Research article Special Issues

Asymptotic performance of nonoscillatory solutions of functional differential equations involving a delayed damping term

  • Published: 12 November 2025
  • MSC : 34C10, 34K11

  • This work investigated the asymptotic performance of nonoscillatory solutions to the functional differential equation (FDE) $ \left(\alpha \left(u\right) \left\vert y^{\prime }\left(u\right) \right\vert ^{\kappa -1}y^{\prime }\left(u\right) \right) ^{\prime } \; + \; p\left(u\right) F\left(y^{\prime }\left(\delta \left(u\right) \right) \right) \; + \; q\left(u\right) G\left(y\left(\rho \left(u\right) \right) \right) \; = \; 0 $, which involves a delayed damping term. Using Riccati and comparison methods, we extended the previous results to the nonlinear case of the considered equation. Furthermore, the new criteria improved upon the previous ones by removing some constraints on the delay functions. Then, for the linear case, we derived new criteria that take into account all parameters of the equation. The examples and comparisons provided illustrate the importance and novelty of our results.

    Citation: Osama Moaaz, Asma Al-Jaser. Asymptotic performance of nonoscillatory solutions of functional differential equations involving a delayed damping term[J]. AIMS Mathematics, 2025, 10(11): 26153-26167. doi: 10.3934/math.20251151

    Related Papers:

  • This work investigated the asymptotic performance of nonoscillatory solutions to the functional differential equation (FDE) $ \left(\alpha \left(u\right) \left\vert y^{\prime }\left(u\right) \right\vert ^{\kappa -1}y^{\prime }\left(u\right) \right) ^{\prime } \; + \; p\left(u\right) F\left(y^{\prime }\left(\delta \left(u\right) \right) \right) \; + \; q\left(u\right) G\left(y\left(\rho \left(u\right) \right) \right) \; = \; 0 $, which involves a delayed damping term. Using Riccati and comparison methods, we extended the previous results to the nonlinear case of the considered equation. Furthermore, the new criteria improved upon the previous ones by removing some constraints on the delay functions. Then, for the linear case, we derived new criteria that take into account all parameters of the equation. The examples and comparisons provided illustrate the importance and novelty of our results.



    加载中


    [1] R. P. Agarwal, M. Bohner, W. T. Li, Nonoscillation and oscillation: Theory for functional differential equations, CRC Press, 2004. https://doi.org/10.1201/9780203025741
    [2] R. P. Agarwal, L. Berezansky, E. Braverman, A. Domoshnitsky, Nonoscillation theory of functional differential equations with applications, Springer Science & Business Media, 2012.
    [3] E. Uri, Oscillation theory of two-term differential equations, Springer Science & Business Media, 1997.
    [4] R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for difference and functional differential equations, Springer Science & Business Media, 2013.
    [5] L. Erbe, Oscillation theory for functional differential equations, New York: Routledge, 2017. https://doi.org/10.1201/9780203744727
    [6] L. Berezansky, A. Domoshnitsky, R. Koplatadze, Oscillation, nonoscillation, stability and asymptotic properties for second and higher order functional differential equations, New York: Chapman and Hall/CRC, 2020. https://doi.org/10.1201/9780429321689
    [7] F. A. Rihan, Y. Kuang, G. Bocharov, Delay differential equations: Theory, applications and new trends, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), i–iv. https://doi.org/10.3934/dcdss.2020404 doi: 10.3934/dcdss.2020404
    [8] O. Bazighifan, Nonlinear differential equations of fourth-order: Qualitative properties of the solutions, AIMS Mathematics, 5 (2020), 6436–6447. https://doi.org/10.3934/math.2020414 doi: 10.3934/math.2020414
    [9] A. A. El-Gaber, M. M. A. El-Sheikh, M. Zakarya, A. A. I. Al-Thaqfan, H. M. Rezk, On the oscillation of solutions of third-order differential equations with non-positive neutral coefficients, AIMS Mathematics, 9 (2024), 32257–32271. https://doi.org/10.3934/math.20241548 doi: 10.3934/math.20241548
    [10] M. Bohner, S. R. Grace, I. Jadlovská, Sharp oscillation criteria for second-order neutral delay differential equations, Math. Methods Appl. Sci., 43 (2020), 10041–10053. https://doi.org/10.1002/mma.6677 doi: 10.1002/mma.6677
    [11] G. K. Cooray, R. E. Rosch, K. J. Friston, Global dynamics of neural mass models, PLoS Comput. Biol., 19 (2023), e1010915. https://doi.org/10.1371/journal.pcbi.1010915 doi: 10.1371/journal.pcbi.1010915
    [12] Z. Feng, G. Chen, S. B. Hsu, A qualitative study of the damped duffing equation and applications, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1097–1112. https://doi.org/10.3934/dcdsb.2006.6.1097 doi: 10.3934/dcdsb.2006.6.1097
    [13] M. V. B. Santana, Exact solutions of nonlinear second-order autonomous ordinary differential equations: Application to mechanical systems, Dynamics, 3 (2023), 444–467. https://doi.org/10.3390/dynamics3030024 doi: 10.3390/dynamics3030024
    [14] O. Dosly, P. Rehák, Half-linear differential equations, Elsevier, 2005.
    [15] J. K. Hale, Theory of functional differential equations, 2 Eds., New York: Springer, 1977. https://doi.org/10.1007/978-1-4612-9892-2
    [16] R. P. Agarwal, Difference equations and inequalities: Theory, methods, and applications, Boca Raton: CRC Press, 2000. https://doi.org/10.1201/9781420027020
    [17] S. S. Rao, Mechanical vibrations, 5 Eds., Pearson, 2010.
    [18] K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics, Dordrecht: Springer, 1992. https://doi.org/10.1007/978-94-015-7920-9
    [19] W. H. Hayt, J. Kemmerly, S. Durbin, Engineering circuit analysis, McGraw-Hill Education, 2021.
    [20] Á. Garab, I. P. Stavroulakis, Oscillation criteria for first order linear delay differential equations with several variable delays, Appl. Math. Lett., 106 (2020), 106366. https://doi.org/10.1016/j.aml.2020.106366 doi: 10.1016/j.aml.2020.106366
    [21] E. R. Attia, Oscillation tests for first-order linear differential equations with non-monotone delays, Adv. Differ. Equ., 2021 (2021), 41. https://doi.org/10.1186/s13662-020-03209-4 doi: 10.1186/s13662-020-03209-4
    [22] E. R. Attia, G. E. Chatzarakis, On the oscillation of first-order differential equations with deviating arguments and oscillatory coefficients, AIMS Mathematics, 8 (2023), 6725–6736. https://doi.org/10.3934/math.2023341 doi: 10.3934/math.2023341
    [23] I. P. Stavroulakis, A survey on the oscillation of first-order retarded differential equations, Axioms, 13 (2024), 407. https://doi.org/10.3390/axioms13060407 doi: 10.3390/axioms13060407
    [24] M. Bohner, S. R. Grace, I. Jadlovská, Sharp results for oscillation of second-order neutral delay differential equations, Electron. J. Qual. Theory Differ. Equ., 2023, 1–23. https://doi.org/10.14232/ejqtde.2023.1.4
    [25] T. S. Hassan, A. A. Menaem, Y. Jawarneh, N. Iqbal, A. Ali, Oscillation criterion of Kneser type for half-linear second-order dynamic equations with deviating arguments, AIMS Mathematics, 9 (2024), 19446–19458. https://doi.org/10.3934/math.2024947 doi: 10.3934/math.2024947
    [26] G. E. Chatzarakis, S. R. Grace, I. Jadlovská, On the sharp oscillation criteria for half-linear second-order differential equations with several delay arguments, Appl. Math. Comput., 397 (2021), 125915. https://doi.org/10.1016/j.amc.2020.125915 doi: 10.1016/j.amc.2020.125915
    [27] I. Jadlovská, New criteria for sharp oscillation of second-order neutral delay differential equations, Mathematics, 9 (2021), 2089. https://doi.org/10.3390/math9172089 doi: 10.3390/math9172089
    [28] I. Jadlovská, J. Džurina, J. R. Graef, S. R. Grace, Sharp oscillation theorem for fourth-order linear delay differential equations, J. Inequal. Appl., 2022 (2022), 122. https://doi.org/10.1186/s13660-022-02859-0 doi: 10.1186/s13660-022-02859-0
    [29] O. Moaaz, S. Furuichi, A. Muhib, New comparison theorems for the $n$th order neutral differential equations with delay inequalities, Mathematics, 8 (2020), 454. https://doi.org/10.3390/math8030454 doi: 10.3390/math8030454
    [30] S. R. Grace, J. Džurina, I. Jadlovská, T. Li, On the oscillation of fourth-order delay differential equations, Adv. Differ. Equ., 2019 (2019), 118. https://doi.org/10.1186/s13662-019-2060-1 doi: 10.1186/s13662-019-2060-1
    [31] I. Jadlovská, G. E. Chatzarakis, J. Džurina, S. R. Grace, On sharp oscillation criteria for general third-order delay differential equations, Mathematics, 9 (2021), 1675. https://doi.org/10.3390/math9141675 doi: 10.3390/math9141675
    [32] E. Chandrasekaran, G. E. Chatzarakis, R. Sakthivel, E. Thandapani, Results on oscillatory properties of third-order functional difference equations with semi-canonical operators, Math. Slovaca, 75 (2025), 353–368. https://doi.org/10.1515/ms-2025-0027 doi: 10.1515/ms-2025-0027
    [33] T. S. Hassan, A. A. Attiya, M. Alshammari, A. A. Menaem, A. Tchalla, I. Odinaev, Oscillatory and asymptotic behavior of nonlinear functional dynamic equations of third order, J. Funct. Spaces Appl., 2022. https://doi.org/10.1155/2022/7378802
    [34] T. S. Hassan, E. R. Attia, B. M. El-Matary, Iterative oscillation criteria of third-order nonlinear damped neutral differential equations, AIMS Mathematics, 9 (2024), 23128–23141. https://doi.org/10.3934/math.20241124 doi: 10.3934/math.20241124
    [35] T. Li, Y. Rogovchenko, S. Tang, Oscillation of second-order nonlinear differential equations with damping, Math. Slovaca, 64 (2014), 1227–1236. https://doi.org/10.2478/s12175-014-0271-1 doi: 10.2478/s12175-014-0271-1
    [36] X. Fu, T. Li, C. Zhang, Oscillation of second-order damped differential equations, Adv. Differ. Equ., 2013 (2013), 326. https://doi.org/10.1186/1687-1847-2013-326 doi: 10.1186/1687-1847-2013-326
    [37] Q. Liu, M. Bohner, S. R. Grace, T. Li, Asymptotic behavior of even-order damped differential equations with $p$-Laplacian like operators and deviating arguments, J. Inequal. Appl., 2016 (2016), 321. https://doi.org/10.1186/s13660-016-1246-2 doi: 10.1186/s13660-016-1246-2
    [38] S. Liu, Q. Zhang, Y. Yu, Oscillation of even-order half-linear functional differential equations with damping, Comput. Math. Appl., 61 (2010), 2191–2196. https://doi.org/10.1016/j.camwa.2010.09.011 doi: 10.1016/j.camwa.2010.09.011
    [39] D. Yang, C. Bai, On the oscillation criteria for fourth-order $p$-Laplacian differential equations with middle term, J. Funct. Spaces, 2021. https://doi.org/10.1155/2021/5597947
    [40] S. R. Grace, Oscillatory and asymptotic behavior of damped functional differential equations, Math. Nachr., 142 (1989), 297–305. https://doi.org/10.1002/mana.19891420121 doi: 10.1002/mana.19891420121
    [41] I. V. Kamenev, Oscillation criteria, connected with averaging, for the solutions of second order ordinary differential equations, Differ. Uravn., 10 (1974), 246–252.
    [42] S. H. Saker, P. Y. H. Pang, R. P. Agarwal, Oscillation theorems for second order nonlinear functional differential equations with damping, Dynamic Sys. Appl., 12 (2003), 307–322.
    [43] O. Moaaz, H. Ramos, On the oscillation of second-order functional differential equations with a delayed damping term, Appl. Math. Lett., 163 (2025), 109464. https://doi.org/10.1016/j.aml.2025.109464 doi: 10.1016/j.aml.2025.109464
    [44] H. Li, N. Jin, Y. Zhang, Existence of nonoscillatory solutions for higher order nonlinear mixed neutral differential equations, Math. Model. Control, 4 (2024), 417–423. https://doi.org/10.3934/mmc.2024033 doi: 10.3934/mmc.2024033
    [45] F. K. Alarfaj, A. Muhib, Second-order differential equations with mixed neutral terms: new oscillation theorems, AIMS Mathematics, 10 (2025), 3381–3391. https://doi.org/10.3934/math.2025156 doi: 10.3934/math.2025156
    [46] M. Alqhtani, F. Masood, K. M. Saad, O. Bazighifan, On the oscillation criteria for neutral differential equations with several delays, Sci. Rep., 15 (2025), 34014. https://doi.org/10.1038/s41598-025-13746-1 doi: 10.1038/s41598-025-13746-1
    [47] Z. Hou, Y. Sun, Oscillation and asymptotic criteria for certain third-order neutral differential equations involving distributed deviating arguments, Math. Slovaca, 75 (2025), 837–852. https://doi.org/10.1515/ms-2025-0061 doi: 10.1515/ms-2025-0061
    [48] O. Moaaz, New criteria for oscillation of nonlinear neutral differential equations, Adv. Differ. Equ., 2019 (2019), 484. https://doi.org/10.1186/s13662-019-2418-4 doi: 10.1186/s13662-019-2418-4
    [49] Ch. G. Philos, On the existence of nonoscillatory solutions tending to zero at $\infty $ for differential equations with positive delays, Arch. Math., 36 (1981), 168–178. https://doi.org/10.1007/BF01223686 doi: 10.1007/BF01223686
    [50] X. H. Tang, Oscillation for first order superlinear delay differential equations, J. Lond. Math. Soc., 65 (2002), 115–122. https://doi.org/10.1112/s0024610701002678 doi: 10.1112/s0024610701002678
    [51] G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation theory of differential equations with deviating arguments, New York: Dekker, 1987.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(454) PDF downloads(35) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog