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Abstract: The current study aims to present detailed qualitative and quantitative research on the 

(2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation (BLMPE), which plays a key role in the 

field of incompressible fluids. First, we constructed the variational principle using the semi-inverse 

method (SIM) and developed the Hamiltonian based on the variational principle. Then, we derived 

the planar dynamical system (PDS), depicted the phase portraits, and carried out the bifurcation 

analysis to expound the existence of wave solutions with the different wave shapes. In addition, 

chaotic behaviors were elaborated by imposing the perturbed term, and the sensitivity analysis was 

conducted by taking the different initial conditions. Finally, the invariant algebraic curve approach 

(based on the PDS), the direct mapping method (from the unified equation), and the Hamiltonian 

based method were used to investigate the diverse wave solutions, including the anti-kink solitary, 

kink solitary, periodic, and singular periodic wave solutions. The profiles of these different solutions 

are graphically illustrated by assigning reasonable parameters. The results of this paper are novel and 

can provide a better insight into the dynamics of the equation under consideration. 
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1. Introduction 

Nonlinear partial differential equations (NPDEs), as an important branch of modern 
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mathematics, occupy an important position in optics [1,2], biology [3,4], fluid dynamics [5,6], and 

other fields. Constructing the exact analytical and approximate solutions for NPDEs has become 

crucial, as these solutions can provide profound explanations for the physical model itself, and be 

used to predict the evolution process of actual physical states, verify the correctness and accuracy of 

numerical calculation results. Distinguishing the quality of numerical methods can provide 

inspiration for qualitative research; therefore, the most ideal approach is to obtain explicit analytical 

expressions (in finite or infinite series form) or some physically meaningful special solutions (such 

as solitary wave solutions, traveling wave solutions, elliptic function solutions, periodic wave 

solutions) for various definite solution problems of NPDEs [7–9]. Exact and approximate solutions 

of NPDEs can provide strong basis for the exploration of qualitative properties of these equations. 

Moreover, through the exact solution, we can establish mathematical models and derive new 

discoveries and scientific predictions. Therefore, studying the solutions of NPDEs is very meaningful. 

Up to date, many different powerful techniques have been presented to solve the NPDEs, e.g., the 

(G’/G)-expansion method [10,11], transformed rational function approach [12], Bäcklund 

transformation technique [13,14], general integral method [15,16], tanh-function technique [17,18], 

exp-function method [19,20], trial equation approach [21,22], Hirota bilinear approach [23,24], 

extended F-expansion technique [25,26], Darboux transformation [27,28], Riccati equation 

approach [29,30], bilinear neural network method [31,32] and many others [33,34]. In this work, we 

will probe the (2+1)-dimensional BLMPE equation as [35–37] 

033 =+−− ytxyxyxxxxxy UUUUUU ,       (1) 

where ( )tyxUU ,, . Eq (1) can be used to model the (2+1) dimensional interaction between 

Riemann waves propagating along the y-axis and long waves propagating along the x-axis. In [36], 

the periodic-wave solutions were explored. In [37], the stair and step soliton wave solutions were 

studied. In [38], the N-solitons and soliton molecules solutions were studied. In [39], the authors 

explored the Pfaffian solutions. In [40], the soliton solutions of Y-shape were explored. In [41], the 

diverse travelling wave solutions were extracted. In [42], the Wronskian determinant solutions were 

obtained. In this research, we will study Eq (1). The structure of this paper is organized as follows: In 

Section 2, the variational principle (VP) and Hamiltonian are developed. In Section 3, the PDS is 

derived, and the qualitative analysis is presented. In Section 4, the invariant algebraic curve (IAC) 

approach, direct mapping method (DMM), and Hamiltonian based method (HBM) are employed to 

develop the diverse wave structures. In Section 5, the shapes of the obtained exact solutions are 

presented. Finally, the conclusion is given in Section 6. 

2. The VP and Hamiltonian 

To look for the VP and Hamiltonian, we bring in the travelling wave transformation as 

( ) ( )=tyxU ,, , tnymx  ++= .       (2) 

In the above equation, m , n , and   stand for the non-zero real constants. Using Eq (2), Eq (1) 

can be converted into the following form 

( ) 06 243 =+−  nnmnm ,        (3) 

which is 
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( ) 0
6

3

4 =+− 



mm

,         (4) 

Where 

( )
4

4
4






d

d
= , 

2

2






d

d
= , 






d

d
= . 

Integrating it once and letting the integration constant as zero, we get 

( ) 0
3

3

2
=+− 




mm
.         (5) 

Letting 

= .           (6) 

We have 

0
3

3

2 =+−
mm


.        (7) 

By the SIM, its VP can be developed as [43,44] 

( ) ( ) 


d
mm

J 










−+=
0

2

3

32

2

1

2

1
,       (8) 

which can be expressed as 

( ) ( )

  




dLD

d
mm

J








−=









−+=

0

0

2

3

32

2

1

2

1

,       (9) 

where D  and L  represent the system’s kinetic and potential energy, respectively, as 

( )2
2

1
=D ,           (10) 

and 

2

3

3

2

1
+−=

mm
L


.         (11) 

So, the system’s Hamiltonian is found to be 

( ) 2

3

32

2

1

2

1
+−=+=

mm
LD


.       (12) 

3. Qualitative analysis 

This section aims to present the qualitative analysis of the PDS. 
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3.1. Phase portrait and bifurcation analysis 

Based on Eq (7) and the Hamiltonian in Eq (12), we derive the PDS as 

( ) ( )









+=

=










2

21
d

d

d

d

,        (13) 

where 

31
m


 −= , 

m

3
2 = .         (14) 

Obviously, we get two equilibrium points as 

( )0,00 =u , 







−= 0,

2

1
1




u .        (15) 

By Eq (13), we have 

( ) ( ) 122  +=f .         (16) 

The Jacobi matrix is 

( ) 








+
=

02

10
0,

12 
iuJ .        (17) 

The determinant is 

( )( ) ( ) 12

12

2
02

10



−−=

+
== ii uJuJDet .     (18) 

Additionally, we have 

I: The point iu  is the center point for ( ) 0iuJ . 

II: The point iu  is the saddle point for ( ) 0iuJ . 

III: The point iu  is the cusp point for ( ) 0=iuJ . 

Then, we have: 

Case 1: If 01   and 02  , we have ( ) 010 −= uJ  and ( ) 011 = uJ , thus 0u  belongs to 

the saddle point, and 1u  is the center point. The phase portrait of this case is displayed in Figure 1(a), 

we assign 1=m , 3−= . Obviously, the points 0u  ( )0,0  and 1u  ( )0,1−  are the saddle and 

center points, respectively. 

Case 2: If 01   and 02  , there are ( ) 010 −= uJ  and ( ) 011 = uJ , thus 0u  and 1u  are 

the saddle and center points, respectively. Figure 1(b) unveils the phase portrait for 0u  ( )0,0  and 
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1u  ( )0,1  with 1−=m , 3= . 

Case 3: If 01   and 02  , then we have ( ) 010 −= uJ and ( ) 011 = uJ , thus the points 

0u  and 1u  belong to the center and saddle points, respectively. The phase portrait for 0u  ( )0,0  

and 1u  ( )0,1  is presented in Figure 1(c) for 1=m , 3= . 

Case 4: If 01   and 02  , we can find ( ) 010 −= uJ and ( ) 011 = uJ , so the 0u  and 1u  

belongs to the center point and saddle point, respectively. The phase portrait is presented in Figure 1(d) 

for 1−=m , 3−= . 

 

Figure 1. Phase portraits of the PDS. 

3.2. Existence conditions of the wave solutions 

According to the theory of PDS, the periodic, bell shape, kink solitary, and unbounded traveling 

wave solutions correspond to the closed, homoclinic, heteroclinic, and opened orbits, respectively. 

Thus we can conclude 

(1) For 01   and 02  , Eq (2.6) has the periodic and bell shape wave solutions (see Figure 1(a)). 

(2) For 01   and 02  , Eq (2.6) has the periodic and bell shape wave solutions (see Figure 1(b)). 

(3) For 01   and 02  , Eq (2.6) has the periodic and bell shape wave solutions (see Figure 1(c)). 

(4) For 01   and 02  , Eq (2.6) has the periodic and bell shape wave solutions (see Figure 1(d)). 

3.3. The chaotic performances 

The goal of this section is to study the chaotic performances of the PDS by imposing a 
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perturbed term as [45] 

( ) ( ) ( )









++=

=










sin2

21
d

d

d

d

,       (19) 

where   and   represent the amplitude and frequency, respectively. In Eq (19), the parameters 

1 , 2 ,  , and   may affect the dynamical behaviors of the system. To discuss the effect, we 

choose the parameters  1−=m , 3−= , the time series plot, 2D and 3D phase portraits under the 

initial conditions ( ) 1.00 =  and ( ) 00 = , with the different   and   displayed in Figure 2, 

where (a,b,c) for 04.0= , 03.0= , (d,e,f) for 4.0= , 3.0= . We can find that the system is 

quasi-periodic for 04.0= , 03.0= ; however, it becomes chaotic when 4.0=  and 3.0= . 

 

Figure 2. The quasi-periodic and chaotic behaviors with 1−=m , 3−=  under the 

initial conditions ( ) 1.00 =  and ( ) 00 = . 

3.4. The sensitivity analysis 

The major goal of this section is to probe the system through the frequency-amplitude 

formulation for 1−=m , 1−=  at the initial conditions (a) ( ) 2.00 = , ( ) 1.00 = , (b) 

( ) 25.00 = , ( ) 15.00 = , (c) ( ) 2.00 = , ( ) 12.00 =  and (d) ( ) 3.00 = , ( ) 1.00 = . The 

comparison results in Figure 3 indicate that minor changes to the initial conditions can impact the 

behaviors of the solution. 
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Figure 3. Sensitive analysis of the PDS with 1−=m , 1−=  for the different initial conditions. 

4. The different wave solutions 

In this section, we aim to employ the IAC approach, DMM, and the HBM to develop the 

abundant wave solutions. 

4.1. Application of the IAC approach 

4.1.1. The IAC approach 

Based on the IAC approach [46–48], considering the following PDS 

( ) ( )



+−=

=




2ba

,        (20) 

where Rba , , 0b , and the IAC 

( ) 0
3

1

2

1

2

1
, 322 =−+=  bag .       (21) 

Theorem 1. The PDS in Eq (20) with the IAC of Eq (21) admits the following results [47,48] 

(1) For 0=a , 0=g , the solution is 

( )
2

00

2 3622

12

ccbb +
=


 .        (22) 

(2) For 0a , 0a , 0=g , the solution is 

( ) ( )









−
= 0

2 3
2

sech
2

3
c

a

b

a
 .       (23) 
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(3) For  0a , 0a , 0=g , the solution is 

( ) ( )




















+−= 0

2 3
2

tanh31
2

bc
a

b

a
 .       (24) 

4.2.2. Application 

Based on the PDS in Eq (13), we can get the following IAC 

( ) ( ) 0
3

1

2

1

2

1
, 3

2

2

1

2
=−−= g ,       (25) 

where 
31

m


 −= ,

m

3
2 = . By the IAC approach, comparing Eq (21) with Eq (25) yields 

1−=a ,          (26) 

and 

2=b .           (27) 

In light of Theorem 1, we can disclose the expressions of   through one step as 

Case 1: When 0
3
=

m


, we obtain the rational wave solution as 

( )
2

00

2 222

4

mccmm

m

+
=


 .        (28) 

Integrating it once and setting the integral constant as zero yields 

( )
 

22

0

0

2

222






−


=

mc

cmm
.        (29) 

So we have: 

( )
( ) 

( )22

0

0

2

322
,,

tnymxmc

cmtnymxm
tyxU





++−

++
= .       (30) 

Since 0 , this solution does not exist. 

Case 2: When 0
3


m


, we can get the bell shape wave solution as 

( ) ( )







−= 03

2

2
3

2

1
sech

2
c

mm



 .      (31) 

Obviously, this solution matches with discussion in section 3.2. Integrating Eq (31) once, we 

have 

( ) ( )







−−= 03

3
2

1
tanh c

mm



 .      (32) 
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So we obtain the kink wave solution as 

( ) ( )







++−−−= 03

3
2

1
tanh,, ctnymx

mm
tyxU 


.    (33) 

Case 3: When 0
3


m


, we can get the periodic wave solution as 

( )





































+−= 03

2

2

33

2

1
tanh31

2
c

mmm



 .      (34) 

Obviously, this periodic solution also agrees well with the discussion in section 3.2. Integrating 

it once and letting the integral constant as zero yields 

( )

























−= 032

33

22

1
tanh

2
3 c

mmmm



 .     (35) 

So there is: 

( )
( )


























++−

++
= 032

33

22

1
tanh

2
3,, c

m
tnymx

mmm

tnymx
tyxU 


.  (36) 

4.2. Application of the DMM 

4.2.1. The DMM 

The main steps of the DMM that are based on the unified equation are given as follows 

Considering the unified equation with the following form [49] 

3

3

2

210  cccc +++= ,        (37) 

where 1= , Equation (37) admits the following different solutions 

Case 1: For 001 == cc , 02 c , Eq (30) admits a bell-shape wave solution as 














−= 

2
sech

22

3

2
c

c

c
.         (38) 

Case 2: For 001 == cc , 02 c , Eq (30) admits a singular periodic wave solution as 













 −
−= 

2
sec

22

3

2
c

c

c
.         (39) 
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Case 3: For 001 == cc , 02 =c , Eq (30) admits a rational wave solution as 

2

3

4




c
= .          (40) 

4.2.2. Application 

By Eq (7), we have 

( ) 0
2 2

3

32
=+−

mm


,       (41) 

which is 

32

3

2
+−=

mm


 ,         (42) 

where 1= . Comparing it with Eq (37) yields 

001 == cc , 
32

m
c


−= , 

m
c

2
3 = .        (43) 

Thus we have the following 

Case 1: For 0
3


m


, Eq (7) admits a bell-shape wave solution as 














−= 


3

2

2 2

1
sech

2 mm
.        (44) 

This wave solution corresponds to the discussion in section 3.2. In the same way, integrating 

Eq (44) once and setting the integral constant to zero yields 

( )













−−−= 



32

1
tanh

mm
.        45) 

Then, the kink wave solution of Eq (1) is 

( ) ( )







++−−−= tnymx

mm
tyxU 


32

1
tanh,, ,      (46) 

which is the same with Eq (33) for 00 =c . This strongly demonstrates the correctness of the 

methods used. 

Case 2: For 0
3


m


, Eq (7) admits a singular periodic solution as 
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












= 


3

2

2 2

1
sec

2 mm
,         (47) 

which also corresponds to the discussion in section 3.2. Then we have 














= 


32

1
tan

mm
.         (48) 

So, we have the singular periodic wave solution as 

( ) ( )







++= tnymx

mm
tyxU 


32

1
tan,, .       (49) 

Case 3: For 0
3
=

m


, Eq (7) admits a rational wave solution as 

2

2



m
= ,          (50) 

which is the same as Eq (29) for 00 =c . This also reveals the correctness of the methods used. Then 

we have 



m2
−= .          (51) 

Then there is 

( )
( )tnymx

m
tyxU

++−
=

2
,, .        (52) 

Since 0 , this solution does not exist. 

4.3. Application of the HBM 

4.3.1. The HBM 

To explore the ODE as 

0)( =+  f .         (53) 

The VP can be found via the SIM as 

( ) ( ) ( )  dPJ 










+=
0

2

2

1
,        54) 

which can be expressed as 
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( ) ( ) ( )    dLDdPJ 


−=








+=
00

2

2

1
.      (55) 

The system’s Hamiltonian is 

( ) ( ) PLD −=+=
2

2

1
.         (56) 

In the view of the HBM, the periodic solution of Eq (5) can be considered as 

( ) = cos , 0 ,         (57) 

where   represents the amplitude, and   is the frequency. We know that the system’s total 

energy should remain unchanged, which is 

( ) ( ) 0

2

2

1
HPLDH =−=+=  ,        (58) 

where 0H  stands for the Hamiltonian constant. 

Substituting the initial conditions of Eq (57) into Eq (58), it yields 

( ) 0HPLDH =−=+= .       (59) 

Inserting Eq (57) into Eq (58) and setting [50] 

4


 = .          (60) 

Then, we obtain the solution through computing the obtained results. 

4.3.2. The application 

In section 2, we have the Hamiltonian as 

( ) 2

3

32

2

1

2

1
+−=+=

mm
LD


.      (61) 

We set: 

( )= cos , 0 ,        (62) 

with the initial conditions as 

( ) = 0 , ( ) 00 = .        (63) 

Substituting them into Eq (61), it yields 

0

2

3

3

2

1
=+−

mm


.        (64) 

Taking Eq (62) into Eq (61) gives 
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( )  ( )  ( ) 

0

2

3

3

2

3

32

2

1

cos
2

cos
1

sins
2

1

=+−=

+−−=+=

mm

mm
LD








.   (65) 

Letting 

4


 = .          (66) 

We have 

2

3

3

2

3

32

2

1

2

2

22

21

2

2

2

1
+−=








+








−








−

mmmm


.   (67) 

Solving it, yields 

( )
3

42

mm


+

−
= .        (68) 

Then, we have the periodic solution as 

( )













+

−
= 


3

42
cos

mm
,        (69) 

which is consistent with the discussion in section 3.2. Then, we have 

( )
( )














+

−

+
−


= 




3

3

42
sin

42 mm

mm

.     (70) 

So there is: 

( )
( )

( )
( )














+++

−

+
−


= tnymx

mm

mm

tyxU 



3

3

42
sin

42
,, .   (71) 

5. Results and discussions 

The goal of this section is to discuss and present the results obtained in section 4. 

Assigning the parameters as 1=m , 2=n , 3−= , 10 =c , the shapes of Eq (36) on the 

interval  5,5−x  and  5,5−y  at 0=t  are shown in Figure 4. The wave is the anti-kink 

solitary wave. 
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Figure 4. Outlines of Eq (36) with 1=m , 2=n , 3−= , 10 =c . 

If we select 1=m , 2=n , 1= , the outlines of Eq (46) on the interval  5,5−x  and 

 5,5−y  for 0=t  are displayed in Figure 5. It can be seen that the wave is the kink solitary 

wave. 

 

 

Figure 5. Outlines of Eq (46) with 1=m , 2=n , 1= . 

Figure 6 presents the shapes of Eq (49) on the interval  8,8−x  and  8,8−y  for 0=t  with 

the parameters as 1−=m , 1=n , 1= . Here, the wave structure is the singular periodic wave. 

 

 

Figure 6. Outlines of Eq (49) with 1= , 1= , 1= , 1= . 
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When the parameters are used as 1= 1=m , 2=n , 3= , the performances of Eq (71) are 

revealed in Figure 7. It can be seen that the wave is a periodic wave. 

 

 

Figure 7. Outlines of Eq (71) with 1= , 1=m , 2=n , 3= . 

6. Conclusions 

The (2+1)-dimensional BLMPE equation has been explored qualitatively and quantitatively in 

this research. The VP and Hamiltonian were developed with the aid of the travelling wave 

transformation and SIM. Then, the PDS was derived, and the phase portraits and the bifurcation 

study were presented to discuss the existence conditions of the solutions with the different structures. 

Besides, the chaotic behaviors and the sensitivity analysis were also elaborated. In the end, three 

effective methods, the IAC approach, DMM, and the HBM, were employed to probe the different 

wave solutions, including the kink solitary, anti-kink solitary, singular periodic, and periodic wave 

solutions. The profiles of the obtained solutions are displayed graphically by selecting the 

appropriate parameter values. As far as we know, the results in this work were all new and can help 

us gain a deeper understanding of the dynamics of the (2+1)-dimensional BLMPE equation. In 

addition, the methods used in this paper were not all based on the symbolic computation; instead, 

they are more direct, and simple, and can avoid complex calculation processes, allowing them to be 

employed to probe the solutions of other NPDEs. 
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