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Abstract: The current study aims to present detailed qualitative and quantitative research on the
(2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation (BLMPE), which plays a key role in the
field of incompressible fluids. First, we constructed the variational principle using the semi-inverse
method (SIM) and developed the Hamiltonian based on the variational principle. Then, we derived
the planar dynamical system (PDS), depicted the phase portraits, and carried out the bifurcation
analysis to expound the existence of wave solutions with the different wave shapes. In addition,
chaotic behaviors were elaborated by imposing the perturbed term, and the sensitivity analysis was
conducted by taking the different initial conditions. Finally, the invariant algebraic curve approach
(based on the PDS), the direct mapping method (from the unified equation), and the Hamiltonian
based method were used to investigate the diverse wave solutions, including the anti-kink solitary,
kink solitary, periodic, and singular periodic wave solutions. The profiles of these different solutions
are graphically illustrated by assigning reasonable parameters. The results of this paper are novel and
can provide a better insight into the dynamics of the equation under consideration.
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1. Introduction

Nonlinear partial differential equations (NPDEs), as an important branch of modern
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mathematics, occupy an important position in optics [1,2], biology [3,4], fluid dynamics [5,6], and
other fields. Constructing the exact analytical and approximate solutions for NPDEs has become
crucial, as these solutions can provide profound explanations for the physical model itself, and be
used to predict the evolution process of actual physical states, verify the correctness and accuracy of
numerical calculation results. Distinguishing the quality of numerical methods can provide
inspiration for qualitative research; therefore, the most ideal approach is to obtain explicit analytical
expressions (in finite or infinite series form) or some physically meaningful special solutions (such
as solitary wave solutions, traveling wave solutions, elliptic function solutions, periodic wave
solutions) for various definite solution problems of NPDEs [7-9]. Exact and approximate solutions
of NPDEs can provide strong basis for the exploration of qualitative properties of these equations.
Moreover, through the exact solution, we can establish mathematical models and derive new
discoveries and scientific predictions. Therefore, studying the solutions of NPDEs is very meaningful.
Up to date, many different powerful techniques have been presented to solve the NPDEs, e.g., the
(G’/G)-expansion method [10,11], transformed rational function approach [12], Bécklund
transformation technique [13,14], general integral method [15,16], tanh-function technique [17,18],
exp-function method [19,20], trial equation approach [21,22], Hirota bilinear approach [23,24],
extended F-expansion technique [25,26], Darboux transformation [27,28], Riccati equation
approach [29,30], bilinear neural network method [31,32] and many others [33,34]. In this work, we
will probe the (2+1)-dimensional BLMPE equation as [35-37]

v,,-3u.U -3UuU, +U,=0, (1)

where U =U (x, y,t). Eq (1) can be used to model the (2+1) dimensional interaction between

Riemann waves propagating along the y-axis and long waves propagating along the x-axis. In [36],
the periodic-wave solutions were explored. In [37], the stair and step soliton wave solutions were
studied. In [38], the N-solitons and soliton molecules solutions were studied. In [39], the authors
explored the Pfaffian solutions. In [40], the soliton solutions of Y-shape were explored. In [41], the
diverse travelling wave solutions were extracted. In [42], the Wronskian determinant solutions were
obtained. In this research, we will study Eq (1). The structure of this paper is organized as follows: In
Section 2, the variational principle (VP) and Hamiltonian are developed. In Section 3, the PDS is
derived, and the qualitative analysis is presented. In Section 4, the invariant algebraic curve (IAC)
approach, direct mapping method (DMM), and Hamiltonian based method (HBM) are employed to
develop the diverse wave structures. In Section 5, the shapes of the obtained exact solutions are
presented. Finally, the conclusion is given in Section 6.

2. The VP and Hamiltonian

To look for the VP and Hamiltonian, we bring in the travelling wave transformation as
Ux,y,t)=w(9),3=mx+ny+at. 2)

In the above equation, m, n and @ stand for the non-zero real constants. Using Eq (2), Eq (1)

can be converted into the following form

()

m’ny —6m*ny'y" +noy" =0, 3)

which is
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6 ! ” a) "
v =y =y =0,
m m
Where

0 _dy = d’y y=
dg*’ d9*’ d9’

7

Integrating it once and letting the integration constant as zero, we get

m

3 ’ !/
v (') + 2y’ =0.
m

m
Letting
w'=0.
We have
o202+ 2 o=0.
m m

By the SIM, its VP can be developed as [43,44]

J(@):f{l(q)')2+icp3— 2 @2}079,

2 m 2m

which can be expressed as

J(cD):f{l(cD')2 P —%cbz}dg

2 m 2m

=["{p-Ljs

4)

)

(6)

(7

®)

©)

where D and L represent the system’s kinetic and potential energy, respectively, as

and

AL SO
m 2m

cDZ

3

So, the system’s Hamiltonian is found to be

O o2,

H=D+L=l(c1>')2—lc1>3 +——
2 m 2m

3. Qualitative analysis

This section aims to present the qualitative analysis of the PDS.
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3.1. Phase portrait and bifurcation analysis

Based on Eq (7) and the Hamiltonian in Eq (12), we derive the PDS as

dod
a9 !
y , (13)
ﬁ = glq)(‘g)"' gzq)z(‘g)
where
w 3
CIl=——%5, 6 =—. (14)
m m

Obviously, we get two equilibrium points as
_ _| ¢
u, =(0,0), u, _[——,0). (15)
S
By Eq (13), we have
1'(@)=26,0(8)+¢;. (16)

The Jacobi matrix is

J(ui,O)z( 0 lj. (17)

25, +¢g, O

The determinant is

0

=-2c,D—c,. 18
20,0+, 0‘ S - (18)

Ded )= () =‘

Additionally, we have

I: The point u; is the center point for |J(u,) >0,
II: The point #; is the saddle point for |J (u,x <0.
III: The point #; is the cusp point for |J (M,X =0,
Then, we have:

Case 1: If ¢, >0 and ¢, >0, we have |J(u0l =—, <0 and |J(ul)| =¢, >0, thus u, belongs to
the saddle point, and u, is the center point. The phase portrait of this case is displayed in Figure 1(a),
we assign m=1, @=-3. Obviously, the points u, (0,0) and u, (~1,0) are the saddle and

center points, respectively.

Case 2:If ¢, >0 and ¢, <0, there are |J(u0] =—5, <0 and |J(u1] =¢,>0,thus u, and u, are
the saddle and center points, respectively. Figure 1(b) unveils the phase portrait for u, (0,0) and
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u, (1,0) with m=-1, w=3.

Case 3: If ¢, <0 and ¢, >0, then we have |J(u,|=—¢ >0and |J(u, ) =g, <0, thus the points
u, and u, belong to the center and saddle points, respectively. The phase portrait for (0,0)

and u, (1,0) is presented in Figure 1(c) for m=1, w=3.

Case 4: If ¢, <0 and ¢, <0, we can find |J(u,)=—¢, >0and |[J(x)=¢ <0, so the u, and u

belongs to the center point and saddle point, respectively. The phase portrait is presented in Figure 1(d)
for m=-1, w=-3.

Figure 1. Phase portraits of the PDS.

3.2. Existence conditions of the wave solutions

According to the theory of PDS, the periodic, bell shape, kink solitary, and unbounded traveling
wave solutions correspond to the closed, homoclinic, heteroclinic, and opened orbits, respectively.
Thus we can conclude

(1) For ¢, >0 and ¢, >0, Eq (2.6) has the periodic and bell shape wave solutions (see Figure 1(a)).
(2) For ¢, >0 and ¢, <0, Eq(2.6) has the periodic and bell shape wave solutions (see Figure 1(b)).
(3) For ¢, <0 and ¢, >0, Eq (2.6) has the periodic and bell shape wave solutions (see Figure 1(c)).

(4) For ¢, <0 and ¢, <0, Eq (2.6) has the periodic and bell shape wave solutions (see Figure 1(d)).
3.3. The chaotic performances

The goal of this section is to study the chaotic performances of the PDS by imposing a
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perturbed term as [45]

dd

=y

o , (19)
d_gzglqa(g)+g2q>2(9)+%m(@g)

where W and © represent the amplitude and frequency, respectively. In Eq (19), the parameters
Gi» 6,» ¥, and O may affect the dynamical behaviors of the system. To discuss the effect, we

choose the parameters m=—1, @=-3, the time series plot, 2D and 3D phase portraits under the
initial conditions ®(0)=0.1 and #(0)=0 with the different ® and ¥ displayed in Figure 2,

where (a,b,c) for ¥ =0.04, ®=0.03, (d,e,f) for Y=0.4, ®=0.3. We can find that the system is
quasi-periodic for ¥ =0.04, ® =0.03; however, it becomes chaotic when¥ =0.4 and ©®=0.3.

0.2

0.1
o 0

-0.11

=4

Figure 2. The quasi-periodic and chaotic behaviors with m=—-1, @w=-3 under the
initial conditions ®(0)=0.1 and ¢(0)=0.

3.4. The sensitivity analysis

The major goal of this section is to probe the system through the frequency-amplitude
formulation for m=-1, @=-1 at the initial conditions (a) ®(0)=0.2, ¢(0)=0.1, (b)
®(0)=0.25, ¢(0)=0.15, (c) ®(0)=0.2, #(0)=0.12 and (d) ®(0)=0.3, ¢(0)=0.1. The
comparison results in Figure 3 indicate that minor changes to the initial conditions can impact the
behaviors of the solution.
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Figure 3. Sensitive analysis of the PDS with m=—-1, @=-1 for the different initial conditions.

4. The different wave solutions

In this section, we aim to employ the IAC approach, DMM, and the HBM to develop the

abundant wave solutions.
4.1. Application of the IAC approach

4.1.1. The IAC approach

Based on the IAC approach [46—48], considering the following PDS

{5' =¢
¢'=-ag(9)+b&*(9)
where a,beR, b#0 , and the IAC

gl6.0) =5 ¢+ ag - 1be =0,

(20)

@2y

Theorem 1. The PDS in Eq (20) with the IAC of Eq (21) admits the following results [47,48]

(1) For a=0, g =0, the solution is

12
9)= :
<(9) 26§ +246bc, +3c;

(2) For a#0, a<0, g=0, the solution is

£(9)= 34 ech? {? (9 +/3¢, )} :

2b
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(3)For a#0, a>0, g=0, the solution is

£(9)= ZCl_b{_ 1+ 3tanh{% (9 * \/gbco )} .

4.2.2. Application
Based on the PDS in Eq (13), we can get the following IAC

1 1 1
g(¢,®):5(¢)2 _Eglq)z —59‘2(1)3 =0,
where ¢, = —% ,Gy = % By the IAC approach, comparing Eq (21) with Eq (25) yields

a=-—¢,
and
b=g,.
In light of Theorem 1, we can disclose the expressions of @ through one step as

Case 1: When —; =0, we obtain the rational wave solution as
m

4m
O(4)= .
( ) 29 +2m\2m3c, +mc;

Integrating it once and setting the integral constant as zero yields

me; =29
So we have:

Ulx, y,t)= 2m[2(mx+ ny+ot)+ \/3_ch]
o mc; —2(mx+ny+aot) .

Since @ # 0, this solution does not exist.

Case 2: When 2} <0, we can get the bell shape wave solution as
m

D(9)= -2 sech{% —%(Qi\/gco)}.

m

(24)

(25)

(26)

27)

(28)

(29)

(30)

€1y

Obviously, this solution matches with discussion in section 3.2. Integrating Eq (31) once, we

have

=(9)= —\/%tanhB \/% (93¢, )} .

(32)
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So we obtain the kink wave solution as

U, (x,y,t)=— /—%tanhB /—%(mx+ny+a)ti\/§co)}. (33)

Case 3: When — >0, we can get the periodic wave solution as

D(9)=-2 {—1+3tanh{% %(Qiﬁ%ﬂ} (34)

2m m m

Obviously, this periodic solution also agrees well with the discussion in section 3.2. Integrating
it once and letting the integral constant as zero yields

2(9)= 2% 3 [*2ann| L | 2 9¢£c0 . (35)
m m 2\ 2m m
So there is:

Ui(x,y,t)= a)(Mx-;;y+a)l)_3 /%tanh{%wfz—;g[mx+ny+wt¢%coﬂ . (36)

4.2. Application of the DMM

4.2.1. The DMM

The main steps of the DMM that are based on the unified equation are given as follows
Considering the unified equation with the following form [49]

M= 5\/60 +Cl/u+czzu2 +C3ﬂ3 ) (37)

where & ==1, Equation (37) admits the following different solutions

Case 1: For ¢, =¢,=0, ¢, >0, Eq (30) admits a bell-shape wave solution as

LU= —C—zsechz(% 19}. (38)

C3

Case 2: For ¢, =¢,=0, ¢, <0, Eq (30) admits a singular periodic wave solution as

y:—c—zsecz(@Q]. (39)

G
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Case 3: For ¢, =¢,=0, ¢, =0, Eq (30) admits a rational wave solution as

4
= ) 40
H e (40)
4.2.2. Application
By Eq (7), we have
(@) -20'+ 2?0, (41)
m m
which is
' @ 5, 2 3
) :g\/——36D +—0°, (42)
m m
where & ==1. Comparing it with Eq (37) yields
2
¢ =¢,=0, cz=—£3, c;=—. (43)
m m
Thus we have the following
Case 1: For 23 <0, Eq (7) admits a bell-shape wave solution as
m
w ! w
O = sech”| —.[-—9]. 44
2m’ (2 m’ j 9

This wave solution corresponds to the discussion in section 3.2. In the same way, integrating
Eq (44) once and setting the integral constant to zero yields

2(9)=-, /—%tanh& —%9]. 45)

Then, the kink wave solution of Eq (1) is

U(x,y,t)= —1/—%tanh{%w/—%(mx+ny+a)t)}, (46)

which is the same with Eq (33) for ¢, =0. This strongly demonstrates the correctness of the

methods used.

Case 2: For % >0, Eq (7) admits a singular periodic solution as
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which also corresponds to the discussion in section 3.2. Then we have

E=\/§tar{l %9}
m 2\m

So, we have the singular periodic wave solution as

U(x, Vs t) = \/%tan{% \/%(mx +ny+ a)z‘)} .

Case 3: For % =0, Eq (7) admits a rational wave solution as
m

(47)

(48)

(49)

(50)

(5D

(52)

="
92
which is the same as Eq (29) for ¢, =0. This also reveals the correctness of the methods used. Then
we have
z-_2"
T9
Then there is
2m
Ulx,y,t)=——mmmm.
( Y ) —(mx+ny+a)t)
Since @ # 0, this solution does not exist.
4.3. Application of the HBM
4.3.1. The HBM
To explore the ODE as
"+ f(y)=0.

The VP can be found via the SIM as

So)=J, {30+ plofas.

2

which can be expressed as

AIMS Mathematics
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So)=[ {307+ P)fas= (- Lits, 5

2

The system’s Hamiltonian is
H=D+L=%(w')2—P(w)- (56)
In the view of the HBM, the periodic solution of Eq (5) can be considered as
y =Acos(Q9), Q>0, (57)

where A represents the amplitude, and Q is the frequency. We know that the system’s total
energy should remain unchanged, which is

H=D+L=_(y'} - Ply)=H, (58)

where H, stands for the Hamiltonian constant.
Substituting the initial conditions of Eq (57) into Eq (58), it yields

H=D+L=-P(A)=H,. (59)
Inserting Eq (57) into Eq (58) and setting [50]
09=". (60)
4
Then, we obtain the solution through computing the obtained results.
4.3.2.  The application

In section 2, we have the Hamiltonian as

@

H=D+L=l(c1>')2—lcp3+ LD (61)
2 m 2m
We set:
® = Acos(Q93), Q>0, (62)
with the initial conditions as
®(0)=A, ®'(0)=0. (63)
Substituting them into Eq (61), it yields
LYy (64)
m 2m

Taking Eq (62) into Eq (61) gives
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H=D+ L= L[ AQsins(Q9)] - [Acos(@)f + -2 [acos(@I)]
2 m 2m
-y @ pon,
m m
Letting
09=",
4

We have

Solving it, yields

Then, we have the periodic solution as

d= Acos{\/M + %3} ,

m m

which is consistent with the discussion in section 3.2. Then, we have

ZJJEi a)m{Jg6m4%+i%é}

[1]

_l’_i

So there is:

m m

U(x,y,t)=\/ 8 smwﬁ“ +£3(mx+ny+wf)].

5. Results and discussions

The goal of this section is to discuss and present the results obtained in section 4.

(65)

(66)

(67)

(68)

(69)

(70)

(71)

Assigning the parameters as m=1, n=2, w=-3, ¢, =1, the shapes of Eq (36) on the

interval xe[— 5,5] and ye[— 5,5] at t=0 are shown in Figure 4. The wave is the anti-kink

solitary wave.
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1.5
1.0
0.5
0.0
0.5
1.0
15

(a) (b) (©)

U x, 00

Figure 4. Outlines of Eq (36) with m=1, n=2, w=-3, ¢,=1.

If we select m=1, n=2, w=1, the outlines of Eq (46) on the interval xe[—S,S] and
ye [— 5,5] for t=0 are displayed in Figure 5. It can be seen that the wave is the kink solitary
wave.

0.5

0.0

Ux 00

0.5

(a) (b) (c)
Figure 5. Outlines of Eq (46) with m=1 n=2 w=1,

Figure 6 presents the shapes of Eq (49) on the interval x € [— 8,8] and y e [— 8,8] for t=0 with
the parameters as m=—1, n=1, w=1. Here, the wave structure is the singular periodic wave.

6
4
2
0
2
4
6
10 5 0 5 10
(a) (b) (c)

Figure 6. Outlines of Eq (49) with a=1, f=1, y=1, 9=1.
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When the parameters are used as A=1m= 1 n=2 ®=3 the performances of Eq (71) are
revealed in Figure 7. It can be seen that the wave is a periodic wave.

&=
S A

(a) (b) (c)

U x 00

Figure 7. Outlines of Eq (71) with A=1, m=1 n=2 ©=3,

6. Conclusions

The (2+1)-dimensional BLMPE equation has been explored qualitatively and quantitatively in
this research. The VP and Hamiltonian were developed with the aid of the travelling wave
transformation and SIM. Then, the PDS was derived, and the phase portraits and the bifurcation
study were presented to discuss the existence conditions of the solutions with the different structures.
Besides, the chaotic behaviors and the sensitivity analysis were also elaborated. In the end, three
effective methods, the IAC approach, DMM, and the HBM, were employed to probe the different
wave solutions, including the kink solitary, anti-kink solitary, singular periodic, and periodic wave
solutions. The profiles of the obtained solutions are displayed graphically by selecting the
appropriate parameter values. As far as we know, the results in this work were all new and can help
us gain a deeper understanding of the dynamics of the (2+1)-dimensional BLMPE equation. In
addition, the methods used in this paper were not all based on the symbolic computation; instead,
they are more direct, and simple, and can avoid complex calculation processes, allowing them to be
employed to probe the solutions of other NPDEs.
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