This paper investigates novel sufficient conditions for the oscillatory behavior of fourth-order nonlinear differential equations with mixed neutral terms. By employing refined Riccati transformation techniques and advanced analytical approaches, we establish extended criteria that enrich the theoretical understanding of oscillation phenomena within this class of neutral differential equations. The proposed results significantly improve upon previously known conditions in the literature. Moreover, illustrative numerical examples are provided to demonstrate the applicability and sharpness of the obtained criteria. The findings contribute to the broader framework of nonlinear analysis and offer valuable insights into the oscillatory dynamics of functional differential equations with delay and neutral terms.
Citation: Fahd Masood, Mohammed N. Alshehri, Iambor Loredana Florentina, A. F. Aljohani, Omar Bazighifan. Nonlinear oscillation analysis of delay differential equations with mixed neutral terms[J]. AIMS Mathematics, 2025, 10(10): 24580-24601. doi: 10.3934/math.20251090
This paper investigates novel sufficient conditions for the oscillatory behavior of fourth-order nonlinear differential equations with mixed neutral terms. By employing refined Riccati transformation techniques and advanced analytical approaches, we establish extended criteria that enrich the theoretical understanding of oscillation phenomena within this class of neutral differential equations. The proposed results significantly improve upon previously known conditions in the literature. Moreover, illustrative numerical examples are provided to demonstrate the applicability and sharpness of the obtained criteria. The findings contribute to the broader framework of nonlinear analysis and offer valuable insights into the oscillatory dynamics of functional differential equations with delay and neutral terms.
| [1] |
R. K. Brayton, R. A. Willoughby, On the numerical integration of a symmetric system of difference-differential equations of neutral type, J. Math. Anal. Appl., 18 (1967), 182–189. https://doi.org/10.1016/0022-247X(67)90191-6 doi: 10.1016/0022-247X(67)90191-6
|
| [2] | W. Snow, Existence, uniqueness and stability for nonlinear differential-difference equations in the neutral case, New York University, 1964. |
| [3] |
I. Jadlovská, New criteria for sharp oscillation of second-order neutral delay differential equations, Mathematics, 9 (2021), 2089. https://doi.org/10.3390/math9172089 doi: 10.3390/math9172089
|
| [4] |
G. A. Grigorian, Oscillation and non-oscillation criteria for linear nonhomogeneous systems of two first-order ordinary differential equations, J. Math. Anal. Appl., 507 (2022), 125734. https://doi.org/10.1016/j.jmaa.2021.125734 doi: 10.1016/j.jmaa.2021.125734
|
| [5] |
M. Aldiaiji, B. Qaraad, L. F. Iambor, E. M. Elabbasy, New oscillation theorems for second-order superlinear neutral differential equations with variable damping terms, Symmetry, 15 (2023), 1630. https://doi.org/10.3390/sym15091630 doi: 10.3390/sym15091630
|
| [6] |
H. Li, Y. Wang, N. Jin, Further results on zeros distribution for second-order nonlinear neutral delay differential equations, Appl. Math. Lett., 109 (2025), 109666. https://doi.org/10.1016/j.aml.2025.109666 doi: 10.1016/j.aml.2025.109666
|
| [7] | I. Győri, G. Ladas, Oscillation theory of delay differential equations with applications, UK, Oxford: Clarendon Press, 1991. |
| [8] | A. Zafer, Oscillatory and nonoscillatory properties of solutions of functional differential equations and difference equations, Ph.D. Thesis, Iowa State University, 1992. |
| [9] | R. P. Agarwal, M. Bohner, T. Li, Oscillation of second-order differential equations with a sublinear neutral term, Carpathian J. Math., 30 (2014), 1–6. Available from: https://www.jstor.org/stable/43999551. |
| [10] |
B. Qaraad, M. A. Nuwairan, Asymptotic behavior of solutions of the third-order nonlinear advanced differential equations, AIMS Math., 8 (2023), 23800–23814. https://doi.org/10.3934/math.20231212 doi: 10.3934/math.20231212
|
| [11] |
Y. Wu, Y. Yu, J. Xiao, Z. Jiao, Oscillatory behaviour of a class of second-order Emden–Fowler differential equations with a sublinear neutral term, Appl. Math. Sci. Eng., 31 (2023), 224609. https://doi.org/10.1080/27690911.2023.2246098 doi: 10.1080/27690911.2023.2246098
|
| [12] |
B. Baculíková, J. Džurina, Oscillation theorems for second-order neutral differential equations, Comput. Math. Appl., 61 (2011), 94–99. https://doi.org/10.1016/j.camwa.2010.10.035 doi: 10.1016/j.camwa.2010.10.035
|
| [13] |
C. Zhang, R. P. Agarwal, M. Bohner, T. Li, New oscillation results for second-order neutral delay dynamic equations, Adv. Differ. Equ., 2012 (2012), 227. https://doi.org/10.1186/1687-1847-2012-227 doi: 10.1186/1687-1847-2012-227
|
| [14] |
T. Li, Y. V. Rogovchenko, C. Zhang, Oscillation of second-order neutral differential equations, Funkc. Ekvacioj, 56 (2013), 111–120. https://doi.org/10.1619/fesi.56.111 doi: 10.1619/fesi.56.111
|
| [15] |
G. E. Chatzarakis, S. R. Grace, I. Jadlovská, Oscillation criteria for third-order Emden–Fowler differential equations with unbounded neutral coefficients, Complexity, 2019 (2019), 1–7. https://doi.org/10.1155/2019/5691758 doi: 10.1155/2019/5691758
|
| [16] |
F. Masood, B. Batiha, O. Bazighifan, Asymptotic and oscillatory characteristics of solutions of neutral differential equations, J. Math. Comput. Sci., 39 (2025), 418–436. https://doi.org/10.22436/jmcs.039.04.02 doi: 10.22436/jmcs.039.04.02
|
| [17] |
S. R. Grace, J. Džurina, I. Jadlovská, T. Li, On the oscillation of fourth-order delay differential equations, Adv. Differ. Equ., 2019 (2019), 118. https://doi.org/10.1186/s13662-019-2060-1 doi: 10.1186/s13662-019-2060-1
|
| [18] |
G. Xing, T. Li, C. Zhang, Oscillation of higher-order quasi-linear neutral differential equations, Adv. Differ. Equ., 2011 (2011), 45. https://doi.org/10.1186/1687-1847-2011-45 doi: 10.1186/1687-1847-2011-45
|
| [19] |
J. R. Graef, S. R. Grace, E. Tunç, Oscillatory behavior of even-order nonlinear differential equations with a sublinear neutral term, Opusc. Math., 39 (2019), 39–47. https://doi.org/10.7494/OpMath.2019.39.1.39 doi: 10.7494/OpMath.2019.39.1.39
|
| [20] |
Y. Alnafisah, F. Masood, A. Muhib, O. Moaaz, Improved oscillation theorems for even-order quasi-linear neutral differential equations, Symmetry, 15 (2023), 1128. https://doi.org/10.3390/sym15051128 doi: 10.3390/sym15051128
|
| [21] |
B. Batiha, N. Alshammari, F. Aldosari, F. Masood, O. Bazighifan, Asymptotic and oscillatory properties for even-order nonlinear neutral differential equations with damping term, Symmetry, 17 (2025), 87. https://doi.org/10.3390/sym17010087 doi: 10.3390/sym17010087
|
| [22] |
T. Li, B. Baculíková, J. Džurina, C. Zhang, Oscillation of fourth-order neutral differential equations with p-Laplacian-like operators, Bound. Value Probl., 2014 (2014), 56. https://doi.org/10.1186/1687-2770-2014-56 doi: 10.1186/1687-2770-2014-56
|
| [23] |
M. Bartušek, Z. Došlá, Oscillation of fourth-order neutral differential equations with damping term, Math. Method. Appl. Sci., 44 (2021), 14341–14355. https://doi.org/10.1002/mma.7700 doi: 10.1002/mma.7700
|
| [24] |
I. Jadlovská, J. Džurina, J. R. Graef, S. R. Grace, Sharp oscillation theorem for fourth-order linear delay differential equations, J. Inequal. Appl., 2022 (2022), 122. https://doi.org/10.1186/s13660-022-02859-0 doi: 10.1186/s13660-022-02859-0
|
| [25] | S. R. Grace, E. Akin. Oscillation criteria for fourth-order nonlinear positive delay differential equations with a middle term, Dynam. Syst. Appl., 25 (2016), 431–438. |
| [26] |
C. Zhang, T. Li, S. Saker, Oscillation of fourth-order delay differential equations, J. Math. Sci., 201 (2014), 296–308. https://doi.org/10.1007/s10958-014-1990-0 doi: 10.1007/s10958-014-1990-0
|
| [27] |
F. Masood, O. Moaaz, S. S. Santra, U. F. Gamiz, H. A. E. Metwally, Oscillation theorems for fourth-order quasi-linear delay differential equations, AIMS Math., 8 (2023), 16291–16307. https://doi.org/10.3934/math.2023834 doi: 10.3934/math.2023834
|
| [28] |
K. I. Kamo, H. Usami. Nonlinear oscillations of fourth-order quasilinear ordinary differential equations, Acta Math. Hung., 132 (2011), 207–222. https://doi.org/10.1007/s10474-011-0127-x doi: 10.1007/s10474-011-0127-x
|
| [29] |
T. Kusano, J. Manojlovic, T. Tanigawa, Sharp oscillation criteria for a class of fourth-order nonlinear differential equations, Rocky Mt. J. Math., 41 (2011), 249–274. https://doi.org/10.1216/RMJ-2011-41-1-249 doi: 10.1216/RMJ-2011-41-1-249
|
| [30] |
O. Bazighifan, C. Cesarano, A Philos-type oscillation criteria for fourth-order neutral differential equations, Symmetry, 12 (2020), 379. https://doi.org/10.3390/sym12030379 doi: 10.3390/sym12030379
|
| [31] |
M. Alatwi, O. Moaaz, W. Albalawi, F. Masood, H. E. Metwally, Asymptotic and oscillatory analysis of fourth-order nonlinear differential equations with p-Laplacian-like operators and neutral delay arguments, Mathematics, 12 (2024), 470. https://doi.org/10.3390/math12030470 doi: 10.3390/math12030470
|
| [32] |
F. Masood, W. Albalawi, O. Moaaz, H. E. Metwally, Oscillatory features of fourth-order Emden–Fowler differential equations with sublinear neutral terms, Symmetry, 16 (2024), 933. https://doi.org/10.3390/sym16070933 doi: 10.3390/sym16070933
|
| [33] |
C. Zhang, R. P. Agarwal, M. Bohner, T. Li, New results for oscillatory behavior of even-order half-linear delay differential equations, Appl. Math. Lett., 26 (2013), 179–183. https://doi.org/10.1016/j.aml.2012.08.004 doi: 10.1016/j.aml.2012.08.004
|
| [34] | G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, 1952. |
| [35] | I. T. Kiguradze, T. A. Chanturiya, Asymptotic properties of solutions of nonautonomous ordinary differential equations, The Netherlands, Dordrecht: Kluwer Academic Publishers, 1993. https://doi.org/10.1007/978-94-011-1808-8 |