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1. Introduction

LetU := {z ∈ C : |z| < 1} denote the open unit disc in the complex plane, and denote byH(U) the
space of all analytic functions inU. Also, let

Aκ :=
{
f ∈ H(U) : f (z) = z + aκ+1zκ+1 + . . . , z ∈ U

}
(k ∈ N),

denoteA := A1, and

H[a, `] :=
{
f ∈ H(U) : f (z) = a + a`z` + a`+1z`+1 + . . . , z ∈ U

}
,
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with a ∈ C and ` ∈ N := {1, 2, 3, . . . }. DenotingH := H[1, 1], the usually normalized class of convex
functions inU will be denoted by

L :=
{

f ∈ H(U) : Re
(
z f ′′(z)
f ′(z)

+ 1
)
> 0, f ′(0) , 0, z ∈ U

}
,

and let S ⊂ A the subset ofA consisting of univalent functions inU.
The following well-known notion of the subordination plays a crucial role in the present paper.

If f and g belong to H(U), we call that f is subordinate to g (or g is superordinate to f ), denoted
f (z) ≺ g(z), if there exists a Schwarz function ϕ ∈ H(U) with ϕ(0) = 0 and |ϕ(z)| < 1, z ∈ U, such
that f = g ◦ ϕ. If f (z) ≺ g(z), then f (0) = g(0) and f (U) ⊂ g(U), while if g is a univalent function in
U, then f (z) ≺ g(z) if and only if f (0) = g(0) and f (U) ≺ g(U) (cf., e.g., [1]; see also [2, p. 4]).

If h ∈ H(U) and W : C3 × U → C, then a function p ∈ H(U) that satisfies the second-order
differential subordination W

(
p(z), zp′(z), z2 p′′(z)

)
≺ h(z) is called a solution of this subordination.

A univalent function q in U with the property p(z) ≺ q(z) for all the solutions of the differential
subordination is said to be a dominant of this subordination. Moreover, a dominant q̃ such that
q̃(z) ≺ q(z) for all other dominants q is called the best dominant. This is unique up to a rotation,
while more details could be found in [2] and the references therein.

The class of meromorphic multivalent function in the punctured unit discU∗ := U\{0} of the form

f (z) =
1
zp +

∞∑
κ=1−p

aκzκ, z ∈ U∗ (p ∈ N), (1.1)

will be denoted by Σp.
For the functions f j ∈ Σp, j = 1, 2, having the form

f j(z) =
1
zp +

∞∑
κ=1−p

aκ, jzκ, z ∈ U∗,

the Hadamard (convolution) product of f1 and f2 is given by (see, e.g., [3, p. 246])

( f1 ∗ f2)(z) :=
1
zp +

∞∑
κ=1−p

aκ,1aκ,2zκ, z ∈ U∗.

In [4], using the convolution product of a function f ∈ Σp with the Hurwitz-Lerch Zeta function,
the authors defined the operator Ks

p,d
: Σp → Σp by

Ks
d,p f (z) :=

1
zp +

∞∑
κ=1−p

(
d

κ + d + p

)s

aκzκ, z ∈ U∗

(
d ∈ C \ Z−0 , Z

−
0 := C \ {0,−1,−2, . . . } , p ∈ N, s ∈ C

)
.

Moreover, we could easily check that for all f ∈ Σp, ti ∈ U
∗ for i ∈ {1, 2, 3, . . . , κ}, κ ∈ N, and

d ∈ C \ Z−0 , we get

Kκ
d,p f (z) =

dκ

zd+p

∫ z

0

1
t1

∫ t1

0

1
t2

∫ t2

0
. . .

1
tκ−1

∫ tκ−1

0
td+p−1
κ f (tκ)dtκdtκ−1 . . . dt2dt1, z ∈ U∗,
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and
Ks+1

d,p f (z) =
d

zd+p

∫ z

0
td+p−1Ks

d,p f (t)dt, z ∈ U∗.

Let us define the function Ψp(n,m) : U∗ → C by

Ψp(n,m)(z) :=
1
zp +

∞∑
κ=1−p

(n)κ+p

(m)κ+p
zκ, n ∈ C∗ := C \ {0}, m ∈ C \ Z, p ∈ N,

where (τ)κ denotes the Pochhammer symbol, that is

(τ)κ =
Γ(τ + κ)

Γ(τ)
=

{
1, if κ = 0,
τ(τ + 1) . . . (τ + κ − 1), if κ ∈ N.

Consequently,

Ψp(n,m)(z) =
1
zp 2Γ1(n, 1; m; z), z ∈ U∗, (p ∈ N),

where

2F1(n, v; m; z) =

∞∑
κ=0

(n)κ(v)κ
(m)κ(1)κ

zκ, z ∈ U
(
n, v ∈ C, m ∈ C \ Z−0

)
is the Gaussian hypergeometric function.

If we consider the equation

Ks
d,p(z) ∗ Ls

d,p(z) =
1

zp(1 − z)
, z ∈ U∗,

with the unknown function Ls
d,p, it follows immediately that

Ls
d,p(z) =

1
zp +

∞∑
κ=1−p

(
κ + d + p

d

)s

zκ, z ∈ U∗. (1.2)

Hence, using the operator Ls
d,p : U∗ → C given by (1.2), we define the new operator Ls

d,p(n,m) :
Σp → Σp as the solution of the equation

Ψp(n,m)(z) = Ls
d,p(z) ∗ Ls

d,p(n,m) f (z), z ∈ U∗,

whose Taylor series expansion for d,m ∈ C \ Z−0 , n ∈ C∗, s ∈ C, and for f given by (1.1) will be

Ls
d,p(n,m) f (z) =

1
zp +

∞∑
κ=1−p

(
d

κ + d + p

)s (n)κ+p

(m)κ+p
aκzκ, z ∈ U∗. (1.3)

Therefore, for all f ∈ Σp the operator Ls
d,p(n,m) satisfies the relations

z
(
Ls+1

d,p (n,m) f (z)
)′

= dLs
d,p(n,m) f (z) − (d + p)Ls+1

d,p (n,m) f (z), (1.4)

and
z
(
Ls

d,p(n,m) f (z)
)′

= nLs
d,p(n + 1,m; z) f (z) − (n + p)Ls

d,p(n,m) f (z), n ∈ C \ {−1}.
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Remark 1. For particular values of the parameters, the operator Ls
d,p reduces to some cases studied by

different authors, as follows:
(i) The operator

L1
d,p(1, 1; z) f (z) =: Fd f (z) =

d
zd+p

z∫
0

td+p−1 f (t)dt (d > 0)

in a very similar form was studied by Miller and Mocanu in [2, p. 389].
(ii) In the article of Aqlan et al. [5], we can find the operator

Ls
1,p(1, 1; z) f (z) =: Ps f (z) =

1
zpΓ (s)

z∫
0

(
log

z
t

)s−1
tp f (t)dt (s > 0) .

(iii) The special case

Ls
d,p(1, 1; z) f (z) =: Js

d,p f (z) =
αs

zd+pΓ (s)

z∫
0

(
log

z
t

)s−1
td+p−1 f (t)dt (d, s > 0)

was investigated by El-Ashwah and Aouf in [6].
(iv) The operator

Ls
d,1(1, 1; z) f (z) =: Ls

d
f (z) =

1
z

+

∞∑
κ=0

(
d

κ + 1 + d

)s

aκzκ (d ∈ C∗, s ∈ C)

can be found in [7].

We recall the next notions and preliminary results, which are necessary to obtain our new findings.

Definition 1. [8, Definition 2, p. 817] Let Q be the set of the functions f that are holomorphic and
univalent onU \ E( f ), where

E( f ) :=
{
ζ ∈ ∂U : lim

z→ζ
f (z) = ∞

}
,

and satisfies f ′(ζ) , 0 for ζ ∈ ∂U \ E( f ).

The following classical subordination result is due to Hallenbeck and Ruscheweyh [9]:

Lemma 1. [2, Theorem 3.1b, p. 71] Suppose that the function h is convex (univalent) in U with
h(0) = 1, and ϕ ∈ H[1, 1] such

ϕ(z) +
1
γ

zϕ′(z) ≺ h(z),

with γ , 0 and Re γ ≥ 0. It follows that

ϕ(z) ≺ Ψ(z) =
γ

zγ

z∫
0

tγ−1h(t)dt ≺ h(z),

where Ψ is the best dominant. Moreover, the function Ψ is convex (univalent) inU.
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The next two lemmas deal with linear operators that preserve the subordinations and
superordinations, and the first one is a special case of [2, Theorem 3.4h, p. 132].

Lemma 2. [10, Lemma 2.2, p. 3] Assume that the function q is univalent in U, and ψ ∈ C, d ∈ C∗

such that

Re
(
1 +

zq′′(z)
q′(z)

)
> max

{
0;−Re

ψ

d

}
, z ∈ U.

If λ ∈ H(U) and
ψλ(z) + dzλ′(z) ≺ ψq(z) + dzq′(z),

then λ(z) ≺ q(z), and the function q is the best dominant.

The following lemma could be easily derived from [8, Theorem 8, p. 822], while a more general
form can be found in [10, Lemma 2.4, p. 3] as a special case of [11, Corollary 3.2, p. 290]:

Lemma 3. Assume that q is convex (univalent) in U and suppose that δ ∈ C with Re δ > 0. If
λ ∈ H[q(0), 1] ∩ Q and λ(z) + δzλ′(z) is univalent inU, then

q(z) + δzq′(z) ≺ λ(z) + δzλ′(z)

implies
q(z) ≺ λ(z),

and the function q is the best subordinant.

The next lemma due to Nunokawa is a classical one in the Geometric Function Theory, and in some
cases it gives additional tools for proving different specific results, and it will be used in our proofs.

Lemma 4. [12, 13] Let p ∈ H[1, 1] with p(z) , 0 for all z ∈ U. If there exists z0 ∈ U such that∣∣∣arg p(z)
∣∣∣ < π

2
γ, |z| < |z0| and

∣∣∣arg p (z0)
∣∣∣ =

π

2
γ,

where 0 < γ ≤ 1, it follows that
z0 p′ (z0)

p (z0)
= ikγ,

where

k ≥
1
2

(
a +

1
a

)
, if arg p (z0) =

π

2
γ,

k ≤ −
1
2

(
a +

1
a

)
, if arg p (z0) = −

π

2
γ,

and
(
p (z0)

) 1
γ = ±ia, a > 0.

For a, b, and c real or complex numbers, with c < Z−0 , the well-known Gaussian
hypergeometric function

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n

n!(c)n
zn,
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and this series converges absolutely and uniformly on compacts of U; hence, its sum is an analytic
function in U (see, for details, [14, Chapter 14]; see also [2]). The properties of this function that we
will be using in our proofs are presented in the next lemma. We would like to mention that the source of
these formulas is the next one: The relation (1.5) represents the [14, Example 14.6.1, p. 305–306] (see
also, [15, formula (9.1.6), p. 240] and [16, (15.3.1), p. 558]). The second equality of this lemma
is trivial according to the above definition, while the identity (1.7) is that of [16, formula (15.3.4),
p. 559] (see also the [15, relation (9.5.2), p. 247]).

Lemma 5. For a, b, c ∈ C with c < Z−0 , we have the next identities:

1∫
0

tb−1(1 − t)c−b−1(1 − zt)−adt =
Γ(b)Γ(c − b)

Γ(c) 2F1(a, b; c; z)
(

Re c > Re b > 0
)
, (1.5)

z ∈ C \ (1,+∞);

2F1(a, b; c; z) = 2F1(b, a; c; z), z ∈ C \ (1,+∞), (1.6)

2F1(a, b; c; z) = (1 − z)−a
2F1

(
a, c − b; c;

z
z − 1

)
, z ∈ C \ (1,+∞), (1.7)

where the function log is considered at the main branch, that is, log 1 = 0.

The results discussed in this work further deal with some subordination and superordination
properties for the operator Ls

d,p(n,m) when linear combinations of this operators are subordinated to
power of the Janowski-type functions, and with argument estimations of other linear combinations.
Many previous papers deal with various applications of the theory of differential subordinations and
superordination, and different connections of these results with special functions.

The new operator Ls
d,p(n,m) we defined in (1.3) as a solution of a “convolution equation” and

connected with the Hurwitz-Lerch Zeta function, generalize many of some previous ones, as it is shown
in the Remark 1. With specific techniques of the above-mentioned theory and using also Nunokawa’s
lemma (Lemma 4), we obtained general subordination and superordinations results, that in particular
lead to some simple so-called “differential inequalities”.

It is necessary to mention that the subordination and superordination results are sharp (i.e., the best
possible), and the main results are followed by some special cases obtained for convenient choices of
the parameters.

The results we obtained in this paper are new and original and we hope they will be useful for the
specialists that work in this field of Geometric Function Theory, and the purpose is focused on solving
other special problems of this area. In addition to the relevant applications shown in the recent classical
books of this area (see, for example, [2, 11]), the differential subordinations and superordinations
notions are appropriate to define new relevant classes using similar methods to those of this paper.

2. Main results

Throughout this paper we assume that d, n,m ∈ C \Z−0 with Re d ≥ 0, s ∈ R, δ ∈ R+ \ {0}, α ∈ (0, 1],
and C,D ∈ R with |C| ≤ 1, |D| ≤ 1 such that C , D. The first subordination result we prove below is
connected with the operator defined by (1.3), and it is a sharp (i.e., the best possible) one.

AIMS Mathematics Volume 10, Issue 10, 24627–24650.



24633

Theorem 1. Let 0 < r ≤ 1 and for a given function f ∈ Σp assume that

zpLs+1
d,p (n,m) f (z) , 0, z ∈ U. (2.1)

Let the function Φ defined by

Φ(z) := (1 − α)
(
zpLs+1

d,p (n,m) f (z)
)δ

+ α
(
zpLs

d,p(n,m) f (z)
) (

zpLs+1
d,p (n,m) f (z)

)δ−1
, (2.2)

where the powers are all at the main branch, i.e., log 1 = 0. If

Φ(z) ≺
(

1 + Cz
1 + Dz

)r

, (2.3)

with |C| ≤ 1, |D| ≤ 1, C , D, then (
zpLs+1

d,p (n,m) f (z)
)δ
≺ p(z), (2.4)

where

p(z) =



2F1

(
r,
δd
α

;
δd
α

+ 1;−Dz
)

= (1 + Dz)−r
2F1

(
r, 1;

δd
α

+ 1;
Dz

Dz + 1

)
, if C = 0,

2F1

(
−r,

δd
α

;
δd
α

+ 1;−Cz
)

= (1 + Cz)r
2F1

(
−r, 1;

δd
α

+ 1;
Cz

Cz + 1

)
, if C , 0, D = 0,(C

D

)r ∑
j≥0

(−r) j

j!

(C − D
C

) j

(1 + Dz)− j
2F1

(
j, 1; 1 +

δd
α

;
Dz

1 + Dz

)
, if DC , 0,∣∣∣∣∣1 − D

C

∣∣∣∣∣ ≤ 1 − |D|.

If r ∈ (0, 1), and

p(z) =


C
D

+

(
1 −

C
D

)
(1 + Dz)−1

2F1

(
1; 1;

δd
α

+ 1;
Dz

1 + Dz

)
, if D , 0,

1 +
δd

δd + α
Cz, if D = 0

for r = 1. Moreover, the function p is the best dominant of (2.4) and the next inequality holds

Re
(
zpLs+1

d,p (n,m) f (z)
)δ
> p(−1), z ∈ U, (2.5)

while the inequality (2.5) is the best possible.

Proof. If
φ(z) :=

(
zpLs+1

d,p (n,m) f (z)
)δ
, z ∈ U, (2.6)

from the assumption (2.1), it follows that the function φ is well-defined, φ ∈ H and φ(0) = 1.
Differentiating (2.6) and using the relation (1.4), we get

φ(z) +
zφ′(z)
δd
α

= Φ(z), z ∈ U,

AIMS Mathematics Volume 10, Issue 10, 24627–24650.
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hence the subordination (2.3) leads to

φ(z) +
zφ′(z)
δd
α

= Φ(z) ≺
(

1 + Cz
1 + Dz

)r

=: q(z). (2.7)

Since |C| ≤ 1 and |D| ≤ 1 it follows that the function q is analytic inU∗ with q(0) = 1, and it is easy
to check that for r ∈ (0, 1] the inequality

Re
(
1 +

zq′′(z)
q′(z)

)
= −1 + (1 − r) Re

1
1 + Cz

+ (1 + r) Re
1

1 + Dz

> −1 +
1 − r

1 + |C|
+

1 + r
1 + |D|

≥ 0, z ∈ U,

holds, therefore q is a convex (univalent) function in U. Using the fact that Re(δd/α) ≥ 0, from
Lemma 1 the subordination (2.7) implies the sharp subordination

φ(z) ≺ p(z) :=
δd
α

z−
δd
α

z∫
0

t
δd
α −1

(
1 + Ct
1 + Dt

)r

dt.

For computing the above integral, first we will use the binomial formula

(1 − ζ)ρ = 1 +

∞∑
k=1

ρ(ρ − 1) . . . (ρ − k + 1)
k!

(−1)kζk, |ζ | < 1 (ρ ∈ C), (2.8)

where the power is at the main branch, i.e., log 1 = 0. The above right-hand-side series diverges for
|ζ | > 1 excepting the case ρ ∈ N∪ {0}, and we could split our study in the following cases according to
the values of the parameters C and D.

(i) If C = 0, with the substitution t = uz we get

p(z) =
δd
α

z−
δd
α

z∫
0

t
δd
α −1 (1 + Dt)−r dt =

δd
α

z−
δd
α

1∫
0

z
δd
α −1u

δd
α −1 (1 + Dzu)−r zdu

=
δd
α

1∫
0

u
δd
α −1 (1 − (−Dz)u)−r du,

hence by taking in (1.5) b :=
δd
α

, a := r and c := b + 1, from Lemma 5, we have

p(z) =
δd
α

2F1

(
r,
δd
α

;
δd
α

+ 1;−Dz
)

Γ
(
δd
α

)
Γ (1)

Γ
(
δd
α

+ 1
)

= (1 + Dz)−r
2F1

(
r, 1;

δd
α

+ 1;
Dz

Dz + 1

)
= 2F1

(
r,
δd
α

;
δd
α

+ 1;−Dz
)
. (2.9)

(ii) If C , 0, we have the following two subcases:

AIMS Mathematics Volume 10, Issue 10, 24627–24650.
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(a) If D = 0, since

p(z) =
δd
α

z−
δd
α

z∫
0

t
δd
α −1 (1 + Ct)r dt,

using similar computations as above, we get

p(z) = (1 + Cz)r
2F1

(
−r, 1;

δd
α

+ 1;
Cz

Cz + 1

)
= 2F1

(
−r,

δd
α

;
δd
α

+ 1;−Cz
)
. (2.10)

(b) If D , 0, we have

t
δd
α −1

(
1 + Ct
1 + Dt

)r

= t
δd
α −1

(C
D

)r (
1 −

C − D
C + CDt

)r

.

For the last factor for the right-hand-side of the above relation, we will use the binomial formula taking

ρ := r ∈ (0, 1] and ζ :=
C − D

C(1 + Dt)
. If we consider the case r ∈ (0, 1] \ {1} = (0, 1), then r < N and the

formula (2.8) holds only if

|ζ | =

∣∣∣∣∣ C − D
C(1 + Dt)

∣∣∣∣∣ < 1, for all |t| < 1.

We have |t| < 1 because the integral of an analytic function doesn’t depend on the path, so we could
consider that we integrate on the segment connecting 0 to z ∈ U, hence t ∈ U. Also, it is necessary to
assume |C| ≤ 1, |D| ≤ 1 with C , D (the first two conditions for the analyticity of the function p, and
the last one for not being a constant function).

In order to use the binomial power series formula (2.8) for r ∈ (0, 1) (excepting the case r = 1), we
should have ∣∣∣∣∣ C − D

C(1 + Dt)

∣∣∣∣∣ < 1, ∀|t| < 1⇔ 0 ,
∣∣∣∣∣1 − D

C

∣∣∣∣∣ < |1 + Dt|, ∀|t| < 1. (2.11)

Since 0 < |C| ≤ 1 and 0 < |D| ≤ 1, the left-hand-side of (2.11) is well-defined, and

inf
{
|1 + Dt| : |t| < 1

}
= 1 − |D| ≥ 0.

Consequently, the condition (2.11) is equivalent to∣∣∣∣∣1 − D
C

∣∣∣∣∣ ≤ 1 − |D|, (2.12)

then the binomial power series formula (2.8) for r ∈ (0, 1) can be used if and only if we assume that the
inequality (2.12) holds. With this additional assumption, using first the substitution t = uz, then taking

in (1.5) b :=
δd
α

, a := j, c := b + 1, and using finally (1.7), it follows that

p(z) =
δd
α

z−
δd
α

z∫
0

t
δd
α −1

(
1 + Ct
1 + Dt

)r

dt =
δd
α

z−
δd
α

z∫
0

t
δd
α −1

(C
D

)r (
1 −

C − D
C(1 + Dt)

)r

dt

=
δd
α

z−
δd
α

(C
D

)r
z∫

0

t
δd
α −1

∑
j≥0

(−r) j

j!

(
C − D

C(1 + Dt)

) j
 dt
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=
δd
α

z−
δd
α

(C
D

)r
1∫

0

z
δd
α −1u

δd
α −1

∑
j≥0

(−r) j

j!

(C − D
C

) j

(1 + Dzu)− j

 zdu

=
δd
α

(C
D

)r
1∫

0

u
δd
α −1

∑
j≥0

(−r) j

j!

(C − D
C

) j

(1 + Dzu)− j

 du

=
δd
α

(C
D

)r ∑
j≥0

 (−r) j

j!

(C − D
C

) j
1∫

0

u
δd
α −1(1 + Dzu)− jdu


=
δd
α

(C
D

)r ∑
j≥0

 (−r) j

j!

(C − D
C

) j

2F1

(
j,
δd
α

;
δd
α

+ 1;−Dz
)

Γ
(
δd
α

)
Γ (1)

Γ
(
δd
α

+ 1
) 

=

(C
D

)r ∑
j≥0

[
(−r) j

j!

(C − D
C

) j

2F1

(
j,
δd
α

;
δd
α

+ 1;−Dz
)]
,

thus

p(z) =

(C
D

)r ∑
j≥0

[
(−r) j

j!

(C − D
C

) j

2F1

(
j,
δd
α

;
δd
α

+ 1;−Dz
)]
. (2.13)

Concluding, from (2.9), (2.10), and (2.13) combined in this last case with the assumption (2.12),
under the assumptions |C| ≤ 1, |D| ≤ 1 with C , D, and r ∈ (0, 1), we have

p(z) =



2F1

(
r,
δd
α

;
δd
α

+ 1;−Dz
)
, if C = 0,

2F1

(
−r,

δd
α

;
δd
α

+ 1;−Cz
)
, if C , 0, D = 0,(C

D

)r ∑
j≥0

[
(−r) j

j!

(C − D
C

) j

2F1

(
j,
δd
α

;
δd
α

+ 1;−Dz
)]
, if DC , 0,

∣∣∣∣∣1 − D
C

∣∣∣∣∣ ≤ 1 − |D|.

For r = 1, like in [17], we similarly get that

p(z) =


C
D

+

(
1 −

C
D

)
(1 + Dz)−1

2F1

(
1; 1;

δd
α

+ 1;
Dz

1 + Dz

)
, if D , 0,

1 +
δd

δd + α
Cz, if D = 0.

Now we will prove that
inf

{
Re p(z) : |z| < 1

}
= p(−1). (2.14)

Thus, if 0 < r ≤ 1 we have

Re
(

1 + Cz
1 + Dz

)r

≥

(
1 −Cσ
1 − Dσ

)r

, |z| < σ ≤ 1.

Setting

}(s, z) :=
(

1 + Csz
1 + Dsz

)r

, z ∈ U, (0 ≤ s ≤ 1),
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and
dv(s) :=

δd
α

s
δd
α −1ds,

where dv(s) is a positive measure on [0, 1], we get

p(z) =

1∫
0

}(s, z)dv(s),

therefore

Re p(z) ≥

1∫
0

(
1 −Csσ
1 − Dsσ

)r

dv(s) = p(−σ), |z| < σ < 1.

Taking σ → 1− we get that (2.14) holds, while the inequality (2.5) is the best possible since p is the
best dominant of the subordination (2.4). �

Next, we will give some particular and special cases of the above theorem, followed by
some examples.

If we choose α = δ = 1 in Theorem 1, we get the next corollary:

Corollary 1. Let 0 < r ≤ 1, and |C| ≤ 1, |D| ≤ 1 with C , D. If

zpLs+1
d,p (n,m) f (z) ≺

(
1 + Cz
1 + Dz

)r

,

then
Re

(
zpLs+1

d,p (n,m) f (z)
)
> p(−1), z ∈ U, (2.15)

where the function p is given in Theorem 1. Moreover, the inequality (2.15) is the best possible.

If we choose s = −1 and n = m in Theorem 1, we get the below result:

Corollary 2. Let 0 < r ≤ 1 and for the function f ∈ Σp assume that

zp f (z) , 0, z ∈ U.

Define the function Φ1 by

Φ̃(z) :=
(
1 +

αp
d

)
(zp f (z))δ +

αzp+1

d
f ′(z) (zp f (z))δ−1 , z ∈ U,

where all the powers are considered at the main branch, i.e., log1 = 0. If

Φ̃(z) ≺
(

1 + Cz
1 + Dz

)r

,

where |C| ≤ 1, |D| ≤ 1 with C , D, then

(zp f (z))δ ≺ p(z), (2.16)

where the function p is given in Theorem 1, and it is the best dominant of (2.16). Moreover,

Re (zp f (z))δ > p(−1), z ∈ U, (2.17)

and the inequality (2.17) is the best possible.
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For δ = 1 and r = 1, the Corollary 2 reduces to the next example:

Example 1. Let 0 < r ≤ 1 and for the function f ∈ Σp assume that

zp f (z) , 0, z ∈ U.

Defining the function Φ2 by

Φ2(z) :=
(
1 +

αp
d

)
zp f (z) +

αzp+1

d
f ′(z), z ∈ U,

if
Φ2(z) ≺

1 + Cz
1 + Dz

,

where |C| ≤ 1, |D| ≤ 1 with C , D, then

zp f (z) ≺ p(z), (2.18)

where the function p is given in Theorem 1, and it is the best dominant of (2.18). Moreover,

Re (zp f (z)) > p(−1), z ∈ U, (2.19)

and the inequality (2.19) is the best possible.

For C = 1 and D = −1, the Example 1 leads to the next particular case:

Example 2. (i) If 0 < r ≤ 1, let the function f ∈ Σp such that

zp f (z) , 0, z ∈ U.

Let the function Φ2 defined by

Φ2(z) :=
(
1 +

αp
d

)
zp f (z) +

αzp+1

d
f ′(z) ≺

1 + z
1 − z

.

Then, the subordination

zp f (z) ≺
1 + z
1 − z

implies
Re (zp f (z)) > ζ∗, z ∈ U, (2.20)

where

ζ∗ = −1 + 2F1

(
1, 1;

d + α

α
;

1
2

)
,

and the inequality (2.20) is the best possible.
(ii) For d = α = 1 the above result leads us to the following one:
For f ∈ Σp assume that

zp f (z) , 0, z ∈ U.

Then, the next implication holds:

(1 + p)zp f (z) + zp+1 f ′(z) ≺
1 + z
1 − z

⇒ Re (zp f (z)) > −1 + 2 ln 2, z ∈ U,

and the right-hand-side lower bound is the best possible.
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The next result represents another subordination result involving the operator Ls
d,p defined by (1.3).

Theorem 2. Let 0 < r ≤ 1, 0 < α <
1

1 + p
, and |C| ≤ 1, |D| ≤ 1 with C , D. For f ∈ Σp let’s define

the function Fα by

Fα(z) := αdLs
d,p(n,m) f (z) +

(
1 − α − α(d + p)

)
Ls+1

d,p (n,m) f (z), z ∈ U. (2.21)

If

zpFα(z) ≺ (1 − α − αp)
(

1 + Cz
1 + Dz

)r

, (2.22)

then the assumption (2.22) implies

zpLs+1
d,p (n,m) f (z) ≺ p(z), (2.23)

where

p̃(z) =



2F1

(
r,

α

1 − α − αp
;

1 − αp
1 − α − αp

;−Dz
)

=

(1 + Dz)−r
2F1

(
r, 1;

1 − αp
1 − α − αp

;
Dz

Dz + 1

)
, if C = 0,

2F1

(
−r,

α

1 − α − αp
;

1 − αp
1 − α − αp

;−Cz
)

=

(1 + Cz)r
2F1

(
−r, 1;

1 − αp
1 − α − αp

;
Cz

Cz + 1

)
, if C , 0, D = 0,(C

D

)r ∑
j≥0

(−r) j

j!

(C − D
C

) j

(1 + Dz)− j
2F1

(
j, 1;

1 − αp
1 − α − αp

;
Dz

1 + Dz

)
, if DC , 0,∣∣∣∣∣1 − D

C

∣∣∣∣∣ ≤ 1 − |D|,

if r ∈ (0, 1), and

p̃(z) =


C
D

+

(
1 −

C
D

)
(1 + Dz)−1

2F1

(
1; 1;

1 − αp
1 − α − αp

;
Dz

1 + Dz

)
, if D , 0,

1 +
α

1 − αp
Cz, if D = 0

for r = 1. Moreover, the p̃ is the best dominant of (2.23) and the next inequality holds

Re
(
zpLs+1

d,p (n,m) f (z)
)
> p̃(−1), z ∈ U, (2.24)

while the inequality (2.24) is the best possible.

Proof. From the definition (2.21), using the relation (1.4) we get

Fα(z) = αz
(
Ls+1

d,p (n,m) f (z)
)′

+ (1 − α)Ls+1
d,p (n,m) f (z). (2.25)

Denoting
φ(z) := zpLs+1

d,p (n,m) f (z), z ∈ U, (2.26)
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we have φ ∈ H . Differentiating (2.26), from the relation (2.25) we get

zpFα(z) = (1 − α − αp)
(
φ(z) +

α

1 − α − αp
zφ′(z)

)
, z ∈ U, (2.27)

then

φ(z) +
α

1 − α − αp
zφ′(z) ≺

(
1 + Cz
1 + Dz

)r

.

From the assumption of the theorem, the conditions of Lemma 1 are satisfied, and following the
techniques similarly that those of the proof of Theorem 1 our result follows immediately. �

If we choose r = 1 in Theorem 2 we get

Corollary 3. For f ∈ Σp let the function Fα be defined by 2.21. If

zpFα(z) ≺ (1 − α − αp)
1 + Cz
1 + Dz

,

then
Re

(
zpLs+1

d,p (n,m) f (z)
)
> p̃(−1), z ∈ U,

where the function p̃ was defined in the Theorem 2. The above inequality is the best possible.

Example 3. Taking p = C = 1, D = −1 and α =
1
3

in Corollary 3 we get the next implication: If
f ∈ Σp, then

zF 1
3
(z) ≺

1
3
·

1 + z
1 − z

⇒ Re
(
zLs+1

d,p (n,m) f (z)
)
> −1 + 2 ln 2, z ∈ U,

and the right hand side lower bound is the best possible.

The next theorem evaluate the connection between the arguments of zpFα(z) and zpLs+1
d,p (n,m) f (z),

as follows:

Theorem 3. If f ∈ Σp, 0 < γ ≤ 1 and 0 < α <
1

1 + p
, then

∣∣∣arg (zpFα(z))
∣∣∣ < π

2
γ, z ∈ U,

implies ∣∣∣∣arg
(
zpLs+1

d,p (n,m) f z)
)∣∣∣∣ < π

2
γ, z ∈ U.

Proof. For f ∈ Σp let define the function

g(z) := zpLs+1
d,p (n,m) f (z), z ∈ U,

thus g ∈ H . If we suppose that there exists a point z0 ∈ U such that∣∣∣arg g(z)
∣∣∣ < π

2
γ, |z| < |z0|,
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and ∣∣∣arg g (z0)
∣∣∣ =

π

2
γ,

then, by Lemma 4, we have

z0g′ (z0)
g (z0)

= ikγ and (g (z0))
1
γ = ±ia, a > 0,

where

k ≥
1
2

(
a +

1
a

)
, when arg p (z0) =

π

2
γ,

k ≤ −
1
2

(
a +

1
a

)
, when arg p (z0) = −

π

2
γ.

(i) If arg g (z0) =
π

2
γ, using (2.27) we get

zpFα(z0) = (1 − α − αp)g (z0)
(
1 +

α

1 − α − αp
z0g′ (z0)

g (z0)

)
= (1 − α − αp)aγei π2 γ

(
1 +

α

1 − α − αp
ikγ

)
,

which implies that

arg (zpFα(z0)) =
π

2
γ + arg

(
1 +

kαγi
1 − α − αp

)
=
π

2
γ + tan−1

(
kαγ

1 − α − αp

)
≥
π

2
γ,

with k ≥
1
2

(
a +

1
a

)
≥ 1, which contradicts the assumption of the theorem.

(ii) Similarly, if arg g (z0) = −
π

2
γ we obtain

arg (zpFα(z0)) ≤ −
π

2
γ,

which also contradicts the assumption of the theorem.
Thus, the function g will satisfy the inequality

∣∣∣arg g(z)
∣∣∣ < π

2
γ, z ∈ U, that is∣∣∣∣arg

(
zpLs+1

d,p (n,m) f (z)
)∣∣∣∣ < π

2
γ, z ∈ U.

�

For θ > 0, let define the integral operator Jp,θ : Σp → Σp by

Jp,θ( f )(z) =
θ

zθ+p

z∫
0

tθ+p−1 f (t)dt, z ∈ U∗. (2.28)

The next sharp subordination result deals with the connection between the functions zpLs+1
d,p (n,m) f (z)

and zpLs+1
d,p (n,m)Jp,θ( f )(z).
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Theorem 4. Let 0 < r ≤ 1, θ > 0, and |C| ≤ 1, |D| ≤ 1 with C , D. If f ∈ Σp and

zpLs+1
d,p (n,m) f (z) ≺

(
1 + Cz
1 + Dz

)r

, (2.29)

then
zpLs+1

d,p (n,m)Jp,θ( f )(z) ≺ p̂(z), (2.30)

where

p̂(z) =



2F1 (r, θ; θ + 1;−Dz) = (1 + Dz)−r
2F1

(
r, 1; θ + 1;

Dz
Dz + 1

)
, if C = 0,

2F1 (−r, θ; θ + 1;−Cz) = (1 + Cz)r
2F1

(
−r, 1; θ + 1;

Cz
Cz + 1

)
, if C , 0, D = 0,(C

D

)r ∑
j≥0

(−r) j

j!

(C − D
C

) j

(1 + Dz)− j
2F1

(
j, 1; 1 + θ;

Dz
1 + Dz

)
, if DC , 0,∣∣∣∣∣1 − D

C

∣∣∣∣∣ ≤ 1 − |D|.

If r ∈ (0, 1), and

p̂(z) =


C
D

+

(
1 −

C
D

)
(1 + Dz)−1

2F1

(
1; 1; θ + 1;

Dz
1 + Dz

)
, if D , 0,

1 +
θ

θ + 1
Cz, if D = 0,

for r = 1, and p̂ is the best dominant of (2.30). Moreover,

Re(zpLs+1
d,p (n,m)Jp,θ( f )(z) > p̂(−1), z ∈ U, (2.31)

and the inequality (2.31) is the best possible.

Proof. For f ∈ Σp, if we let

φ(z) := zpLs+1
d,p (n,m)Jp,θ( f )(z), z ∈ U,

then φ ∈ H .
The definition formula (2.28) could be written as

zθ+p Jp,θ( f )(z) = θ

z∫
0

tθ+p−1 f (t)dt,

and applying the linear operator Ls+1
d,p (n,m) to the above equality, we get

zθ+pLs+1
d,p (n,m)Jp,θ( f )(z) = θ

z∫
0

tθ+p−1Ls+1
d,p (n,m) f (t)dt, z ∈ U∗.

Differentiating this equality and multiplying with “ z ” it follows

zθ+p+1 (
Ls+1

d,p (n,m)Jp,θ( f )(z)
)′

+ (θ + p)zθ+pLs+1
d,p (n,m)Jp,θ( f )(z) = θzθ+pLs+1

d,p (n,m) f (t)dt, z ∈ U∗,
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and dividing both sides by “ zθ ” we have

zp+1 (
Ls+1

d,p (n,m)Jp,θ( f )(z)
)′

= θzpLs+1
d,p (n,m) f (t)dt − (θ + p)zpLs+1

d,p (n,m)Jp,θ( f )(z), z ∈ U, (2.32)

mentioning that this last relation also holds for z = 0. The differentiation of the function φ combined
with (2.32), leads to

zφ′(z) = pzpLs+1
d,p (n,m)Jp,θ( f )(z) + zp+1(Ls+1

d,p (n,m)Jp,θ( f )(z)
)′

= pzpLs+1
d,p (n,m)Jp,θ( f )(z) + θzpLs+1

d,p (n,m) f (t)dt − (θ + p)zpLs+1
d,p (n,m)Jp,θ( f )(z)

= θ
(
zpLs+1

d,p (n,m) f (t)dt − zpLs+1
d,p (n,m)Jp,θ( f )(z)

)
, z ∈ U,

or
zφ′(z)
θ

= zpLs+1
d,p (n,m) f (t)dt − zpLs+1

d,p (n,m)Jp,θ( f )(z)

= zpLs+1
d,p (n,m) f (t)dt − φ(z), z ∈ U.

Using this last relation, from the assumption (2.29) we deduce

φ(z) +
zφ′(z)
θ

= zpLs+1
d,p (n,m) f (z) ≺

(
1 + Cz
1 + Dz

)r

.

Now, using a similar techniques with those used in the proof of the previous theorem, we obtain the
subordination (2.30) and the inequality (2.31). �

For the particular case r = 1 in Theorem 4 we get:

Corollary 4. Let 0 < r ≤ 1, θ > 0, and |C| ≤ 1, |D| ≤ 1 with C , D. If f ∈ Σp and

zpLs+1
d,p (n,m) f (z) ≺

1 + Cz
1 + Dz

,

then
Re

(
zpLs+1

d,p (n,m)Jp,θ( f )(z)
)
> β1, z ∈ U, (2.33)

where

β1 =


C
D

+

(
1 −

C
D

)
(1 − D)−1

2F1

(
1, 1; θ + 1;

D
D − 1

)
, if D , 0,

1 −
θ

θ + 1
C, if D = 0,

and the inequality (2.33) is the best possible.

Example 4. (i) If we put p = C = 1, D = −1, and θ = 2 in Corollary 4, we get the next implication:
If f ∈ Σp, then

zLs+1
d,1 (n,m) f (z) ≺

1 + z
1 − z

⇒ Re
(
zLs+1

d,1 (n,m)J1,2( f )(z)
)
> −1 + 4(1 − ln 2), z ∈ U.

(ii) Taking in the above corollary p = C = 1, D = −1, and θ = 1, the following implication holds:
If f ∈ Σp, then

zLs+1
d,1 (n,m) f (z) ≺

1 + z
1 − z

⇒ Re
(
zLs+1

d,1 (n,m)J1,1( f )(z)
)
> −1 + 2 ln 2, z ∈ U.
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The following result shows that the best dominant q for the function
(
zpLs+1

d,p (n,m) f (z)
)δ

if the linear
combination defined by the function Φ given by (2.2) is subordinated to a linear between q(z) and zq′(z).

Theorem 5. Let the function q b univalent inU, such that

Re
(
1 +

zq′′(z)
q′(z)

)
> max

{
0;−

δd
α

}
, z ∈ U.

Let 0 < r ≤ 1 and for f ∈ Σp suppose that

zpLs+1
d,p (n,m) f (z) , 0, z ∈ U.

If the function Φ defined by (2.2) fulfill the subordination

Φ(z) ≺ q(z) +
α

δd
zq′(z), (2.34)

then (
zpLs+1

d,p (n,m) f (z)
)δ
≺ q(z), (2.35)

and q is the best dominant of (2.35).

Proof. For f ∈ Σp, if φ is the function defined by (2.6), from the left-hand-side of (2.7) we have

Φ(z) = φ(z) +
α

δd
zφ′(z), z ∈ U. (2.36)

Combining (2.34) and (2.36), we deduce

φ(z) +
α

δd
zφ′(z) ≺ q(z) +

α

δd
zq′(z), (2.37)

and our result follows from (2.37) by using Lemma 2. �

Taking in Theorem 5 the function q(z) =

(
1 + Cz
1 + Dz

)r

with |C| ≤ 1, |D| ≤ 1 and C , D, we obtain the

next particular case:

Corollary 5. For 0 < r ≤ 1 and |C| ≤ 1, |D| ≤ 1 with C , D, assume that

Re
(
1 − Dz
1 + Dz

+
(r − 1)(C − D)z

(1 + Dz) (1 + Cz)

)
> max

{
0;−

δd
α

}
, z ∈ U.

Let f ∈ Σp such that
zpLs+1

d,p (n,m) f (z) , 0, z ∈ U.

If the function Φ defined by (2.2) satisfies

Φ(z) ≺
(

1 + Cz
1 + Dz

)r

+
α

δd

(
1 + Cz
1 + Dz

)r r(C − D)z
(1 + Dz) (1 + Cz)

,

then (
zpLs+1

d,p (n,m) f (z)
)δ
≺

(
1 + Cz
1 + Dz

)r

, (2.38)

and the function
(

1 + Cz
1 + Dz

)r

is the best dominant of (2.38).
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For q(z) =
1 + Cz
1 + Dz

, Theorem 5 leads to the next corollary:

Corollary 6. For |C| ≤ 1, |D| ≤ 1 with C , D, suppose that

Re
1 − Dz
1 + Dz

> max
{

0;−
δd
α

}
, z ∈ U,

and let f ∈ Σp such that
zpLs+1

d,p (n,m) f (z) , 0, z ∈ U.

If the function Φ defined by (2.2) satisfies the subordination

Φ(z) ≺
1 + Cz
1 + Dz

+
α

δd
(C − D)z
(1 + Dz)2 ,

then (
zpLs+1

d,p (n,m) f (z)
)δ
≺

1 + Cz
1 + Dz

(2.39)

and the function
1 + Cz
1 + Dz

is the best dominant of (2.39).

If we put s = 0 and n = m = d = 1 in Theorem 5, we get the below particular case:

Corollary 7. Let the function q be univalent inU such that

Re
(
1 +

zq′′(z)
q′(z)

)
> max

{
0;−

δ

α

}
, z ∈ U.

For f ∈ Σp assume that
zp f (z) , 0, z ∈ U.

If the function Φ defined by (2.36) satisfies

Φ(z) ≺ q(z) +
α

δ
zq′(z),

then
(zp f (z))δ ≺ q(z), (2.40)

and q is the best dominant of (2.40).

Taking C = 1 and D = −1 in Corollaries 5 and 6, we get the next examples, respectively:

Example 5. (i) Let 0 < r ≤ 1 such that

Re
(
1 + z
1 − z

+
2(r − 1)z

1 − z2

)
> max

{
0;−

δd
α

}
, z ∈ U,

and for f ∈ Σp assume that
zpLs+1

d,p (n,m) f (z) , 0, z ∈ U.

AIMS Mathematics Volume 10, Issue 10, 24627–24650.



24646

If the function Φ is defined by (2.2), then

Φ(z) ≺
(
1 + z
1 − z

)r

+
α

δ

(
1 + z
1 − z

)r 2rz
1 − z2

implies (
zpLs+1

d,p (n,m) f (z)
)δ
≺

(
1 + z
1 − z

)r

, (2.41)

and the function
(
1 + z
1 − z

)r

is the best dominant of (2.41).

(ii) For f ∈ Σp suppose that
zpLs+1

d,p (n,m) f (z) , 0, z ∈ U.

If the function Φ defined by (2.2) satisfies

Φ(z) ≺
1 + z
1 − z

+
α

δ

2z
1 − z2 ,

then (
zpLs+1

d,p (n,m) f (z)
)δ
≺

1 + z
1 − z

, (2.42)

and the function
1 + z
1 − z

is the best dominant of (2.42).

Example 6. If we put in the Corollary 7 q(z) =

(
1 + Cz
1 + Dz

)r

with p = C = α = δ = 1 and D = −1, we

get the below result.
For f ∈ Σp suppose that

z f (z) , 0, z ∈ U.

Then,

2z f (z) + z2 f ′(z) ≺
(
1 + z
1 − z

)r

+

(
1 + z
1 − z

)r 2rz
1 − z2 ,

implies

z f (z) ≺
(
1 + z
1 − z

)r

, (2.43)

and the function
(
1 + z
1 − z

)r

is the best dominant of (2.43).

The next result represents a superordination theorem that is the dual of Theorem 5.

Theorem 6. For the function f ∈ Σp assume that

zpLs+1
d,p (n,m) f (z) , 0, z ∈ U.

Suppose that (
zpLs+1

d,p (n,m) f (z)
)δ
∈ H ∩ Q,
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and the function Φ defined by (2.2) is univalent inU.
If the function q is convex (univalent) inU, then

q(z) +
α

δd
zq′(z) ≺ Φ(z)

implies

q(z) ≺
(
zpLs+1

d,p (n,m) f (z)
)δ
, (2.44)

and q is the best subordinant of (2.44).

Proof. If φ is the function defined by (2.6), from the left hand side of (2.7) and (2.36) we deduce

q(z) +
α

δd
zq′(z) ≺ Φ(z) = φ(z) +

α

δd
zφ′(z),

and our result follows immediately from Lemma 3. �

For the particular case q(z) =

(
1 + Cz
1 + Dz

)r

, Theorem 6 becomes:

Corollary 8. Let 0 < r ≤ 1, and for f ∈ Σp suppose that

zpLs+1
d,p (n,m) f (z) , 0, z ∈ U.

Suppose that (
zpLs+1

d,p (n,m) f (z)
)δ
∈ H ∩ Q,

and the function Φ defined by (2.2) is univalent inU.
If (

1 + Cz
1 + Dz

)r

+
α

δd

(
1 + Cz
1 + Dz

)r r(C − D)z
(1 + Dz) (1 + Cz)

≺ Φ(z),

then (
1 + Cz
1 + Dz

)r

≺
(
zpLs+1

d,p (n,m) f (z)
)δ
, (2.45)

and the function
(

1 + Cz
1 + Dz

)r

is the best subordinant of (2.45).

Taking q(z) =
1 + Cz
1 + Dz

in Theorem 6, we get:

Corollary 9. For f ∈ Σp assume that

zpLs+1
d,p (n,m) f (z) , 0, z ∈ U.

Suppose that (
zpLs+1

d,p (n,m) f (z)
)δ
∈ H ∩ Q,

and the function Φ defined by (2.2) is univalent inU.
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If
1 + Cz
1 + Dz

+
α

δd
(C − D)z
(1 + Dz)2 ≺ Φ(z),

then
1 + Cz
1 + Dz

≺
(
zpLs+1

d,p (n,m) f (z)
)δ
, (2.46)

and the function
1 + Cz
1 + Dz

is the best dominant of (2.46).

Combining the results of Theorems 5 and 6, we obtain the following sandwich-type theorem:

Theorem 7. For f ∈ Σp assume that

zpLs+1
d,p (n,m) f (z) , 0, z ∈ U.

Suppose that (
zpLs+1

d,p (n,m) f (z)
)δ
∈ H[q(0), 1] ∩ Q,

and the function Φ defined by (2.2) is univalent in U. Let q1 be a convex (univalent) function in U,
and assume that q2 is univalent inU such that

Re
(
1 +

zq′′2 (z)
q′2(z)

)
> max

{
0;−

δd
α

}
, z ∈ U.

If
q1(z) +

α

δd
zq′1(z) ≺ Φ j(z) ≺ q2(z) +

α

δd
zq′2(z),

then
q1(z) ≺

(
zpLs+1

d,p (n,m) f (z)
)δ
≺ q2(z),

and q1 and q2 are, respectively, the best subordinant and best dominant of the above
double subordination.

3. Conclusions

The results presented in this paper represent an interesting investigation of differential
subordinations and superordinations connected with the convolution operator Ls

d,p(n,m) and defined
on the class of meromorphic multivalent functions inU∗.

The main aspects we would like to emphasize are the successful using of the general theory of
the differential subordinations and superordinations together with the well-known Nunokawa’s lemma,
to obtain sharp subordination results for a generalized convolution operator. These techniques are
not widely used, while some immediate consequences are given in the corollaries and examples we
obtained for some special cases. We hope that this study and some possible similar ones could help the
specialists in this field to solve other related aspects of this field of interest.

For some possible new studies, newly defined classes can be considered by using the methods of the
theory of differential superordinations, which could connect the outcomes of this study with possible
further results. We believe that our results will be useful for the specialists of the field of Geometric
Function Theory for some new approaches in this area.
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