. Q1 < 0,Q2 < 0.
Case 4. Q1 < 0,Q2 > 0.

(a) Phase Portrait Q1>0, Q2>0 (b) Phase Portrait Q1>0, Q2<0 (c) Phase Portrait Q1<0, Q2<0 (d) Phase Portrait Q1<0, Q2>0

Figure 5. Graphical representation of Phase portraits within the dynamic framework of Eqs
(5.1) and (5.2)

6. Analytical graphical representation

Using Mathematica 13.3 and Maple, we present graphical representations of our discovered
solutions in several dimensions (rational, trigonometric, mixed, and hyperbolic functions in various
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forms). The objective is to gain a better understanding of the physical architecture of fractional
shallow-water wave occurrences. The plots display different kinds of solitons from traveling wave
solutions. Figures 6 to 10 are mostly bright solitons with localized peak-shaped waves that decay
smoothly to zero, as evident from the plots in 3D, contour, and density. The profiles are sharp-peaked
for a few, showing singular bright solitons. The wave profiles in Figure 11 are localized dips against a
non-zero background, making them anti-dark solitons. The figures collectively display bright, singular
bright, and anti-dark solitons, characterized by their amplitude localization and wave behavior.

(a) Contour Plot of r1 (b) 3D surface Plot of r1 (c) Density linear Plot of r1

Figure 6. Graphical visualization of traveling wave for r1(x, y, t) with Parameters f = −2.1,
g = −3.2, h = −4.3, j = −3.4, l = −2.5, X0 = −1.6, m = −2.7. (a) The Contour Profile
of traveling wave with intervals (-5,5), (0,5). (b) 3D Surface Profile of traveling wave with
intervals (-10,10), (0,5). (c) Density linear Profile of traveling wave with intervals (-10,10),
(0,10).

(a) Linear Plot of r4 (b) Side-Projection of r4 (c) 2D Plot of r4

Figure 7. Graphical visualization of traveling wave for r4(x, y, t) with Parameters m = −2.7,
p = −3.8, y = −1.9, v = −2, β = −1.1, k = −2.6. (a) The Linear Profile of traveling wave
with intervals (-10,10), (0,3). (b) Side-Projection Profile of traveling wave with intervals
(-10,10), (0,5). (c) 2D Profile of travelling wave with interval (-10,10).
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(a) Top-Down Projection of r6 (b) Linear Plot of r6 (c) 3D Slice Contour of r6

Figure 8. Graphical visualization of travelling wave for r6(x, y, t) with Parameters l = 2.7,
m = 1.5, f = 3.8, j = 3, y = 1.5, X0 = 1.3, h = −1. (a) The Top-Down Projection Profile of
traveling wave with intervals (-5,5), (0,5). (b) Linear Profile of traveling wave with interval
(-5,5). (c) 3D Slice Contour Profile of traveling wave with intervals (-5,5), (0,5).

(a) Contour Plot of r8 (b) Side Projection of r8 (c) Linear Plot of r8

Figure 9. Graphical visualization of traveling wave for r8(x, y, t) with Parameters l = −3.7,
m = −3.8, f = −4, j = −3.5, y = −1.3, X0 = −2.3, h = −3. (a) The Contour Profile
of traveling wave with intervals (-5,5), (0,3). (b) Side Projection of traveling wave with
intervals (-5,5), (0,5). (c) Linear Profile of traveling wave with interval (-2,2).

(a) Steam Density Plot of r12 (b) 3D-Surface Plot of r12 (c) 1D-Plot of r12

Figure 10. Graphical visualization of travelling wave for r12(x, y, t) with Parameters f =

−3.8, j = 5, y = −2.5, X0 = 1.3, p = −4, ρ = 1.2, β = −2.4. (a) The Steam Density Profile
of traveling wave with intervals (-5,5), (0,5). (b) 3D-Surface Profile of traveling wave with
interval (-5,5). (c) 1D Profile of traveling wave with intervals (-2,2), (0,5).
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(a) Density Plot of r10 (b) Top-Down Projection Plot of r10 (c) Contour Plot of r10

Figure 11. Graphical visualization of traveling wave for r10(x, y, t) with Parameters f = −1.3,
g = −1.2, j = −1.4, l = −1.5, X0 = −1.6. (a) The Density Profile of traveling wave with
intervals (-2,2), (0,5). (b) Top-Down Projection Profile of travelling wave with intervals (-
15,15), (0,3). (c) Contour Profile of traveling wave with intervals (-10,10), (0,5).

7. Sensitivity
The graphical representations of the dynamical system’s sensitivity to initial conditions in different

dimensions for Eqs (4.1) and (4.2) have been presented in this section. A sensitivity analysis of the
dynamical system is thus performed using initial conditions. Given R

′

= ω(X), Eq (2.14) can be
transformed using the Galilean transformation to become:

dR
dX

= ω(X), (7.1)
dω
dX

= −Q1R(X) + Q2R(X)2. (7.2)

A comprehensive graphical analysis of the system’s dynamics is provided in Figures 12–17, where
the trajectories and wave profiles corresponding to different initial conditions are compared side
by side. These figures clearly demonstrate the system’s sensitivity to initial data, with noticeable
differences in oscillatory patterns and peak structures. Such visualizations complement the theoretical
results and emphasize the role of initial circumstances in shaping the overall evolution of the solutions.

(a) Two curves with initial
condition (R, ω) = (3, 0)

(b) Two curves with initial
condition (R, ω) = (2.9, 0)

(c) Two curves with initial
condition (R, ω) = (2.8, 0)

Figure 12. The system governed by Eqs (7.1) and (7.2) is shown in sensitivity analysis
for different initial circumstances. In portion (a), the numerical solution for (R(0), ω(0)) =

(3, 0) is displayed. Over the time span [0, 10], the black curve represents ω(X) while the red
curve represents R(X). While part (c) shows the solution for (R(0), ω(0)) = (2.8, 0), part (b)
shows the system’s reaction for the initial condition (R(0), ω(0)) = (2.9, 0). The sensitivity
of the dynamical system to slight variations in the initial circumstances is evident from these
figures.
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(a) Sensitive dependence over
different Initial Conditions
together

(b) V wave Pattern R(0) and
waves ω(0) with shaded regions

(c) List Plot of R(0) with varying
ω(0) = (3, 2.9, 2, 8)

(d) List Plot ofω(0) with varying
ω(0) = (3, 2.9, 2.8)

Figure 13. Three distinct initial conditions are used to present sensitivity analysis of the
dynamical system. Trajectories for (R(X), ω(X)) = (3, 0), (2.9, 0), (2.8, 0) are displayed
in parts (a) and (b), with the shaded areas amply demonstrating the system’s sensitivity to
variations in the initial circumstances. Wave profiles of R(X) for fixed R(0) = 0 and variable
ω(0) = 3, 2.9, 2.8 are shown in part (c), which forms a clear V-pattern. The impact of
initial conditions on system dynamics across the time interval [0, 10] is highlighted in part
(d), which displays the corresponding wave profiles of ω(X) for the same set of initial values.

(a) 3D Plot of ω(X) with varying
R(0) = (3, 2.9, 2.8)

(b) 3D Plot of R(X) with varying
R(0) = (3, 2.9, 2.8)

(c) 3D Plot ω(X) which show
w wave pattern with varying
(R(X), ω(X)) = (0, 2.8)

(d) 3D Plot of R(X) which show
v wave pattern with varying
(R(X), ω(X)) = (3, 0)

Figure 14. The 3D plots of R(X) and ω(X) are depicted in the pictures, demonstrating
how they change dynamically under different beginning conditions. R(X) and ω(X) exhibit
general evolution patterns in parts (a) and (b), respectively. Part (d) shows a V-shaped wave
profile of R(X) for the initial condition (R(X), ω(X)) = (3, 0), part (c) shows a W-shaped
wave profile for the starting condition (R(X), ω(X)) = (0, 2.8). As time passes, the system’s
delicate reliance on initial conditions is made evident by these visualizations.
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(a) 2D Plot of R(0) with varying
R(0) = (3, 2.9, 2.8)

(b) 2D Plot of ω(0) with varying
R(0) = (3, 2.9, 2.8)

(c) 3D Plot of ω(0) with varying
ω(0) = (3, 2.9, 2.8)

(d) 3D Plot of ω(0) with varying
(R(0), 0) = (2.8, 0)

Figure 15. The dynamical system’s sensitivity analysis under initial conditions is shown
in the figure. With ω(0) = 0, the numerical solutions of R(X) for R(0) = 3, 2.9, 2.8 are
displayed in part (a). Periodic wave profiles are revealed by the matching solutions of ω(X)
in Part (b). In Part (c), the behavior of ω(X) with fixed R(0) = 0 and various beginning
conditions ω(0) = 3, 2.9, 2.8 is demonstrated, along with periodic patterns. The wave
profile of ω(X) for the fixed initial condition (R(0), ω(0)) = (2.8, 0) is shown in part (d).
Plotting the system’s sensitive dependence on beginning circumstances over the time span
[0, 10] together shows that even little changes in R(0) can have a big impact on how the
system evolves.

(a) Phase Trajectories for
ω(0) = (3) value

(b) Phase Trajectories
for different
ω(0)=(3, 2.9, 2.8)
values

(c) Phase Plane for varying
ω(0)=(3, 2.9, 2.8)

(d) Density Plot of Phase Space

Figure 16. The phase trajectory of the dynamical system is shown in part (a). (R(0), ω(0)) =

(0, 3) as the initial condition for (7.1) and (7.2). Phase trajectories for various initial
conditions ω(0) = 3, 2.9, 2.8 with fixed R(0) = 0 are shown in Part (b). The accompanying
phase plane charts, which depict the system’s evolution under these beginning conditions,
are displayed in Part (c). The density plot of the phase space over time for the identical initial
conditions is shown in Part (d), which illustrates how sensitive the system is to slight changes
in ω(0) with R(0) = 0.
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(a) Phase Trajectories
for different
R(0) = (3, 2.9, 2.8)
values

(b) Phase Trajectories for
R(0) = (3) value

(c) Phase Portrait with Trajectories
and Stream Density

(d) Density Plot of Phase Space

Figure 17. The dynamical system’s phase trajectories are displayed in Part (a). (7.1) and
(7.2) in the opening circumstances with R(0) = 0 fixed, ω(0) = 3, 2.9, 2.8. The phase
trajectory for the single beginning condition is shown in part (b). (0, 3) = (R(0), ω(0)).
The phase portrait for various beginning conditions is shown in Part (c), which includes
both trajectories and stream density. R(0) = 0 and ω(0) = 3, 2.9, 2.8. The density map
of the phase space over time for initial conditions is shown in Part (d). ω(0) = 0 and
R(0) = 3, 2.9, 2.8. The system’s sensitivity to beginning conditions is demonstrated by these
visualizations taken together.

8. Discussion

In this section, we discuss the comparisons and differences between the discovered families from
results and those previously documented in the literature. Various standard analytic approaches to the
SNNV system are considered.

• First, our proposed method for constructing new families of results in Eq (2.4) has a unique
structure that is novel and distinct, given a combination of three parameters. The largest and most
obvious difference is this.
• Second, we employ several sets of constant values a j, b j, c j, and d j to graphically depict

the dynamics of our obtained results in multiple dimensions using mathematical tools such as
Mathematica 13.3 and Maple.
• Equation (2.4) provides many new and practical analytical solutions, like combination functions,

functions of rational type, functions of trigonometric type, and hyperbolic functions. Observing
this is imperative.

The Solutions found by the Sardar subequation method, Modified generalized rational exponential
function method, Jacobi elliptic function method, Burgers’ equation, Extended tanh-function method,
Truncated Mittag-Leffler function, tanh-coth method, sine-cosine method, and the Modified Simplest
Equation method were all discussed and found to differ significantly from our latest presented
solutions. These dissimilarities were observed in comparison with the findings presented in [38–40],
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respectively.

9. Conclusions

The generalized form of the traditional SNNV equation, which incorporates stochastic disturbances,
is known as the SNNV system. It can model noisy processes in fields like fluid dynamics, nonlinear
optics, and plasma physics. Our objectives of the study will be to obtain exact soliton solutions
for the equation presented and to investigate the stochastic process characteristics of the solutions
using the EMAEM. The applicability and flexibility of the EMAEM approach for solving complex
nonlinear equations were demonstrated through various solitons generated by the equation, including
isolated, bright, and dark solitons. A comprehensive analysis was also carried out for the generalized
SNNV system. This system describes the propagation of optical pulses through nonlinear media. The
corresponding planar dynamical system was obtained using the Galilean transformation. Its analysis
is performed via bifurcation analysis. An external forcing system was used to study the possibility of
chaos in the system. This is examined using two-, three-, and four-dimensional phase portraits and
time series analysis.

The Hamiltonian technique was used for stability analysis of the solitary wave solutions. The
obtained results are documented in tables for accuracy. Sensitivity and modulation instability analyses
were presented for different initial conditions. These indicated that the system is stable, as small
variations in initial conditions lead to insignificant changes in the solution. Mathematica software
was used to produce 2D, 3D, and contour plots to graphically present the solutions. The results
are presented as pathwise (sample path) solutions to the SNNV equation, depicting the deterministic
process each stochastic process follows along a given noise path. The introduction strengthens the
conceptual interpretation of the stochastic framework adopted for the study.

Future work in this direction could focus on developing stochastic models and their soliton solutions
using Lie symmetry and neural network approaches.
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