The results of this paper deal with a few applications of the general theory of the differential subordinations and superordinations, and to obtain our results we use the general techniques of the differential subordination and superordination theory, which could be considered one of the newest techniques used in some topics of Geometric Function Theory. In our investigation we find new differential subordination and superordination results of an operator for meromorphic multivalent functions defined by convolution product with the Hurwitz-Lerch Zeta function, that is $ \mathrm{K}_{d, p}^{s}(n, m) $ with $ d, n, m\in\mathbb{R}\setminus\mathbb{Z}_{0}^{-} $, $ s\in\mathbb{R} $. The main results are followed by a few corollaries containing some special cases, examples, and applications.
Citation: Ekram E. Ali, Teodor Bulboacă, Rabha M. El-Ashwah, Abeer H. Alblowy, Fozaiyah A. Alhubairah. Differential subordinations and superordinations for meromorphic multivalent functions involving a convolution operator[J]. AIMS Mathematics, 2025, 10(10): 24627-24650. doi: 10.3934/math.20251092
The results of this paper deal with a few applications of the general theory of the differential subordinations and superordinations, and to obtain our results we use the general techniques of the differential subordination and superordination theory, which could be considered one of the newest techniques used in some topics of Geometric Function Theory. In our investigation we find new differential subordination and superordination results of an operator for meromorphic multivalent functions defined by convolution product with the Hurwitz-Lerch Zeta function, that is $ \mathrm{K}_{d, p}^{s}(n, m) $ with $ d, n, m\in\mathbb{R}\setminus\mathbb{Z}_{0}^{-} $, $ s\in\mathbb{R} $. The main results are followed by a few corollaries containing some special cases, examples, and applications.
| [1] | T. Bulboacă, Differential subordinations and superordinations: Recent results, Cluj-Napoca: House of Scientific Book Publ., 2005. |
| [2] | S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, Series on Monographs and Texbooks in Pure and Applied Mathematics, CRC Press, 225 (2000). https://doi.org/10.1201/9781482289817 |
| [3] | P. L. Duren, Univalent functions, New York, Berlin Heidelberg Tokyo, Springer-Verlag, 1980. |
| [4] | R. M. El-Ashwah, T. Bulboacă, Sandwich results for $p$-valent meromorphic functions associated with Hurwitz-Lerch Zeta function, Tamsui Oxford J. Infor. Math. Sci., 32 (2018), 48–63. |
| [5] | E. Aqlan, J. M. Jahangiri, S. R. Kulkarni, Certain integral operators applied to $p$-valent functions, J. Nat. Geomate., 24 (2003), 111–120. |
| [6] | R. M. El-Ashwah, M. K. Aouf, Applications of differential subordination on certain class of meromorphic $p$-valent functions associated with certain integral operator, Acta Univ. Apulensis, 31 (2012), 53–64. |
| [7] | R. M. El-Ashwah, Inclusion relationships properties for certain subclasses of meromorphic functions associated with Hurwitz-Lerch Zeta function, Acta Univ. Apulensis, 34 (2013), 191–205. |
| [8] |
S. S. Miller, P. T. Mocanu, Subordinants of differential superordinations, Complex Var., 48 (2003), 815–826. https://doi.org/10.1080/02781070310001599322 doi: 10.1080/02781070310001599322
|
| [9] |
D. Z. Hallenbeck, S. Ruscheweyh, Subordination by convex functions, P. Am. Math. Soc., 52 (1975), 191–195. https://doi.org/10.1090/S0002-9939-1975-0374403-3 doi: 10.1090/S0002-9939-1975-0374403-3
|
| [10] | T. N. Shanmugam, V. Ravichandran, S. Sivasubramanian, Differential sandwich theorems for subclasses of analytic functions, Aust. J. Math. Anal. Appl., 3 (2006), 1–11. |
| [11] |
T. Bulboacă, Classes of first-order differential superordinations, Demonstr. Math., 35 (2002), 287–292. https://doi.org/10.1515/dema-2002-0209 doi: 10.1515/dema-2002-0209
|
| [12] |
M. Nunokawa, On properties of non-Carathéodory functions, P. Jpn. Acad. A-Math., 68 (1992), 152–153. https://doi.org/10.3792/pjaa.68.152 doi: 10.3792/pjaa.68.152
|
| [13] |
M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, P. Jpn. Acad. A-Math., 69 (1993), 234–237. https://doi.org/10.3792/pjaa.69.234 doi: 10.3792/pjaa.69.234
|
| [14] | E. T. Whittaker, G. N. Watson, A course on modern analysis: An introduction to the general theory of infinite processes and of analytic functions with an account of the principal transcendental functions, 5 Eds., Cambridge: Cambridge University Press, 2021. |
| [15] | N. N. Lebedev, Special functions and their applications, Englewood Cliffs: Prentice-Hall, Inc., 1965. https://doi.org/10.1063/1.3047047 |
| [16] | M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards, 10-th printing, with corrections, 1972. |
| [17] | M. K. Aouf, T. Bulboacă, T. M. Seoudy, Subordination and superordination results of multivalent functions associated with the Dziok-Srivastava operator, Int. J. Nonlinear Anal. Appl., 12 (2021), 997–1008. |