Research article

Qualitative study of the (2+1)-dimensional BLMPE equation: Variational principle, Hamiltonian and diverse wave solutions

  • Published: 12 November 2025
  • MSC : 35C07, 34C23

  • The current study aims to present detailed qualitative and quantitative research on the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation (BLMPE), which plays a key role in the field of incompressible fluids. First, we constructed the variational principle using the semi-inverse method (SIM) and developed the Hamiltonian based on the variational principle. Then, we derived the planar dynamical system (PDS), depicted the phase portraits, and carried out the bifurcation analysis to expound the existence of wave solutions with the different wave shapes. In addition, chaotic behaviors were elaborated by imposing the perturbed term, and the sensitivity analysis was conducted by taking the different initial conditions. Finally, the invariant algebraic curve approach (based on the PDS), the direct mapping method (from the unified equation), and the Hamiltonian based method were used to investigate the diverse wave solutions, including the anti-kink solitary, kink solitary, periodic, and singular periodic wave solutions. The profiles of these different solutions are graphically illustrated by assigning reasonable parameters. The results of this paper are novel and can provide a better insight into the dynamics of the equation under consideration.

    Citation: Kangjia Wang, Kanghua Yan, Feng Shi, Geng Li, Xiaolian Liu. Qualitative study of the (2+1)-dimensional BLMPE equation: Variational principle, Hamiltonian and diverse wave solutions[J]. AIMS Mathematics, 2025, 10(11): 26168-26186. doi: 10.3934/math.20251152

    Related Papers:

  • The current study aims to present detailed qualitative and quantitative research on the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation (BLMPE), which plays a key role in the field of incompressible fluids. First, we constructed the variational principle using the semi-inverse method (SIM) and developed the Hamiltonian based on the variational principle. Then, we derived the planar dynamical system (PDS), depicted the phase portraits, and carried out the bifurcation analysis to expound the existence of wave solutions with the different wave shapes. In addition, chaotic behaviors were elaborated by imposing the perturbed term, and the sensitivity analysis was conducted by taking the different initial conditions. Finally, the invariant algebraic curve approach (based on the PDS), the direct mapping method (from the unified equation), and the Hamiltonian based method were used to investigate the diverse wave solutions, including the anti-kink solitary, kink solitary, periodic, and singular periodic wave solutions. The profiles of these different solutions are graphically illustrated by assigning reasonable parameters. The results of this paper are novel and can provide a better insight into the dynamics of the equation under consideration.



    加载中


    [1] Y. Zhu, J. Yang, J Li, L. Hu, Q. Zhou, Interaction properties of double-hump solitons in the dispersion decreasing fiber, Nonlinear Dyn., 109 (2022), 1047–1052. https://doi.org/10.1007/s11071-022-07491-7 doi: 10.1007/s11071-022-07491-7
    [2] J. Yang, Y. Zhu, W. Qin, S. H. Wang, C. Q. Dai, J. T. Li, Higher-dimensional soliton structures of a variable-coefficient Gross-Pitaevskii equation with the partially nonlocal nonlinearity under a harmonic potential, Nonlinear Dyn., 108 (2022), 2551–2562. https://doi.org/10.1007/s11071-022-07337-2 doi: 10.1007/s11071-022-07337-2
    [3] M. M. Roshid, H. Or-Roshid, Effect of the nonlinear dispersive coefficient on time-dependent variable coefficient soliton solutions of the Kolmogorov-Petrovsky-Piskunov model arising in biological and chemical science, Heliyon, 10 (2024), e31294. https://doi.org/10.1016/j.heliyon.2024.e31294 doi: 10.1016/j.heliyon.2024.e31294
    [4] X. Lü, H. Hui, F. Liu, Y. Bai, Stability and optimal control strategies for a novel epidemic model of COVID-19, Nonlinear Dyn., 106 (2021), 1491–1507. https://doi.org/10.1007/s11071-021-06524-x doi: 10.1007/s11071-021-06524-x
    [5] S. Duran, An investigation of the physical dynamics of a traveling wave solution called a bright soliton, Phys. Scr., 96 (2021), 125251. https://doi.org/10.1088/1402-4896/ac37a1 doi: 10.1088/1402-4896/ac37a1
    [6] K. J Wang, S. Li, K. H. Yan, Resonant multiple wave, multi-lump wave and complex N-soliton solutions to the (3+1)-dimensional Jimbo-Miwa equation, Mod. Phys. Lett. B, 40 (2026), 265000. https://doi.org/10.1142/S0217984926500016 doi: 10.1142/S0217984926500016
    [7] Y. S. Özkan, E. Yaşar, Breather-type and multi-wave solutions for (2+1)-dimensional nonlocal Gardner equation, Appl. Math. Comput., 390 (2021), 125663. https://doi.org/10.1016/j.amc.2020.125663 doi: 10.1016/j.amc.2020.125663
    [8] Y. Sağlam Özkan, A. R. Seadawy, E. Yaşar, Multi-wave, breather and interaction solutions to (3+1) dimensional Vakhnenko-Parkes equation arising at propagation of high-frequency waves in a relaxing medium, J. Taibah Uni. Sci., 15 (2021), 666–678. https://doi.org/10.1080/16583655.2021.1999053 doi: 10.1080/16583655.2021.1999053
    [9] Y. H Liang, K. J. Wang, Dynamics of the new exact wave solutions to the local fractional Vakhnenko-Parkes equation, Fractal, 33 (2025), 2550102. https://doi.org/10.1142/S0218348X25501026 doi: 10.1142/S0218348X25501026
    [10] S. Kumar, K. Singh, R. K. Gupta, Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and (G'/G)-expansion method, Pramana, 79 (2012), 41–60. https://doi.org/10.1007/s12043-012-0284-7 doi: 10.1007/s12043-012-0284-7
    [11] A. Malik, F. Chand, H. Kumar, Exact solutions of some physical models using the (G'/G)-expansion method, Pramana, 78 (2012), 513–529. https://doi.org/10.1007/s12043-011-0253-6 doi: 10.1007/s12043-011-0253-6
    [12] W. X. Ma, J. H. Lee, A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo-Miwa equation, Chaos Solitons Fract., 42 (2009), 1356–1363. https://doi.org/10.1016/j.chaos.2009.03.043 doi: 10.1016/j.chaos.2009.03.043
    [13] Y. X. Ma, B. Tian, Q. X. Qu, Painlevé analysis, Bäcklund transformations and traveling-wave solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in a fluid, Int. J. Mod. Phys. B, 35 (2021), 2150108. https://doi.org/10.1142/S0217979221501083 doi: 10.1142/S0217979221501083
    [14] P. F. Han, T. Bao, Bäcklund transformation and some different types of N‐soliton solutions to the (3+1)‐dimensional generalized nonlinear evolution equation for the shallow‐water waves, Math. Meth. Appl. Sci., 44 (2021), 11307–11323. https://doi.org/10.1002/mma.7490 doi: 10.1002/mma.7490
    [15] D. Shang, Exact solutions of coupled nonlinear Klein-Gordon equation, Appl. Math. Comput., 217 (2010), 1577–1583. https://doi.org/10.1016/j.amc.2009.06.072 doi: 10.1016/j.amc.2009.06.072
    [16] E. M. E. Zayed, K. A. Gepreel, M. El-Horbaty, Optical solitons in birefringent fibers with Kaup-Newell equation using two integration schemes, Optik, 251 (2022), 167992. https://doi.org/10.1016/j.ijleo.2021.167992 doi: 10.1016/j.ijleo.2021.167992
    [17] W. B. Rabie, H. M. Ahmed, Dynamical solitons and other solutions for nonlinear Biswas–Milovic equation with Kudryashov's law by improved modified extended tanh-function method, Optik, 245 (2021), 167665. https://doi.org/10.1016/j.ijleo.2021.167665 doi: 10.1016/j.ijleo.2021.167665
    [18] X. Wang, J. Wu, Y. Wang, C. Chen, Extended tanh-function method and its applications in nonlocal complex mKdV equations, Mathematics, 10 (2022), 3250. https://doi.org/10.3390/math10183250 doi: 10.3390/math10183250
    [19] A. Zulfiqar, J. Ahmad, Soliton solutions of fractional modified unstable Schrödinger equation using Exp-function method, Results Phys., 19 (2020), 103476. https://doi.org/10.1016/j.rinp.2020.103476 doi: 10.1016/j.rinp.2020.103476
    [20] S. T. Mohyud-Din, Y. Khan, N. Faraz, Exp-function method for solitary and periodic solutions of Fitzhugh-Nagumo equation, Int. J. Numer. Meth. Heat Fluid Flow, 22 (2012), 335–341. https://doi.org/10.1108/09615531211208042 doi: 10.1108/09615531211208042
    [21] U. Afzal, N. Raza, N, I. G. Murtaza, On soliton solutions of time fractional form of Sawada-Kotera equation, Nonlinear Dyn., 95 (2019), 391–405. https://doi.org/10.1007/s11071-018-4571-9 doi: 10.1007/s11071-018-4571-9
    [22] N. Raza, A. Javid, Optical dark and dark-singular soliton solutions of (1+2)-dimensional chiral nonlinear Schrodinger's equation, Waves Rand. Complex Media, 29 (2019), 496–508. https://doi.org/10.1080/17455030.2018.1451009 doi: 10.1080/17455030.2018.1451009
    [23] T. Wang, L. Tian, Z. Ma, Z. Yang, H. Han, Bifurcation soliton solutions, M-lump, breather waves, and interaction solutions for (3+1)-dimensional P-type equation, Chaos Solitons Fract., 192 (2025), 115932. https://doi.org/10.1016/j.chaos.2024.115932 doi: 10.1016/j.chaos.2024.115932
    [24] Z. Ma, H. Han, L. Tian, Multiple solitons, multiple lump solutions, and lump wave with solitons for a novel (2+1)-dimensional nonlinear partial differential equation, Phys. Scr., 99 (2024), 115238. https://doi.org/10.1088/1402-4896/ad831b doi: 10.1088/1402-4896/ad831b
    [25] M. A. Abdou, The extended F-expansion method and its application for a class of nonlinear evolution equations, Chaos Solitons Fractals, 31 (2017), 95–104. https://doi.org/10.1016/j.chaos.2005.09.030 doi: 10.1016/j.chaos.2005.09.030
    [26] W. B. Rabie, H. M. Ahmed, Cubic-quartic optical solitons and other solutions for twin-core couplers with polynomial law of nonlinearity using the extended F-expansion method, Optik, 253 (2022), 168575. https://doi.org/10.1016/j.ijleo.2022.168575 doi: 10.1016/j.ijleo.2022.168575
    [27] X. Guan, W. Liu, Q. Zhou, Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation, Nonlinear Dyn., 98 (2019), 1491–1500. https://doi.org/10.1007/s11071-019-05275-0 doi: 10.1007/s11071-019-05275-0
    [28] J. Yang, Y. Zhu, W. Qin, 3D bright-bright Peregrine triple-one structures in a nonautonomous partially nonlocal vector nonlinear Schrödinger model under a harmonic potential, Nonlinear Dyn., 111(2023), 13287–13296. https://doi.org/10.1007/s11071-023-08526-3 doi: 10.1007/s11071-023-08526-3
    [29] F. Bouzari Liavoli, A. Fakharian, H. Khaloozadeh, Sub-optimal controller design for time-delay nonlinear partial differential equation systems: An extended state-dependent differential Riccati equation approach, Int. J. Syst. Sci., 54 (2023), 1815–1840. https://doi.org/10.1080/00207721.2023.2210140 doi: 10.1080/00207721.2023.2210140
    [30] W. W. Mohammed, A. M. Albalahi, S. Albadrani, E. S. Aly, R. Sidaoui, A. E. Matouk, The analytical solutions of the stochastic fractional Kuramoto-Sivashinsky equation by using the Riccati equation method, Math. Prob. Eng., 2022 (2022), 5083784. https://doi.org/10.1155/2022/5083784 doi: 10.1155/2022/5083784
    [31] B. Chen, Z. Ma, Y. Liu, Q. Bi, Lump solution, lump and soliton interaction solution, breather solution, and interference wave solution for the (3+1)-dimensional fourth-order nonlinear equation by bilinear neural network method, Mod. Phys. Lett. B, 39 (2025), 2550143. https://doi.org/10.1142/S021798492550143X doi: 10.1142/S021798492550143X
    [32] Z. Ma, Y. Liu, Y. Wang, The exact analytical solutions of the (2+1)-dimensional extended Korteweg-de Vries equation using bilinear neural network method and bilinear residual network method, Mod. Phys. Lett. B, 39 (2025), 2550045. https://doi.org/10.1142/S0217984925500459 doi: 10.1142/S0217984925500459
    [33] K. L. Wang, Dynamical analysis of the soliton solutions for the nonlinear fractional Akbota equation, Fractals, 33 (2025), 2550084. http://doi.org/10.1142/S0218348X25500847 doi: 10.1142/S0218348X25500847
    [34] K. L. Wang, Diversity of soliton solutions to the nonlinear fractional Kadoma, Fractals, 33 (2025), 2550107. http://doi.org/10.1142/S0218348X25501075 doi: 10.1142/S0218348X25501075
    [35] X. Y. Gao, Incompressible fluid symbolic computation and bäcklund transformation: (3+1)-dimensional variable-coefficient Boiti-Leon-Manna-Pempinelli model, Zeitschrift Naturforschung A, 70 (2025), 59–61. https://doi.org/10.1515/zna-2014-0272 doi: 10.1515/zna-2014-0272
    [36] Y. Tang, W. Zai, New periodic-wave solutions for (2+1) and (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equations, Nonlinear Dyn., 81 (2015), 249–255. https://doi.org/10.1007/s11071-015-1986-4 doi: 10.1007/s11071-015-1986-4
    [37] M. T. A. Darvishi, M. Najafi, L. C. Kavitha, Stair and step soliton solutions of the integrable (2+ 1) and (3+ 1)-dimensional Boiti-Leon-Manna-Pempinelli equations, Commun. Theoret. Phys., 58 (2012), 785. https://doi.org/10.1088/0253-6102/58/6/01 doi: 10.1088/0253-6102/58/6/01
    [38] K. J. Wang, F. Shi, Multi-soliton solutions and soliton molecules of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for the incompressible fluid, EPL, 145 (2024), 42001. https://doi.org/10.1209/0295-5075/ad219d doi: 10.1209/0295-5075/ad219d
    [39] L. Hu, Y. T. Gao, S. L. Jia, J. J. Su, G. F. Deng, Solitons for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the Pfaffian technique, Mod. Phys. Lett. B, 33 (2019), 1950376. https://doi.org/10.1142/S0217984919503767 doi: 10.1142/S0217984919503767
    [40] Y. F. He, Multi-lump, Resonant Y-shape soliton, complex multi kink solitons and the solitary wave solutions to the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for incompressible fluid, Phys. Scr., 99 (2024), 095201. https://doi.org/10.1088/1402-4896/ad664a doi: 10.1088/1402-4896/ad664a
    [41] A. R. Seadawy, A. Ali, M. A. Helal, Analytical wave solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli and Boiti-Leon-Manna-Pempinelli equations by mathematical methods, Math. Meth. Appl. Sci., 44 (2021), 14292–14315. https://doi.org/10.1002/mma.7697 doi: 10.1002/mma.7697
    [42] M. Najafi, S. Arbabi, M. Najafi, Wronskian determinant solutions of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Int. J. Adv. Math. Sci, 1 (2013), 8–11. https://doi.org/10.4236/jamp.2013.15004 doi: 10.4236/jamp.2013.15004
    [43] J. H. He, Semi-Inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics, Int. J. Turbo Jet Engines, 14 (1997), 23–28. https://doi.org/10.1515/TJJ.1997.14.1.23 doi: 10.1515/TJJ.1997.14.1.23
    [44] K. J. Wang, K. H. Yan, S. Li, G. Li, A variational principle of the complex Hirota-dynamical model for optics, Int. J. Mod. Phys. B, (2025), 2550298. https://doi.org/10.1142/S0217979225502984 doi: 10.1142/S0217979225502984
    [45] Y. H. Liang, K. J. Wang, Chaotic pattern, phase portrait, bifurcation analysis, variational principle, Hamiltonian and diverse wave solutions of the generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili equation, Pramana, 2026. https://doi.org/10.1007/s12043-025-03057-5 doi: 10.1007/s12043-025-03057-5
    [46] A. Gasull, H. Giacomini, Explicit travelling waves and invariant algebraic curves, Nonlinearity, 28 (2015), 1597. https://doi.org/10.1088/0951-7715/28/6/1597 doi: 10.1088/0951-7715/28/6/1597
    [47] A. Chen, W. Zhu, Z. Qiao, W. Huang, Algebraic traveling wave solutions of a non-local hydrodynamic-type model, Math. Phys. Anal. Geom., 17 (2014), 465–482. https://doi.org/10.1007/s11040-014-9165-2 doi: 10.1007/s11040-014-9165-2
    [48] C. Valls, Algebraic traveling waves for the generalized Newell-Whitehead-Segel equation, Nonlinear Anal.: Real World Appl., 36 (2017), 249–266. https://doi.org/10.1016/j.nonrwa.2017.01.013 doi: 10.1016/j.nonrwa.2017.01.013
    [49] E. Fan, Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method, J. Phys. A: Math. Gen., 35 (2002), 6853. https://doi.org/10.1088/0305-4470/35/32/306 doi: 10.1088/0305-4470/35/32/306
    [50] J. H. He, Preliminary report on the energy balance for nonlinear oscillations, Mech. Res. Commun., 29 (2002), 107–111. https://doi.org/10.1016/S0093-6413(02)00237-9 doi: 10.1016/S0093-6413(02)00237-9
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(350) PDF downloads(31) Cited by(0)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog