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Abstract: This work investigated the asymptotic performance of nonoscillatory solutions to the
functional differential equation (FDE)

(
α (u) |y′ (u)|κ−1 y′ (u)

)′
+ p (u) F (y′ (δ (u))) + q (u) G (y (ρ (u)))

= 0, which involves a delayed damping term. Using Riccati and comparison methods, we extended
the previous results to the nonlinear case of the considered equation. Furthermore, the new criteria
improved upon the previous ones by removing some constraints on the delay functions. Then, for the
linear case, we derived new criteria that take into account all parameters of the equation. The examples
and comparisons provided illustrate the importance and novelty of our results.
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1. Introduction

Qualitative theory is of immense importance and vitality due to its many applications in most
branches of science. This theory answers many questions surrounding non-linear mathematical models
and provides information about the stability of solutions, their oscillation, periodicity, synchrony,
symmetry, and others.

Oscillation theory is one of the main areas of qualitative theory, which primarily examines the
oscillatory characteristics of differential equation solutions, see [1–3]. The study of the oscillatory
properties of differential equations has advanced significantly over the last two decades, see [4–6].
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Oscillation and asymptotic properties of delay equations have important applications in various real-
world mathematical models. Furthermore, there are many intriguing theoretical issues in oscillation
theory that require sophisticated mathematical analysis methods; see, for example, [7–10]. Second-
order nonlinear differential equations appear in the modeling of many natural phenomena, see, for
example, [11–13].

A key idea in the analytical study of the behavior of solutions to differential equations is damping.
In actuality, “damping” describes the state of the solution that arises from the addition of this
term, in which the solution’s amplitude gradually decreases. Investigating how non-delay damping
influences the oscillatory behavior of solutions to differential equations presents an intriguing and
meaningful direction for further analysis; see [14–16]. Numerous realistic systems, such as mechanical
vibrations [17], biological rhythms [18], and electrical RLC circuits (Resistance, Inductance, and
Capacitance) [19], are modeled using second-order damped differential equations.

In this study, we consider the functional differential equation (FDE)(
α (u) |y′ (u)|κ−1 y′ (u)

)′
+ p (u) F

(
y′ (δ (u))

)
+ q (u) G (y (ρ (u))) = 0, (1.1)

where u ≥ u0 and κ > 1 is a real number. Furthermore, we use the following assumptions:

(H1) α, p, q ∈ C
(
Iu0 , [0,∞)

)
and α (u) > 0, where I% =

[
%,∞);

(H2) δ, ρ ∈ C1 (
Iu0 ,R

)
, δ (u) ≤ u, ρ (u) ≤ u, δ′ (u) ≥ 0, ρ′ (u) ≥ 0, δ (u)→ ∞, and ρ (u)→ ∞ as u→ ∞;

(H3) F ∈ C (R,R) and there is a ` > 0 such that F (z) /z ≥ `, for z , 0;
(H4) G ∈ C (R,R) and there is a k > 0 such that G (y) /yκ ≥ k, for y , 0.

We say that a function y ∈ C
(
Iuy ,R

)
, uy ∈ Iu0 , is a solution of (1.1) if y satisfies (1.1) for u ∈ Iuy , and

α (y′)κ ∈ C1
(
Iuy ,R

)
. We only consider those solutions of (1.1) which satisfy sup {|y (u)| : u ≥ u1} > 0

for every u1 ∈ Iuy .
A solution y is called oscillatory if it has a sequence of zeros {un}

∞
n=0 such that limn→∞ un = ∞.

Stating that all solutions of a given equation are oscillatory or converge to zero implies that any
solution—if it exists—must exhibit oscillatory or asymptotic behavior.

Definition 1.1. Equation (1.1) satisfies PropertyA if all of its solutions oscillate or converge to zero.

There has been a recent active research movement on the oscillatory and asymptotic performance
of solutions to FDEs. Oscillation criteria for first-order equations have been developed by several
methods; see, for example, [20–23]. Studies [24–27] developed well-known techniques to obtain
more efficient oscillatory criteria for testing solutions of second-order equations. This development
has also been reflected in the study of the oscillatory properties of even-order equations; see, for
example, [28–30]. Odd-order equations have received less attention, but their oscillatory testing
methods have also been improved in several studies (see [31–34]).

On the other hand, numerous studies discussed the effect of adding a damping term on the oscillatory
performance of solutions to FDEs; see [35, 36] for second-order equations and [37–39] for higher
even-order equations. The analytical problems resulting from this addition were often addressed in
one of two ways: first, ignoring one of the equation’s terms during the investigation, and second,
incorporating the damping term into the higher-order term. However, the drawbacks of the criteria,
which are obtained with these approaches, are that they are not affected by some coefficients of the
equation, and some of them are difficult to apply.
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For FDEs with a delayed damping term

y′′ (u) + p (u) y′ (δ (u)) + q (u) G (y (ρ (u))) = 0,

Grace [40] tested the oscillatory properties of this equation, where yG (y) > 0 and G is nondecreasing.
He used the comparison principle to exclude increasing positive solutions by the condition

lim inf
u→∞

∫ u

δ(u)
p (l) dl >

1
e
.

Kamenev criteria are conditions applied to ascertain whether the solutions of specific kinds of
differential equations, especially second-order equations, oscillate. These criteria usually entail using
methods that analyze the attributes of the solutions to identify oscillation conditions, such as the Riccati
transform and integral averaging (see [41]). Saker et al. [42] presented the Kamenev-type criteria for
the oscillatory properties of the FDE(

α (u) y′ (u)
)′

+ p (u) y′ (δ (u)) + q (u) G (y (ρ (u))) = 0, (1.2)

where δ ≥ ρ and G satisfies (H4) when κ = 1.
Very recently, Moaaz and Ramos [43] studied the oscillatory behavior of the FDE (1.2). Using a

new approach, they were able to obtain a criterion that guarantees the oscillation of all solutions.
When studying increasing positive solutions, the technique used in Grace’s results [40] depends on

neglecting the last term of the equation (which is positive) and thus obtaining the inequality

y′′ (u) + p (u) y′ (δ (u)) ≤ 0.

As a result, the effects of q (u) and ρ (u) are not considered by the criterion that excludes increasing
positive solutions, while the results in [42] neglected the damping term and obtained the inequality(

α (u) y′ (u)
)′

+ q (u) G (y (ρ (u))) ≤ 0.

Therefore, the criteria for this case are clearly not affected by p (u) and δ (u). On the other hand, we
noted that previous results considered only the linear case of the equation under study. Therefore, the
motivations for this study lie in extending previous results to the nonlinear case and improving previous
results by obtaining criteria that take all parameters into account.

Among the studies that appeared recently and contributed to the development of oscillation theory
for neutral differential equations are Li et al. [44] and Alarfaj and Muhib [45]. They studied the
oscillatory behavior of mixed neutral delay differential equations. Alqhtani et al. [46] and Hou and
Sun [47] are also among the authors that improved the oscillation conditions for the neutral equations.

The main objective of this study is to investigate the oscillatory behavior of solutions to FDE (1.1).
Our results extend and improve the results in [40, 42, 43] to the nonlinear case.

The following section is divided into three parts: the first introduces some auxiliary lemmas,
followed by theorems for testing the asymptotic behavior in the nonlinear case, and finally, improved
criteria for the linear case of FDE (1.1).
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2. Main results

In this section, the category of all eventually positive solutions to (1.1) is denoted by Y+ for
convenience. Also, we define κ̃ := 1/ (κ + 1)κ+1 and

ϕ (u) :=
∫ u

u1

dl
α1/κ (l)

,

for u ∈ Iu1 , where u1 ≥ u0 is large enough.

2.1. Auxiliary lemmas

Here, we conclude some significant facts and inequalities for studying the oscillatory performance
of solutions. Minutely, we work on:

– Determining the behavior of the first derivative of a positive solution;
– Finding the conditions that ensure that the decreasing positive solutions converge to zero;
– Deducing relationships between the derivatives of the increasing positive solutions.

Lemma 2.1. The first derivative of eventually positive solutions to Eq (1.1) has a constant sign.

Proof. Let y ∈ Y+. Thus, y (ρ (u)) > 0 for u ∈ Iu1 , where u1 ≥ u0 is large enough. Using (H3) and (H4),
Eq (1.1) takes the form(

α (u)
[
y′ (u)

]κ)′
+ ` p (u) y′ (δ (u)) + k q (u) yκ (ρ (u)) ≤ 0. (2.1)

Suppose the contrary that y′ is oscillatory. Therefore, there is u2 ∈ Iu1 such that y′ (δ (u2)) = 0. It
follows from (1.1) that (

α (u)
[
y′ (u)

]κ)′∣∣∣
u=u2
≤ −k q (u2) yκ (ρ (u2)) ≤ 0.

This necessitates that y′ cannot have any zeros after the first one, which goes against its oscillatory
feature. So, y′ is of one sign. �

Lemma 2.2. All decreasing positive solutions to Eq (1.1) converge to zero if there is a function µ ∈
C1 (
Iu0 , (0,∞)

)
that satisfies the following conditions:

µ′ (u) ≥ 0 and
(
µ (u) p (u)
δ′ (u)

)′
≤ 0, (2.2)

∫ ∞

u0

µ (l) q (l) dl = ∞, (2.3)

and ∫ ∞

u0

(
1

µ (x)α (x)

∫ x

u0

µ (l) q (l) dl
)1/κ

dx = ∞. (2.4)

Proof. Let y ∈ Y+ and y′ (u) < 0 for u ≥ u1. Then, there is y0 ≥ 0 such that y→ y0 as u→ ∞, and so

y (u) ≥ y0, (2.5)
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for u ≥ u2 ≥ u1.
Suppose the contrary that y0 > 0. Now, we define Ω := µα

[
y′
]κ. Using (1.1), we obtain

Ω′ = µ
(
α

[
y′
]κ)′

+ µ′ α
[
y′
]κ

≤ −` µ p y′ (δ) − k µ q yκ (ρ) + µ′ α
[
y′
]κ ,

which with (2.2) and (2.5) gives
Ω′ ≤ −` µ p y′ (δ) − k yκ0 µ q.

Integrating the last inequality implies that

Ω (u) ≤ Ω (u2) − `
∫ u

u2

µ (l) p (l) y′ (δ (l)) dl − k yκ0

∫ u

u2

µ (l) q (l) dl. (2.6)

Using the Bonnet theorem, there is a u∗ ∈ [u2, u] that satisfies∫ u

u2

µ (l) p (l)
[
−y′ (δ (l))

]
dl = −

µ (u2) p (u2)
δ′ (u2)

∫ u∗

u2

δ′ (l) y′ (δ (l)) dl

=
µ (u2) p (u2)
δ′ (u2)

[
y (δ (u2)) − y (δ (u∗))

]
≤

µ (u2) p (u2)
δ′ (u2)

y (δ (u2)) . (2.7)

Combining (2.6) and (2.7), we arrive at

Ω (u) ≤ Ω (u2) + `
µ (u2) p (u2)
δ′ (u2)

y (δ (u2)) − k yκ0

∫ u

u2

µ (l) q (l) dl.

In view of (2.3), this inequality becomes

µ (u)α (u)
[
y′ (u)

]κ
≤ −

kyκ0
2

∫ u

u2

µ (l) q (l) dl,

or

y′ (u) ≤ −
k1/κy0

21/κ

(
1

µ (u)α (u)

∫ u

u2

µ (l) q (l) dl
)1/κ

.

Consequently,

y (u) ≤ y (u2) −
k1/κy0

21/κ

∫ u

u2

(
1

µ (x)α (x)

∫ x

u2

µ (l) q (l) dl
)1/κ

dx.

This, with (2.4), leads to a contradiction. �

Lemma 2.3. Every increasing positive solution y to Eq (1.1) satisfies the following:(
α (u)

[
y′ (u)

]κ)′
≤ 0, (2.8)

y (u) ≥ α1/κ (u) y′ (u)ϕ (u) , (2.9)

and (
y (u)
ϕ (u)

)′
≤ 0. (2.10)
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Proof. Let y ∈ Y+ and y′ (u) > 0 for u ≥ u1. By virtue of (H3) and (H4), Eq (1.1) becomes(
α

[
y′
]κ)′
≤ −` p y′ (δ) − k q yκ (ρ) ≤ 0.

So, we have

y (u) ≥
∫ u

u1

[
α (l) (y′ (l))κ

]1/κ

α1/κ (l)
dl ≥ α1/κ (u) y′ (u)ϕ (u) ,

which yields (
y
ϕ

)′
=
ϕ y′ − α1/κy

ϕ2 ≤ 0.

�

2.2. New criteria

By simple and direct approaches, this section derives some criteria that exclude increasing positive
solutions. Thus, by combining these criteria with the conditions in Lemma 2.2, we can guarantee
PropertyA.

Theorem 2.1. Equation (1.1) satisfies Property A if there is µ ∈ C1 (
Iu0 , (0,∞)

)
such that one of the

following cases is satisfied:
(i) Conditions (2.2), (2.4), and ∫ ∞

u0

q (l) dl = ∞; (2.11)

(ii) Conditions (2.2)–(2.4), and there is β ∈ C1 (
Iu0 , (0,∞)

)
such that

lim sup
u→∞

∫ u

u0

k β (l) q (l)
ϕκ (ρ (l))
ϕκ (l)

− κ̃
α (l)

[
β′ (l)

]κ+1

βκ (l)

 dl = ∞. (2.12)

Proof. Suppose that y ∈ Y+. In view of Lemma 2.1, y′ has a constant sign. We note that
condition (2.11), along with the fact that µ is nondecreasing, leads to the fulfillment of condition (2.3).
So, in the case where y′ < 0, Lemma 2.2 asserts that y→ 0 as u→ ∞.

Now, we assume that y′ (u) > 0 for u ≥ u1. Thus, for all u ≥ u1, we obtain y (u) ≥ y (u1) := y1 > 0.
Ignoring the middle term of Eq (1.1), we get(

α
[
y′
]κ)′
≤ −k q yκ (ρ) ≤ −k yκ1 q. (2.13)

Integration of (2.13) produces ∫ ∞

u1

q (l) dl ≤
α (u1)

[
y′ (u1)

]κ
k yκ1

.

This leads to a contradiction with (2.7).
For case (ii), we define

ω := β
α

[
y′
]κ

yκ
> 0. (2.14)

Using (2.10), (2.13), and (2.14), we obtain

ω′ =
β′

β
ω + β

(
α

[
y′
]κ)′

yκ
− κβ

α
[
y′
]κ+1

yκ+1 (2.15)
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≤ −k β q
ϕκ (ρ)
ϕκ

+
β′

β
ω −

κ

α1/κβ1/κω
1+1/κ

≤ −k β q
ϕκ (ρ)
ϕκ

+ κ̃
α

[
β′

]κ+1

βκ
, (2.16)

which depends on the known inequality (see [48])

Aω − Bω1+1/κ ≤ κκκ̃
Aκ+1

Bκ
.

Integration of (2.16) gives∫ u

u1

k β (l) q (l)
ϕκ (ρ (l))
ϕκ (l)

− κ̃
α (l)

[
β′ (l)

]κ+1

βκ (l)

 dl ≤ ω (u1) ,

which contradicts (2.12).
This completes the proof. �

Using the comparison method with first-order equations, we present the following theorem:

Theorem 2.2. Equation (1.1) satisfies Property A if there is µ ∈ C1 (
Iu0 , (0,∞)

)
such that (2.2)–(2.4)

hold, and one of the following FDE is oscillatory:

w′ (u) + k q (u)ϕκ (ρ (u)) w (ρ (u)) = 0 (2.17)

or
w′ (u) +

` p (u)
α1/κ (δ (u))

w1/κ (δ (u)) = 0. (2.18)

Proof. Suppose that y ∈ Y+. In view of Lemma 2.1, y′ has a constant sign. So, in the case where
y′ < 0, Lemma 2.2 asserts that y→ 0 as u→ ∞.

Now, we assume that y′ (u) > 0 for u ≥ u1. From (2.9) and (2.13), we have(
α

[
y′
]κ)′
≤ −k q yκ (ρ) ≤ −k qϕκ (ρ)α (ρ)

[
y′ (ρ)

]κ .
Letting

w := α
[
y′
]κ , (2.19)

we see that w is a positive solution of

w′ + k qϕκ (ρ) w (ρ) ≤ 0.

Using Theorem 1 in [49], the associated FDE (2.17) has a positive solution, which is a contradiction.
On the other hand, ignoring the last term of Eq (1.1), we get(

α
[
y′
]κ)′

+ ` p y′ (δ) ≤ 0.

From (2.19), we have that w is a positive solution of

w′ +
` p

α1/κ (δ)
w1/κ (δ) ≤ 0.

By virtue of Lemma 1 in [50], the associated FDE (2.18) has a positive solution, which is a
contradiction.

This completes the proof. �
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If κ ≥ 1, the following corollary uses known results in the literature to provide oscillation criteria
for the first-order equations in the previous theorem.

Corollary 2.1. Equation (1.1) satisfies Property A if there is µ ∈ C1 (
Iu0 , (0,∞)

)
such that (2.2)–(2.4)

hold, and one of the following conditions is satisfied:

lim inf
u→∞

∫ u

ρ(u)
q (l)ϕκ (ρ (l)) dl >

1
k e

(2.20)

or

lim inf
u→∞

∫ u

δ(u)

p (l)
α (δ (l))

dl > L, (2.21)

where

L :=
{

1/ (` e) if κ = 1;
0 if κ > 1.

Proof. According to Theorems 2.1.1 and 3.1.2 in [51], conditions (2.20) and (2.21) guarantee that the
solutions to (2.17) and (2.18) oscillate. �

Remark 2.1. Consider the case where κ = 1 and F (z) = G (z) = z. Theorem 2.1 (case (ii)) is
similar to Theorem 3.1 in [42] with a slight improvement: Theorem 2.1 does not require the constraint
ρ (u) ≤ δ (u). Furthermore, if α (u) = 1, then Corollary 2.1 (condition (2.21) reduces to Theorem 1
in [40]. Therefore, the results in this section extend and slightly improve the results in [40, 42].

Example 2.1. Consider the FDE

([
y′ (u)

]κ)′
+

p0

uκ
y′ (δ0u) +

q0

uκ+1 yκ (ρ0u) = 0, (2.22)

where p0 ≥ 0, q0 > 0, δ0, ρ0 ∈ (0, 1]. By choosing µ (u) = uκ, conditions (2.2)–(2.4) are satisfied. It is
not difficult to see that condition (2.11) is not fulfilled. However, Eq (2.22) satisfies PropertyA in one
of the following cases:

ρκ0q0 > κ
κ+1κ̃, using (2.12) with β (u) = uκ; (C1)

ρκ0q0 ln (1/ρ0) > 1/e, using (2.20); (C2)

p0 ln (1/δ0) > 1/e for κ = 1, using (2.21). (C3)

Remark 2.2. The significant differences between the conditions in (C1)–(C3) are evident. In particular,
the conditions in (C1) and (C2) do not depend on p0 and δ0, while the condition in (C3) does not depend
on q0 and ρ0. Moreover, Figure 1 compares two cases of conditions in (C1) and (C2), which clearly
show that no condition is absolutely better than the other.
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Condition (C1)

Condition (C2)

at � = 1

0.2 0.4 0.6 0.8 1.0
ρ0

1

2

3

4

q0

(a)

Condition (C1)

Condition (C2)

at �0 = 0.2

0.5 1.0 1.5 2.0
α

2

4

6

q0

(b)

Figure 1. Comparison between the conditions in (C1) and (C2).

Remark 2.3. The weaknesses in the criteria of this section result from the fact that the approaches used
are always based on ignoring one of the second or third terms of Eq (1.1). Thus, conditions (2.11),
(2.12), (2.20), and (2.21) lack the effect of either p and δ, or q and ρ.

2.3. Improved criteria

This section derives improved conditions for testing Property A without ignoring any terms of
Eq (1.1), when κ = 1. The following theorem uses Riccati substitution to test the Property A of the
solutions of Eq (1.1).

Theorem 2.3. Equation (1.1) satisfies PropertyA if there is µ, β ∈ C1 (
Iu0 , (0,∞)

)
such that (2.2)–(2.4)

hold, and

lim sup
u→∞

∫ u

u0

k β (l) η (l) q (l)
ϕ (ρ (l))
ϕ (l)

−
1
4
η (l)α (l)

[
β′ (l)

]2

β (l)

 dl = ∞, (2.23)

where

η (u) := exp
(
`

∫ u

u0

p (l)
α (δ (l))

dl
)
.

Proof. Suppose that y ∈ Y+. In view of Lemma 2.1, y′ has a constant sign. So, in the case where
y′ < 0, Lemma 2.2 asserts that y→ 0 as u→ ∞.

Now, we assume that y′ (u) > 0 for u ≥ u1. In view of the facts (α y′)′ ≤ 0 and δ (u) ≤ u, Eq (1.1)
becomes

0 =
(
α y′

)′
+ ` p y′ (δ) + k q y (ρ)

≥
(
α y′

)′
+ `

pα
α (δ)

y′ + k q y (ρ)

=
1

η (u)
[
η α y′

]
+ k q y (ρ) . (2.24)

We define

ω := β
η α y′

y
. (2.25)
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Using (2.10), (2.24), and (2.25), we find

ω′ ≤ −k β η q
y (ρ)

y
+
β′

β
ω + −

1
β η α

ω2

≤ −k β η q
ϕ (ρ)
ϕ

+
1
4
η α

[
β′

]2

β
. (2.26)

Integration of (2.26) gives∫ u

u1

k β (l) η (l) q (l)
ϕ (ρ (l))
ϕ (l)

−
1
4
η (l)α (l)

[
β′ (l)

]2

β (l)

 dl ≤ ω (u1) ,

which contradicts (2.23).
This completes the proof. �

Next, we use an improved comparison approach with first-order to obtain new criteria.

Theorem 2.4. Equation (1.1) satisfies Property A if there is µ ∈ C1 (
Iu0 , (0,∞)

)
such that (2.2)–(2.4)

hold, and

lim inf
u→∞

∫ u

σ(u)

(
`p (l)
α (δ (l))

+ kϕ (ρ (l)) q (l)
)

dl >
1
e
, (2.27)

where
σ (u) = max {δ (u) , ρ (u)} .

Proof. Suppose that y ∈ Y+. In view of Lemma 2.1, y′ has a constant sign. So, in the case where
y′ < 0, Lemma 2.2 asserts that y→ 0 as u→ ∞.

Now, we assume that y′ (u) > 0 for u ≥ u1. In view of the fact (2.9) and that (α y′)′ ≤ 0, Eq (1.1)
becomes

0 ≥
(
α y′

)′
+ ` p y′ (δ) + k qϕ (ρ)α (ρ) y′ (ρ)

≥
(
α y′

)′
+

(
`

p
α (δ)

+ kϕ (ρ) q
)
α (σ) y′ (σ) .

Letting w := α y′, we see that w is a positive solution of

w′ +
(
`

p
α (δ)

+ kϕ (ρ) q
)

w (σ) ≤ 0. (2.28)

From Theorem 2.1.1 in [51], the conditions (2.27) guarantees that the solutions to (2.28) oscillate,
which is a contradiction.

This completes the proof. �

Example 2.2. Consider the FDE (2.22) with κ = 1 (Euler type). Equation (2.22) satisfies Property A
in one of the following cases:

ρ0q0 >
1
4

(1 − p0)2 , p0 ≤ 1, using (2.23) with β (u) = u1−p0; (C4)

(p0 + ρ0 q0) ln (1/σ0) > 1/e, using (2.27), where σ0 = max {δ0, ρ0} . (C5)
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Remark 2.4. We notice that the condition in (C4) is affected by the parameters ρ0, q0, and p0, while
the condition in (C5) is affected by all parameters of Eq (2.22). Figure 2 shows the efficiency of criteria
in (C4) and (C5) compared to criteria in (C1) and (C2).

Condition (C1)

Condition (C2)

Condition (C4)

Condition (C5)

0.2 0.4 0.6 0.8
ρ0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

q0

Figure 2. Comparison between conditions in (C1), (C2), (C4), and (C5).

Example 2.3. Consider the FDE

y′′ (u) +
p0

u
y′ (δ0u)

[
1 +

(
y′ (δ0u)

)2
]

+
q0

u2 y (ρ0u) ey2(ρ0u) = 0, (2.29)

where p0 ≥ 0, q0 > 0, δ0, ρ0 ∈ (0, 1]. Note that F (z) = z
[
1 + z2

]
and G (z) = zez2

, and so F (z) /z ≥ 1
and G (z) /z ≥ 1. Thus, the condition in (C4) and (C5) (in Example 2.2) guarantees that Eq (2.29)
satisfies PropertyA. However, the results in [40, 42, 43] cannot be applied to this equation.

Remark 2.5. Figure 3 shows some numerical solutions to the FDE

y′′ (u) +
p0

u
y′ (u − c1) +

q0

u2 y (u − c2) = 0,

where p0, q0, c1, and c2 are nonnegative, and q0 > 0.

without damping

with non-delayed damping

with delayed damping

10 20 30 40 50

-5

5

10

Figure 3. Numerical solutions for some special cases of the studied equation.
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3. Conclusions

Asymptotic performance of nonoscillatory solutions to the FDE (1.1) is examined in this paper.
The methods employed for equations with non-delayed damping are typically inappropriate for
investigating this kind of equation. Therefore, related studies have overcome this problem by studying
only the linear case and ignoring one of the terms of the equation when studying it. First, we verified
Property A for the nonlinear case of Eq (1.1). These results extend and slightly improve upon the
previous ones. Second, we established new criteria for the linear case that improve upon the previous
findings and take into account the influence of all parameters of the considered equation. Finding
criteria that ensure that every solution to FDE (1.1) oscillates in the nonlinear situation is an intriguing
research point.
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30. S. R. Grace, J. Džurina, I. Jadlovská, T. Li, On the oscillation of fourth-order delay differential
equations, Adv. Differ. Equ., 2019 (2019), 118. https://doi.org/10.1186/s13662-019-2060-1
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