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1. Introduction

Let U := {z € C: |z] < 1} denote the open unit disc in the complex plane, and denote by H () the
space of all analytic functions in U. Also, let

A= {f e HU) : f@) =2+ a2 +..., ze U} (keN),
denote A := A, and

Hla, ] := {fEW(W):f(z) =a+az +a 2+, zE(LI},
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witha € Cand £ € N :={1,2,3,...}. Denoting ‘H := H[1, 1], the usually normalized class of convex
functions in U will be denoted by

zf"(z)
@

and let S C A the subset of (A consisting of univalent functions in U.

The following well-known notion of the subordination plays a crucial role in the present paper.
If f and g belong to H(U), we call that f is subordinate to g (or g is superordinate to f), denoted
f(2) < g(z), if there exists a Schwarz function ¢ € H(U) with p(0) = 0 and |¢(z)| < 1, z € U, such
that f = go . If f(z2) < g(2), then f(0) = g(0) and f(U) C g(U), while if g is a univalent function in
U, then f(z) < g(z) if and only if f(0) = g(0) and f(U) < g(U) (cf., e.g., [1]; see also [2, p. 4]).

If h € H(U) and W : C* x U — C, then a function p € H(U) that satisfies the second-order
differential subordination ‘W (p(z),zp’(z),z2p”(z)) < h(z) is called a solution of this subordination.
A univalent function g in U with the property p(z) < ¢(z) for all the solutions of the differential
subordination is said to be a dominant of this subordination. Moreover, a dominant g such that
q(z) < ¢q(z) for all other dominants ¢ is called the best dominant. This is unique up to a rotation,
while more details could be found in [2] and the references therein.

The class of meromorphic multivalent function in the punctured unit disc U™ := U \ {0} of the form

L::{feﬂ((u):Re( +1)>0,f’(0)¢0,zeﬂ},

1
2

Q==+ ) a zeU' (peN), (1.

k=1-p

will be denoted by X,,.
For the functions f; € X, j = 1,2, having the form

1< ) ,
f@=—+ ), a ce W,

k=1-p
the Hadamard (convolution) product of f; and f; is given by (see, e.g., [3, p. 246])
1
zr

(fix A = —+ ) agand, ze U

k=1-p

In [4], using the convolution product of a function f € X, with the Hurwitz-Lerch Zeta function,
the authors defined the operator K* : X, — X, by

1 = d '
K fQ) = — L .
apf (@) ZP+K;p(K+d+p)aZ zelU
(deC\Z;, Z; = C\{0,~1,-2,...}, peN, s C).

Moreover, we could easily check that for all f € X,, , € U fori € {1,2,3,...,«}, k € N, and

deC\Z,, we get
dK ¥4 1 11 1 75 1 k-1
T f — f - f e f 1P f ()t .. Ak, z € U,
0o ‘1Jo 2Jo k=1 JOo
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and
d

Zd+p

¥4
K;fpl f(2) = fo td”’_lKZ’p f(Hdr, ze U

Let us define the function ¥,(n,m) : U* — C by

1
Wy, m)() = — + >

[Se]
k=1-p

(n)&z", neC :=C\{0}, meC\Z, peN,
(M)t p

where (1), denotes the Pochhammer symbol, that is

(r)K:M:{l’ if «=0,
I'(t) (rt+1)...(t+k—-1), if k€N,
Consequently,

¥, (n,m)(z) = Zl[,zfl(n, I,m;z2), ze U, (p€eN),
where

S (),
Zi (m) (D),

is the Gaussian hypergeometric function.
If we consider the equation

2Fi(n,vim;z) = zeU (n,veC, meC\Zy)

Ky, (@)« L, (2) = 71-2) zelU,
with the unknown function Lfl’p, it follows immediately that
s 1 > [(k+d+ p y . .
fom b 50 e 12

k=1-p

Hence, using the operator le’p : U* — C given by (1.2), we define the new operator £jl,p(n, m) :
2, — X, as the solution of the equation

Yp(n,m)(2) = L (2) « Ly ,(n,m)f(2), z € U,

whose Taylor series expansion ford,m € C\ Z;, n € C*, s € C, and for f given by (1.1) will be

1 = P ()
. d )(n)+pakzk,z€7/l*. (1.3)

Ly ,(n,m)f(2) = — + (
M@ ZJ K+d+p) (Mysp

Z
k=1-p

Therefore, for all f € X, the operator Lfl’p(n, m) satisfies the relations

(L5 mm)f@) = dL(nm)f(2) - (d + p) L35 (n.m) (), (1.4)

and

2Ly, (nmf@) = nLy (n+ 1,m2)f) - (n+ p) L, (nm)f@), neC\{-1}.
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Remark 1. For particular values of the parameters, the operator £, » reduces to some cases studied by
different authors, as follows:
(i) The operator

Z

f P E(ndr (d > 0)

0

Ly,(1,1:2)f(2) =: Fuf(z) =

Zd+p

in a very similar form was studied by Miller and Mocanu in [2, p. 389].
(i1) In the article of Aqglan et al. [5], we can find the operator

1
T (s)

- s—1
(L 1LDf(@) =P f(2) = f (log %) Pfnde (s>0).
0

(ii1) The special case

a

s . . 1S _ i ( < s +p—
L, (L12)f(2)=J;,f(2) = () f(log ;) (P fnde (d, s > 0)
0

was investigated by El-Ashwah and Aouf in [6].
(iv) The operator

N d ’ K *
+;(m) a.z (dEC,SEC)

IS

L,(LLE)f() = L1f(2) =

can be found in [7].
We recall the next notions and preliminary results, which are necessary to obtain our new findings.

Definition 1._[8, Definition 2, p. 817] Let Q be the set of the functions f that are holomorphic and
univalent on U \ E(f), where

E(f) := {{ €oUu : Ef}f(z) = oo},

and satisfies f'({) # 0 for £ € OU \ E(f).
The following classical subordination result is due to Hallenbeck and Ruscheweyh [9]:

Lemma 1. [2, Theorem 3.1b, p. 71] Suppose that the function h is convex (univalent) in U with
h(0) =1, and ¢ € H[1,1] such

1 ’
P(z) + 5 (2) < h(2),
with y # 0 and Rey > 0. It follows that

Z

o(2) < W(2) = zlv f P h(ndr < h(z),
0

where Y is the best dominant. Moreover, the function Y is convex (univalent) in U.

AIMS Mathematics Volume 10, Issue 10, 24627-24650.
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The next two lemmas deal with linear operators that preserve the subordinations and
superordinations, and the first one is a special case of [2, Theorem 3.4h, p. 132].

Lemma 2. [10, Lemma 2.2, p. 3] Assume that the function q is univalent in U, and y € C, d € C*

such that .
Re(l + X (Z)) > max{O;—Reﬂ}, zeU.
q'(2) d

If A € H(U) and
YA(2) + dzA'(z) < Yq(2) + dzq'(2),

then A(z) < q(2), and the function q is the best dominant.

The following lemma could be easily derived from [8, Theorem 8, p. 822], while a more general
form can be found in [10, Lemma 2.4, p. 3] as a special case of [11, Corollary 3.2, p. 290]:

Lemma 3. Assume that q is convex (univalent) in U and suppose that 6 € C with Res > 0. If
A € H[q0), 11N Q and A(z) + 6zA'(z) is univalent in U, then
4(2) +6zq'(2) < A2) + 6z4'(2)
implies
q(2) < A(2),

and the function q is the best subordinant.

The next lemma due to Nunokawa is a classical one in the Geometric Function Theory, and in some
cases it gives additional tools for proving different specific results, and it will be used in our proofs.

Lemmad. [12,13] Let p € H[1, 1] with p(z) # O for all z € U. If there exists zo € U such that

|arg p(2)] < g% 2l < |zol and l|arg p (zo)| = gy’

where 0 <y < 1, it follows that
zop' (z0) _

= ikvy,
P (20) 4

where

1 T
k<- (a + —), if argp(z)=-%7,
a 2

and (p (zo))% = +ia, a > 0.

For a, b, and ¢ real or complex numbers, with ¢ ¢ Z;, the well-known Gaussian
hypergeometric function

O (@D,
z

Fi(a,b;c;2) = ,
2Fi(a c;2) Z n1(©),
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and this series converges absolutely and uniformly on compacts of U; hence, its sum is an analytic
function in U (see, for details, [14, Chapter 14]; see also [2]). The properties of this function that we
will be using in our proofs are presented in the next lemma. We would like to mention that the source of
these formulas is the next one: The relation (1.5) represents the [14, Example 14.6.1, p. 305-306] (see
also, [15, formula (9.1.6), p. 240] and [16, (15.3.1), p. 558]). The second equality of this lemma
is trivial according to the above definition, while the identity (1.7) is that of [16, formula (15.3.4),
p- 559] (see also the [15, relation (9.5.2), p. 247])).

Lemma S. For a,b,c € Cwith ¢ ¢ Z,, we have the next identities:

1

I(b)I(c -
ftb‘l(l — )N (1 = z)de = %C)b) »Fi(a,b;c;z) (Rec >Reb > 0), (1.5)
C
0
z€ C\ (1, +00);
2Fi(a,b;c;2) = 2Fi(b,a;¢;2), € C\ (1, +00), (1.6)
Fila, bz = (1= 27 F (ac = bies —— ), z€ C\ (1, +o0), (1.7)
i

where the function log is considered at the main branch, that is, log 1 = 0.

The results discussed in this work further deal with some subordination and superordination
properties for the operator L} (n,m) when linear combinations of this operators are subordinated to
power of the Janowski-type functions, and with argument estimations of other linear combinations.
Many previous papers deal with various applications of the theory of differential subordinations and
superordination, and different connections of these results with special functions.

The new operator Lj,’p(n,m) we defined in (1.3) as a solution of a “convolution equation” and
connected with the Hurwitz-Lerch Zeta function, generalize many of some previous ones, as it is shown
in the Remark 1. With specific techniques of the above-mentioned theory and using also Nunokawa’s
lemma (Lemma 4), we obtained general subordination and superordinations results, that in particular
lead to some simple so-called “differential inequalities”.

It is necessary to mention that the subordination and superordination results are sharp (i.e., the best
possible), and the main results are followed by some special cases obtained for convenient choices of
the parameters.

The results we obtained in this paper are new and original and we hope they will be useful for the
specialists that work in this field of Geometric Function Theory, and the purpose is focused on solving
other special problems of this area. In addition to the relevant applications shown in the recent classical
books of this area (see, for example, [2, 11]), the differential subordinations and superordinations
notions are appropriate to define new relevant classes using similar methods to those of this paper.

2. Main results
Throughout this paper we assume that d,n,m € C\Z; withRed >0, s € R, 6 € R"\ {0}, @ € (0, 1],
and C,D € R with |C| < 1, |D| < 1 such that C # D. The first subordination result we prove below is

connected with the operator defined by (1.3), and it is a sharp (i.e., the best possible) one.

AIMS Mathematics Volume 10, Issue 10, 24627-24650.
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Theorem 1. Let O < r < 1 and for a given function f € X, assume that
LY nm)f(2) #0, z€ U.

Let the function ® defined by

O@) = (1 - ) (L m @) +a (L, m)f@) (2 Ly nm)f@)

where the powers are all at the main branch, i.e., log1 = 0. If

1+Cz\
1+ Dz

D(z) < (

with |C| < 1, |D| £ 1, C # D, then

(L mmf @) < p@,
where
5d 5d sd D
2F1(r——+1—z—(1+Dz) zFl(r,l, v L"), if C=0,
a o« Dz+1
5d 6d sd C
2P (n == =Gz = (14 C o [ = 4 1 ), if c20, D=
p(2) = a Cz+1
=) /C\V « (=r); (C=D 6d Dz
= = IV a+pyF 11+ L if DC#0,
(D);j!(c)(+z)21(‘] " 1+Dz)’f ’
B D
|1—— <1-1DI.
C
Ifre(0,1), and
C C sd D
5+(1—5)(1+Dz)_12F1(1;1;—+1;%), if Dz#0,
p(Z): (04 + Z
1 f D=0
+5d+ozCZ’ if

Jorr = 1. Moreover, the function p is the best dominant of (2.4) and the next inequality holds

Re (2 L3 (n.m)f @) > p(-1). z €U,
while the inequality (2.5) is the best possible.

Proof. 1f
6 = (L5 mmfQ) L ze U,

(2.1

(2.2)

(2.3)

(2.4)

0,

(2.5)

(2.6)

from the assumption (2.1), it follows that the function ¢ is well-defined, ¢ € H and ¢(0) =

Differentiating (2.6) and using the relation (1.4), we get
Z¢ (z)

(L/

#(2) + =®(z), zeU,

AIMS Mathematics Volume 10, Issue 10, 24627-24650.
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hence the subordination (2.3) leads to

2¢'(2) (1 +Cz

00+ g = @) < |5 p

a

) =: q(2). 2.7)

Since [C| < 1 and |D| < 1 it follows that the function ¢ is analytic in U* with g(0) = 1, and it is easy
to check that for r € (0, 1] the inequality

Re(l + Zq/'(Z)) ——1+(-7rRe
q'(2)

> —1

+(1+rKR
v T FnIRe T

1-r 1+r

+ + >0, ze U,
1+1C| " 1+|D| z

holds, therefore g is a convex (univalent) function in Y. Using the fact that Re(dd/a) > 0, from
Lemma 1 the subordination (2.7) implies the sharp subordination

Z
6d a da 1 + Ct !
d(z) < p(z) = EZ_% fta{‘l( ) dt
0

1+ Dt

For computing the above integral, first we will use the binomial formula

- -D...(o—-k+1
(-gp=1+ YLD DCppp <1 peo, 8)

!
= k!

where the power is at the main branch, i.e., log 1 = 0. The above right-hand-side series diverges for
|] > 1 excepting the case p € N U {0}, and we could split our study in the following cases according to
the values of the parameters C and D.

(1) If C = 0, with the substitution ¢ = uz we get

Z 1
od c 5d
p(@) —— ftil_l (1+ Dt "dt = = fz?‘lu‘ff‘l (1 + Dzu)™" zdu
a a
0 0
1
_5‘[ o _

ue" (1 =(=D2)u)" du,

0

od
hence by taking in (1.5) b := —, a:=rand ¢ := b + 1, from Lemma 5, we have
a

sd
5d (6d.%+1;_ )F(Q)m)

p(Z):_ZFl r,—;
" r( 1)
sd D 5d 6d
— (4D o F [rn1: 22 1, =) = ,F (22,2 1. 2Dy, (2.9)
@ Dz+1 a

(i1) If C # 0, we have the following two subcases:

AIMS Mathematics Volume 10, Issue 10, 24627-24650.
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(a) If D = 0, since

Z

od
pR)=—z % ftif_l (1+Cr)dt,
a
0
using similar computations as above, we get

sd C sd Sd
p@) = (1+C) oF = 1; 22 w1, —" ) = ,F [, 252 h 1, -] (2.10)
a Cz+1 a «

(b) If D # 0, we have

o (1+Ct T tM‘l(g)r(l _C-D )r
1+Dt) D C+CDt]
For the last factor for the right-hand-side of the above relation, we will use the binomial formula taking
C —
p:=re(0,1]and ¢ := If we consider the case r € (0, 1]\ {1} = (0, 1), then r ¢ N and the

C(1+Dt)
formula (2.8) holds only if

1= C(1 + Dr)
We have [f| < 1 because the integral of an analytic function doesn’t depend on the path, so we could
consider that we integrate on the segment connecting 0 to z € U, hence ¢ € U. Also, it is necessary to
assume |C| < 1, |D| < 1 with C # D (the first two conditions for the analyticity of the function p, and
the last one for not being a constant function).
In order to use the binomial power series formula (2.8) for r € (0, 1) (excepting the case r = 1), we
should have

<1, forall |7 < 1.

' C-D
C(1 + Dr)
Since 0 < |C| < 1 and 0 < |D| < 1, the left-hand-side of (2.11) is well-defined, and

D
<1, V|t|<1®0¢'1—6‘<|1+Dt|, Vg < 1. 2.11)

inf{|[1+Dt:]f|]<1}=1-|D| >0.
Consequently, the condition (2.11) is equivalent to

D
1-—=1<1-1|D|, 2.12
‘ = E 2.12)

then the binomial power series formula (2.8) for r € (0, 1) can be used if and only if we assume that the
inequality (2.12) holds. With this additional assumption, using first the substitution # = uz, then taking

in(1.5)b:=—,a:=j,c:=b+ 1, and using finally (1.7), it follows that
a

Z Z
od s od 1 1+Ct " od s od 1 Ccy C-D '
=—z o | 1@ dt=—z"% | ¢« (—) - —— | dr
PR =s f (1+Dt) @’ f D ( C(1+Dt))

0 0

5d s (CY [ s [ (P C=D Y
T ”(B) fta I(Z ! ,(C(1+Dt))]dt

0 720

AIMS Mathematics Volume 10, Issue 10, 24627-24650.
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1 .
fo (g e
0

>0

1 .
AN
0

720

_ @’(E)r > (‘J_’;)f (%)Jflu (1 + Doy ’du}
=L 0

‘| c-py (sd sa . \T(#E)TM
) Ogj!J(_) 2FI(J,—, +l,—Dz)W

C a
(G [T a0

thus
CY < [(=n; (C-D od od
p(Z):(B) jz_;[ jrzj(T) JF, (],—,—+1 —Dz)] 2.13)

Concluding, from (2.9), (2.10), and (2.13) combined in this last case with the assumption (2.12),
under the assumptions |[C| < 1, |D| < 1 with C # D, and r € (0, 1), we have

od od
2F1(F,—;—+1;—DZ), if C=0,
a «
od od
p(2) = zFl(—r——+1—Cz) if C#0, D=0,
a «a
CY <« [(=P; (C-D 6d od . D
— — | »F|j,—;— +1;-D f DC+#0,|1-—=|<1-|D|.
(D);[j!(C)ZI(] @ Z)] : 7 C 1D
For r = 1, like in [17], we similarly get that
C od D
5+(1——)(1+Dz) 2F1( 1—+1;%), if D#0,
P(Z): a + Dz
1 Cz, if D=0.
+6d+a S
Now we will prove that
inf {Re p(2) : |z| < 1} = p(=1). (2.14)
Thus, if 0 < r < 1 we have
1+Cz\ 1 - :
Re(FE) 5 (12C9) co<,
1+ Dz 1- Do
Setting
1+Csz\
h = 0<s<l1
(s,2) (1+Dsz) eU, (0<s<],

AIMS Mathematics Volume 10, Issue 10, 24627-24650.
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and 5d
dv(s) := —s%d_lds,
a
where dv(s) is a positive measure on [0, 1], we get

1

p(2) = f (s, 2)dv(s),

0

therefore
1

1-Cso\
Re p(z) 2 f(—) dv(s) = p(-0), |2 <o < 1.
1 - Dso
0
Taking o — 17 we get that (2.14) holds, while the inequality (2.5) is the best possible since p is the

best dominant of the subordination (2.4). O

Next, we will give some particular and special cases of the above theorem, followed by
some examples.
If we choose @ = 6 = 1 in Theorem 1, we get the next corollary:

Corollary 1. LetO <r < 1,and|C| < 1, |D| < 1 withC # D. If
1+Cz\
1+Dz)’

d.p

2L (n,m)f(z) < (

then

Re (7 Ly (n.m)f(2)) > p(=1), z € U, (2.15)
where the function p is given in Theorem 1. Moreover, the inequality (2.15) is the best possible.

If we choose s = —1 and n = m in Theorem 1, we get the below result:
Corollary 2. Let 0 < r < 1 and for the function f € X, assume that
f)#0, zeU.

Define the function ®, by

5 = (14 22) @10 + L p o @ fof 7 e,
where all the powers are considered at the main branch, i.e., logl = 0. If
~ 1+Cz\
o< (12
where |C| < 1, |D| < 1 with C # D, then
(" f(2))° < p(2), (2.16)
where the function p is given in Theorem 1, and it is the best dominant of (2.16). Moreover,
Re (2 f(2))" > p(-1), z€ U, (2.17)

and the inequality (2.17) is the best possible.

AIMS Mathematics Volume 10, Issue 10, 24627-24650.
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For 6 = 1 and r = 1, the Corollary 2 reduces to the next example:

Example 1. Let 0 < r < 1 and for the function f € X, assume that
Zf2)#0, zeU.
Defining the function @, by

2 1= (14 22} 27 f2) + “Z;“f'(z), ced,
it 1+Cz
Dy(2) < 15Dz
where |C| < 1, |D| < 1 with C # D, then
Zf(2) < p), (2.18)
where the function p is given in Theorem 1, and it is the best dominant of (2.18). Moreover,
Re(Zf(2)) > p(-1), z€ U, (2.19)

and the inequality (2.19) is the best possible.
For C =1 and D = —1, the Example 1 leads to the next particular case:
Example 2. (i) If 0 < r < 1, let the function f € X, such that
Zf)#0, zeU.
Let the function @, defined by

az’t! 1+
S o) < —=.
1-z2

05(2) = (1 + %)zﬂf(z) T

Then, the subordination

' f(2) < %
implies
Re(Zf(2)) > ., z€ U, (2.20)
where
Lo =—1+,F, (1, 1;%;%),

and the inequality (2.20) is the best possible.
(i1) For d = a = 1 the above result leads us to the following one:
For f € X, assume that
f()#0, zeU.

Then, the next implication holds:
1+
1+ pPfz) + z”“f’(z) < 1—Z = Re(Zf(2)) > -1+2In2, ze U,
—Z

and the right-hand-side lower bound is the best possible.

AIMS Mathematics Volume 10, Issue 10, 24627-24650.
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The next result represents another subordination result involving the operator L;’p defined by (1.3).

1
Theorem 2. Let0<r<1,0<a< o and |C| < 1, |D| < 1 with C # D. For f € X, let’s define
p

the function F, by
Fol2) = ad L) (n.m)f() + (1 — @ — a(d + p) L3 (n.m)f (), z € U. 2.21)
If
1+Cz\
PF | —q-— , 222
PFo(d) < (1 -« ap)(HDZ) (2.22)
then the assumption (2.22) implies
L (nm)f) < p), (2.23)
where
1 -
2 Fy (r, ., p ;—Dz) =
l-a—ap 1—a—-ap
(1 + Do) oF, [r1; ——2P D2 if C=0
r1; ; i =
<) 24 ”l—a—ap’Dz+1’ >
1—
2F1 ) a 5 er ;_CZ =
— l-a—ap 1—a—-ap
P (1 +Co oF, (-1 =P .2 if C#0, D=0
- 1; ; i =
Z 2 1 2 ’1_a_ap’cz+1 2 b b
Ccy (—r),-(C—D)f _; . l-ap Dz .
— —— | (1 +D2)”7,F|j1; ; , DC # 0,
(D); J! C ( 2 PaFi|J l—-a—-ap 1+ Dz 4 *
) D
1-—=|<1-1|D|,
-gl= -
ifre(0,1), and
C C 1- D
—+(1——)(1+Dz)‘12F1 11, — 2P . 22 )\ Do,
— . _ D D l—-a—-ap 1+ Dz
p(2) =
1+ Cz, if D=0
1 -ap
for r = 1. Moreover, the p is the best dominant of (2.23) and the next inequality holds
Re (27 L3 (n.m)f(2)) > P(=1), z € U, (2.24)
while the inequality (2.24) is the best possible.
Proof. From the definition (2.21), using the relation (1.4) we get
Ful@) = az (L (. m)fQ)) + (1 - @) L3 (. m)f (). (2.25)
Denoting
¢(2) == 2" L (n,m)f(2), z€ U, (2.26)
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we have ¢ € H. Differentiating (2.26), from the relation (2.25) we get

ZFo(d) =1 -a-ap) (¢(z) + LZW(Z)), zeU, (2.27)
l-a—-ap
then
a , 1+Cz\
o)+ 1 —a—apz¢(z) = (1 +Dz) '

From the assumption of the theorem, the conditions of Lemma 1 are satisfied, and following the
techniques similarly that those of the proof of Theorem 1 our result follows immediately. O

If we choose r = 1 in Theorem 2 we get
Corollary 3. For f € X, let the function F, be defined by 2.21. If

1+Cz?

PFa@) < (I —a—ap) D

then
Re (2 L3 (n,m)f() > p(=1), ze U,

where the function p was defined in the Theorem 2. The above inequality is the best possible.

1
Example 3. Taking p = C =1,D = -l and a = 3 in Corollary 3 we get the next implication: If
f€X,, then

1—
and the right hand side lower bound is the best possible.

11
Fi< 3 L:Re(zﬁ“(n mf(@)>-1+2In2, ze U,

The next theorem evaluate the connection between the arguments of z”%,(z) and z”L”l(n m) f(2),
as follows:

1
Theorem 3. If f€X,0<y<land0<a< T
p

, then

|arg (z”?“'a(z))| < g)’, ze€U,

implies
‘arg( ”l(n m)fz))‘ < 3V eU.

Proof. For f € X, let define the function
8() =L (n.m)f(2), z€ U,

thus g € H. If we suppose that there exists a point zo € U such that
[arg g(2)] < 57+ 12l < Izl
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and x
|argg(z0)| =37

then, by Lemma 4, we have

08 (Z0) _ iky and (g(20))7 = ia, a >0,
8 (20)
where
1 1
k>—-la+-]|, when argp(Zo):lT?’,
2 a 2
1 1
k<-—|la+—-|, when argp(z)= —E)’-
2 a 2

(1) Ifarg g (zo) = gy, using (2.27) we get

PFolzo) = (1 — @ — ap)g (z0) (1 + a 208’ (ZO))

l-—a-ap g(z)
=(1-a—-ap)a’e?” (1 + Lik}/),
l-a—-ap

which implies that

karyi ) n 1( kay ) n

——— | =<~y +tan~ > =7,
l-—a—-ap l-—a—-ap

arg (2"Fa(z0)) = gY +arg (1 + 2 2

1 1
with k > 3 (a + —) > 1, which contradicts the assumption of the theorem.
a

(1) Similarly, if arg g (z0) = —gy we obtain

arg (2" Fal(20)) < —gy,

which also contradicts the assumption of the theorem.
Thus, the function g will satisfy the inequality |arg g(z)| < 7_2r% 7€ U, thatis

‘arg (ZPLE)] (n, m)f(z))‘ < gy, zeU.

For 6 > 0, let define the integral operator J 4 : £, — X, by

Z

f P f(nde, z e U (2.28)

0

0

Z0+p

Tpo(N)(2) =

The next sharp subordination result deals with the connection between the functions zp.ljjlfpl (n,m)f(z)
and 22 L5 (n,m)J, o(f)(2).

P
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Theorem 4. Let0<r<1,60>0,and|C| <1, |D|<1withC # D. If f € X, and
, 1+Cz\
s+1
2P L (n,m)f(z) < (1 ~ DZ) , (2.29)
then
2 L (n,m),o(f)(2) < Pl2), (2.30)
where
_ Dz :
JF1 (1, 0:0+ 1,=D2) = (1 + D2) " oF) (r,1;6+ Lo 1), if C=o,
<
C
2Fi (1,604 15-C2) = (1 +C2Y oFy (=1, 130+ I;C—il)’ if C#0.D=0,
— , Z
P2 =1 (C\ « (-r); (C-=DY . Dz
— —— | (1+D ‘JF(',1;1+6’;—),' DC # 0,
(D)Z(;j!(c)( 2ok T+pz) ¥ PCF
) D
'1——‘§1—|D|.
C
Ifre(0,1), and
C C Dz
—+(1-= - ( 16+ 1; ) ' :
o D+( D)(1+Dz) Py (1164 i) i D0
l+—— f D=
L 1Cz, if 0,
forr =1, and p is the best dominant of (2.30). Moreover,
Re(z”Lf;pl (n,m)J,o(f)(z) > p(-1), ze U, (2.31)
and the inequality (2.31) is the best possible.
Proof. For f € X, if we let
¢(Z) = Zp'£2-;71(n9 m)Jp,H(f)(Z), Z€ q/{’

then ¢ € H.

The definition formula (2.28) could be written as

Z

o)) = 6 f £ (s,

0

and applying the linear operator Lj;pl (n, m) to the above equality, we get

Z

(), o)) = 6 f (ot st

0

O+p ps+1
Ly

Differentiating this equality and multiplying with “ z it follows

L (1, m) e (@) + 6+ p)? L)

d,p

AIMS Mathematics

(n,m)J,o(f)(2) = 027 L3

(n,m)f(t)dt, z€ U".

(n,m)f()dt, z € U,

d,p
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1 6”

and dividing both sides by we have

2L (nm)] (@) = 627 L3 (n,m) f(0)dt = (6 + p)z” L) (n,m)] (), z€ U, (2.32)

mentioning that this last relation also holds for z = 0. The differentiation of the function ¢ combined
with (2.32), leads to

2'(2) = pP L3 (1, m)],o())@) + 27 (L (. m)] 6 () (2))
= p2P L) (n,m)I,o(f)(2) + 027 L3 (n,m) f()dt = (0 + p)z” L5 (n,m)T,6(f)(2)
= (2 L)) (n,m) f(Ddt = 22 L3 (n,m)6()D)), 2 € U,

or

(@) _
0

P Ly (nom) f(n)de = 2 L3 (n,m)]6(f)(2)
= z"L”l(n m)f(t)dt — $(2), z € U.
Using this last relation, from the assumption (2.29) we deduce

Z¢ (z)

L () f () < (1 * CZ) .

() + T+ D:

Now, using a similar techniques with those used in the proof of the previous theorem, we obtain the
subordination (2.30) and the inequality (2.31). O

For the particular case r = 1 in Theorem 4 we get:

Corollary 4. Let0<r<1,0>0,and|C| <1, |D| < 1withC # D. If f € X, and

C
L (n, mf(@) < 1 e
+ Dz
then
Re (2 L5 (0. m)T,o()@) > Br. z € U, (2.33)
where C C D
C AT . P
. S+(1-F)a-D R (Lses =), i Do,
- ¢ if D=0,

0+1
and the inequality (2.33) is the best possible.

Example 4. (i) f weput p =C =1, D = -1, and 6 = 2 in Corollary 4, we get the next implication:
If f €X,, then

2L (nm) f(2) < LZ = Re (2L} (n.m)J12(f)@) > =1 +4(1 - In2), ze U.

(i1) Taking in the above corollary p = C = 1, D = —1, and 6 = 1, the following implication holds:
If f €X,, then

L3 nm) (@) < LZ = Re (2L} (nm1(HE) > ~1+21n2, z € U.
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B
The following result shows that the best dominant ¢ for the function (ZPLZE (n,m)f (z)) if the linear
combination defined by the function ® given by (2.2) is subordinated to a linear between g(z) and zg'(z).

Theorem 5. Let the function q b univalent in ‘U, such that
’’ 6d
Re(l + “ (Z)) > max{O;——}, ze€U.
q'(2) @
Let 0 < r <1 and for f € X, suppose that
L (n,m)f(x) #0, z€U.
If the function @ defined by (2.2) fulfill the subordination

a ’
) < 4(@) + 574/ @). (2.34)
then s
(27 L35 (. m)f @) < q(), (2.35)

and q is the best dominant of (2.35).
Proof. For f € X, if ¢ is the function defined by (2.6), from the left-hand-side of (2.7) we have

@) = ¢() + —24/(). 2 € U. (2.36)
Combining (2.34) and (2.36), we deduce
a ’ 1 ’
#(2) + 6_ch¢ (2) <q(2) + 579 (2), (2.37)
and our result follows from (2.37) by using Lemma 2. O

C r
Z) with [C] < 1, |D| < 1 and C # D, we obtain the

1+
Taking in Theorem 5 the function g(z) =
1+ Dz

next particular case:
Corollary 5. For 0 <r <1 and|C| < 1, |D| < 1 with C # D, assume that

1-Dz (r—-1)C-D)z ~od
Re(l + Dz " (1+Dz)(1 +CZ))>max{0, a}’ zel.

Let f € X, such that
L (n,m)f(z) #0, z€U.

d.p
If the function ® defined by (2.2) satisfies

1+Cz\" a (l1+Cz\" r(C-D)
1+ Dz 1+Dz) 1+Dz)(1+Cz)’

(D(z)<( +5d

then

(2.38)

: 1+Cz\
@ Linmro) <(H5)

1+Cz\
and the function ( T DZ) is the best dominant of (2.38).
<
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1+C
For ¢(z) = TDE’ Theorem 5 leads to the next corollary:

Corollary 6. For |C| < 1, |D| < 1 with C # D, suppose that

and let f € X, such that
L (n,m)f(z) #0, z€ U.

d.p
If the function @ defined by (2.2) satisfies the subordination

1+Cz+g(C—D)z

(I) 7)< )
@ 1+ Dz 6d(1+ Dz)?

then 1+ c

s+1 J +C2

(2 Lyl mf) < s (2.39)
. I+Cz .
and the function T is the best dominant of (2.39).
Z
If weput s =0andn =m =d = 1 in Theorem 5, we get the below particular case:

Corollary 7. Let the function q be univalent in U such that

17 6

Re(] + X (Z)) > max {O;——}, zeU.
q'(z) @

For f € X, assume that

f(z)#0, ze U.

If the function © defined by (2.36) satisfies
a ’
D(2) < q(z) + 524'(2),
then
@ f@)° < q(2), (2.40)

and q is the best dominant of (2.40).
Taking C = 1 and D = -1 in Corollaries 5 and 6, we get the next examples, respectively:

Example 5. (i) Let 0 < < 1 such that

1 2(r—1 d
Re( 2 + r )Z) > max{O;—é—}, zeU,
a

1-z2 1-2722

and for f € X, assume that
L (n,m)f(z) #0, z€ U.

d,p
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If the function © is defined by (2.2), then
1+z\" af{l+z\ 2rz
o) < |—| +=[— | —=
@ (l—z) 6(1—z) 1 -2
implies

, 1 '
(L5 nmf@) < (TZ) ,

+ r
and the function Z) is the best dominant of (2.41).

-z
(i) For f € X, suppose that

LY m,m)f(2) £0, ze U.

d,p
If the function ® defined by (2.2) satisfies

1+z a 2z
+ = s
-z 61-22

D(z) <

then |
st § +Zz
(L mmf@) <.

_l_
< is the best dominant of (2.42).
—Z

and the function

1+Cz\
Example 6. If we put in the Corollary 7 g(z) = (1 : DZ

get the below result.
For f € X, suppose that
72f(z) #0, ze U.

Then,
1+z

22f(2) + 2°f' () < (1—) + (

1-z) 1-2%

1+ z)r 2rz

implies
1+z

zf(2) < (1—2) )

1+z\
and the function ( Z) is the best dominant of (2.43).

—Z

The next result represents a superordination theorem that is the dual of Theorem 5.

Theorem 6. For the function f € X, assume that

L mm)f(2) 0, ze U.

d.,p

Suppose that
5
(L) (mf@) eHNQ,

(2.41)

(2.42)

)Withp:C:azc‘S:landD:—l,we
Z

(2.43)
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and the function @ defined by (2.2) is univalent in U.
If the function q is convex (univalent) in U, then

q(2) + %zq’(z) < O@)

implies
s
2

q2) < (L) (n.m)f(2))
and q is the best subordinant of (2.44).

(2.44)

Proof. If ¢ is the function defined by (2.6), from the left hand side of (2.7) and (2.36) we deduce

q(2) + (%zq'(z) <0 =) + (;idw’(z),

and our result follows immediately from Lemma 3.

1+Cz
1+ Dz

For the particular case ¢g(z) = ( ) , Theorem 6 becomes:
Corollary 8. Let 0 < r < 1, and for f € X, suppose that

L (m,m)f(2) £0, ze U.

d.p
Suppose that
s
(L mf@) eHNQ,
and the function @ defined by (2.2) is univalent in U.
If
1 ' 1 ' -D
+Cz L a1+ Cz r(C — D)z < D),
1+ Dz od\1+Dz)] (1+Dz)(1+Cz)
then
1+Cz ' s+1 J
(1 + Dz) < (L) mf@)

1+Cz\
and the function (1 " DZ) is the best subordinant of (2.45).
Z

1+Cz
Taki =
aking 4(2) = -

Corollary 9. For f € X, assume that

in Theorem 6, we get:

2L (nm)f(2) 0, z€ U.

Suppose that
s
(2Ll (.m)f(2)) e HN Q.
and the function © defined by (2.2) is univalent in U.

(2.45)
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If
1+Cz  a (C-D)
1+ Dz + @(1 N DZ)2 q)(Z),
then L +C
< s+
D (27 L35 (n.m) f(z)) (2.46)

1+C
and the function " ¢ is the best dominant of (2.46).
Z

Combining the results of Theorems 5 and 6, we obtain the following sandwich-type theorem:

Theorem 7. For f € X, assume that
LY m)f(2) #0, z€U.

Suppose that
(Lt mf@) € Hig). 110 Q.

and the function @ defined by (2.2) is univalent in U. Let q; be a convex (univalent) function in U,
and assume that q; is univalent in U such that

Re(l + 4, )) max{O;—a—d}, Z€U.
QQ(Z) a

q1(Z)+ qu(Z)<(D(Z)<C]2(Z)+ zqz(z)

If

then
01 < (L m @) < g0,

and q, and gq, are, respectively, the best subordinant and best dominant of the above
double subordination.

3. Conclusions

The results presented in this paper represent an interesting investigation of differential
subordinations and superordinations connected with the convolution operator Lfi’p(n, m) and defined
on the class of meromorphic multivalent functions in U*.

The main aspects we would like to emphasize are the successful using of the general theory of
the differential subordinations and superordinations together with the well-known Nunokawa’s lemma,
to obtain sharp subordination results for a generalized convolution operator. These techniques are
not widely used, while some immediate consequences are given in the corollaries and examples we
obtained for some special cases. We hope that this study and some possible similar ones could help the
specialists in this field to solve other related aspects of this field of interest.

For some possible new studies, newly defined classes can be considered by using the methods of the
theory of differential superordinations, which could connect the outcomes of this study with possible
further results. We believe that our results will be useful for the specialists of the field of Geometric
Function Theory for some new approaches in this area.
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