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enrich the theoretical understanding of oscillation phenomena within this class of neutral differential
equations. The proposed results significantly improve upon previously known conditions in the
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1. Introduction

In this research, we study the oscillatory behavior of a class of fourth-order delay differential
equations with mixed neutral terms. The equations under consideration take the following
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general form: (
κ(s)

[
Z′′′(s)

]α)′
+ q(s)xβ(b(s)) = 0, (1.1)

where
Z (s) := x (s) + ~1 (s) xγ (a (s)) − ~2 (s) xδ (a (s)) , s ≥ s0.

The analysis in this work is carried out under the following assumptions:

(H1) α, β, γ and δ are quotients of positive odd integers, with γ < 1, and δ > 1;
(H2) ~1, ~2, q ∈ C ([s0,∞) , (0,∞)) , and q(s) , 0;
(H3) a, b ∈ C1([s0,∞),R) satisfies b(s) ≤s, a(s) ≤s, b′(s) > 0 and lims→∞ a (s) = lims→∞ b(s) = ∞;
(H4) κ ∈ C1 ([s0,∞) , (0,∞)) satisfies ∫ s

s0

1
κ1/α (υ)

dυ→ ∞ as s→ ∞. (1.2)

In addition, we define the auxiliary functions:

R0(s) :=
∫ s

s0

1
κ1/α(υ)

dυ and Ri(s) :=
∫ s

s0

Ri−1(υ)dυ, i = 1, 2.

A function x (s) is called a solution of the Eq (1.1) if it is continuous and satisfies Eq (1.1) on the
interval [sx,∞), for some sx >s0. We restrict our attention to those solutions x (s) that are continuable,
meaning they satisfy the condition

sup{|x(s)| : s > S} > 0, for all S > sx ≥ s0.

A solution is classified as oscillatory if it is neither eventually positive nor eventually negative; it is
referred to as nonoscillatory. Equation (1.1) is said to be in canonical form if condition (1.2) is satisfied.

Neutral differential equations (NDEs) constitute an important class of functional differential
equations, distinguished by the presence of derivatives of the unknown function at both the present
and past (or delayed) times. This structural complexity makes analyzing their solutions more
challenging than for ordinary or standard delay differential equations. The significance of these
equations lies in their ability to model systems whose behavior depends on their temporal history, as
in various applications in mechanics, engineering, and biology. They are also employed to describe
complex physical phenomena, including wave propagation in electrical networks and the stability
analysis of nonlinear dynamical systems (see, for example, Brayton [1], Snow [2], Jadlovská [3],
Grigorian [4], Aldiaiji et al. [5], and Li et al. [6]).

The analysis of oscillations in differential equations is a fundamental field of applied mathematics,
as it constitutes the cornerstone for understanding dynamics characterized by instability and periodic
change. Since the beginning of the scientific study of this field, leading mathematicians have
established methodological foundations for understanding these complex behaviors. Modern research
has focused on developing various analytical techniques, such as comparison methods, Riccati
transformations, and integration criteria, which have proven effective in simplifying the study of
complex differential equations and deriving precise conditions that guarantee or prevent oscillations.
These tools have helped expand the theoretical framework, providing more powerful means for
analyzing dynamical systems, and increasing their practical applications in various engineering and
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natural sciences (see, for example, Gyori and Ladas [7], Zafer [8], Agarwal and Bohner [9], Qaraad et
al. [10], and Wu et al. [11]).

The study of the oscillatory behavior of differential equations has witnessed significant progress
across different orders. At the second order, new conditions have been established for analyzing the
oscillation of delayed and neutral equations using advanced techniques (see, for example, Baculikova
and Dzurina [12], Zhang [13], and Li et al. [14]). At the third order, precise criteria have been
proposed for treating equations with infinite delay and neutral terms [15, 16]. At the fourth-order
level, qualitative contributions have emerged based on innovative approaches that address the
theoretical and applied challenges of delay equations [17]. Comprehensive criteria have also been
developed for studying multi-delay equations at higher orders, enhancing the theoretical
understanding of these complex systems (see, for example, Xing et al. [18], Graef et al. [19],
Alnafisah et al. [20], and Batiha et al. [21].

Recent years have witnessed a significant increase in interest in studying the oscillatory behavior
of fourth-order nonlinear differential equations, due to their growing importance in applied science
and engineering [22, 23]. A number of researchers have addressed specific models of these equations.
Jadlovská et al. [24] studied a delay linear equation of the form:

x(4) (s) + q(s)x(b(s)) = 0.

They were able to define precise conditions that allow the solutions to be classified as oscillatory and
non-oscillatory. On the other hand, Grace and Akin [25], Zhang et al. [26], and Masood et al. [27]
studied quasilinear equations involving time delays, focusing on equations of the form:(

κ(s)
[
x′′′ (s)

]α)′
+ q(s)xα(b(s)) = 0.

They used various analytical techniques, most notably the direct comparison method, which led to the
extraction of new criteria governing the behavior of oscillatory solutions.

Kamo and Usami [28] and Kusano et al. [29] also considered similar equations of the type:(
κ(s)

[
x′′′ (s)

]α)′
+ q(s)xβ(b(s)) = 0,

with particular emphasis on cases where the parameters of the nonlinear terms change, as they were
able to formulate sufficient conditions to guarantee oscillation under these conditions.

In parallel, Bazighifan and Cesarano [30] and Alatwi et al. [31] sought to extend the scope of the
analysis to include neutral differential equations, focusing on the equation:(

κ(s)
[
(x (s) + ~1 (s) x (a (s)))′′′

]α)′
+ q(s)xβ(b(s)) = 0.

This helped deepen the understanding of the neutral effect on oscillatory behavior and develop more
realistic analytical models.

In this context, Masood et al. [32] presented a study of equations containing nonlinear neutral terms
of the form: (

κ(s)
[
(x (s) + ~1 (s) xγ (a (s)))′′′

]α)′
+ q(s)xβ(b(s)) = 0.

They employed the Riccati method to establish oscillation criteria, marking a notable advancement in
applying this technique to such equations.
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Following an extensive review of the existing literature, it becomes evident that the oscillatory
behavior of fourth-order neutral differential equations involving mixed nonlinear delay terms has not
been adequately investigated. To bridge this gap, the present study develops a unified analytical
framework specifically designed for such equations, addressing both the challenges posed by
higher-order structures and the intricate effects of multiple neutral delays. Employing a refined
Riccati transformation and integral averaging techniques, the paper establishes novel and less
restrictive oscillation criteria that significantly generalize and extend previously known results. This
methodological advancement not only deepens the theoretical understanding of oscillation
phenomena but also broadens the applicability of oscillation theory to more complex functional
systems, thereby marking a meaningful contribution to the ongoing development of the field.

The subsequent sections The paper is organized as follows. Section 2 presents preliminary lemmas
addressing the monotonic properties of non-oscillatory solutions. In Section 3, oscillation criteria for
Eq (1.1) are established using the Riccati transformation and appropriate substitutions, focusing on
the structure and eventual positivity of solutions. Section 3 provides numerical examples to illustrate
the applicability of the theoretical results. Finally, Section 4 concludes with a summary, remarks, and
future research directions.

2. Preliminary results

To develop our main results, we begin by formulating a series of lemmas that investigate the
monotonic properties of non-oscillatory solutions associated with the considered class of equations.

Remark 2.1. Below, when we write a functional inequality without specifying its domain of validity
we assume that it holds for all sufficiently large s.

Remark 2.2. In what follows, we consider only positive solutions, since if x (s) is a solution, then −x (s)
is also a solution.

Lemma 2.1. [33] Let α be a ratio of two odd positive integers; C and D are constants. Then

Du −Cu(α+1)/α ≤
αα

(α + 1)α+1

Dα+1

Cα
, C > 0. (2.1)

Lemma 2.2. [34] Let C and D be two non-negative real numbers. Then, the following inequality
is obtained:

Cλ + (λ − 1) Dλ − λCDλ−1 ≥ 0 for λ > 1, (2.2)
Cλ − (1 − λ) Dλ − λCDλ−1 ≤ 0 for 0 < λ < 1, (2.3)

where the equality holds if and only if C = D.

Lemma 2.3. [35] Let κ ∈ Cm ([s0,∞), (0,∞)), κ(i) (s) > 0 for i = 1, 2, ...,m, and
κ(m+1) (s) ≤ 0, eventually. Then, eventually,

κ (s)
κ′ (s)

≥
εs
m
,

for every ε ∈ (0, 1).
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Lemma 2.4. [35] Let x (s) be an eventually positive solution of Eq (1.1). Then, the corresponding
functionZ (s) satisfies, for sufficiently large s, exactly one of the following:

(C1) : Z (s) > 0, Z′ (s) > 0, Z′′ (s) > 0, Z′′′ (s) > 0,
(
κ (s)

(
Z′′′ (s)

)α)′ < 0,
(C2) : Z (s) > 0, Z′ (s) > 0, Z′′ (s) < 0, Z′′′ (s) > 0,

(
κ (s)

(
Z′′′ (s)

)α)′ < 0,

for s>s1 >s0.

Lemma 2.5. Let x (s) be an eventually positive solution of the Eq (1.1) withZ ∈ C1. Then the following
properties hold:
(a)Z(s) > κ1/α(s)Z′′′(s)R2(s);
(b) Z

′′(s)
R0(s) and Z(s)

R2(s) are decreasing functions;
(c)Z(s) > R2(s)Z′′(s)

R0(s) .

Proof. The monotonicity of κ1/α(s)Z′′′(s) implies that

Z′′ (s) ≥
∫ s

s1

κ1/α(υ)Z′′′ (υ)
1

κ1/α(υ)
dυ ≥ κ1/α(s)Z′′′ (s)

∫ s

s1

1
κ1/α(υ)

dυ

≥ κ1/α(s)Z′′′ (s) R0 (s) . (2.4)

Integrating twice more from s1 to s, we obtain

Z′ (s) ≥ κ1/α(s)Z′′′ (s) R1 (s) , (2.5)

and
Z (s) ≥ κ1/α(s)Z′′′ (s) R2 (s) .

From (2.4), it follows that (
Z′′(s)
R0(s)

)′
=
κ1/α(s)Z′′′(s)R0(s) −Z′′(s)

κ1/α(s)R2
0(s)

≤ 0.

Since Z
′′(s)

R0(s) is decreasing. Consequently,

Z′ (s) ≥
∫ s

s1

Z′′(υ)
R0(υ)

R0 (υ) dυ ≥
Z′′(s)
R0(s)

R1(s). (2.6)

From this we deduce (
Z′(s)
R1(s)

)′
=
Z′′(s)R1(s) − R0 (s)Z′(s)

R2
1(s)

≤ 0.

Thus, Z
′(s)

R1(s) is decreasing, and therefore

Z (s) ≥
∫ s

s1

Z′(υ)
R1(υ)

R1 (υ) dυ ≥
Z′(s)
R1(s)

R2(s). (2.7)

Consequently, (
Z(s)
R2(s)

)′
=
Z′(s)R2(s) − R1 (s)Z(s)

R2
2(s)

≤ 0,
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showing that Z(s)
R2(s) is decreasing.

Finally, combining (2.6) and (2.7) yields

Z (s) ≥
R2(s)Z′′(s)

R0(s)
.

Thus, the proof is finished. �

3. Main results

In this section, we establish oscillation criteria for solutions of Eq (1.1) using the Riccati
transformation with suitable substitutions. The analysis focuses on the equation’s structure and
eventually positive solutions. Assuming certain functional inequalities hold for large arguments, we
proceed under general conditions. We now introduce the following notation:

p1 (s) := (1 − γ) γ
γ

1−γ~
1

1−γ

1 (s) ~
γ
γ−1 (s) ,

and
p2 (s) := (δ − 1) δ

δ
1−δ~

1
1−δ
2 (s) ~

δ
δ−1 (s) .

Lemma 3.1. Let x be an eventually positive solution of (1.1), and assume ~ ∈ C ([s0,∞) , (0,∞)) such
that ~2 (s) , 0 is bounded and

lim
s→∞

[
p1 (s) + p2 (s)

]
= 0. (3.1)

Then, for sufficiently large s, the following holds:
(i) x (s) ≥ cZ (s) for some c ∈ (0, 1) ;
(ii)

(
κ(s) [Z′′′ (s)]α

)′
+ cβq(s)Zβ(b(s)) ≤ 0.

Proof. It is clear from the definition ofZ that

Z (s) = x (s) +
[
~ (s) x (a (s)) − ~2 (s) xδ (a (s))

]
+ [~1 (s) xγ (a (s)) − ~ (s) x (a (s))] ,

or
x (s) = Z (s) −

[
~ (s) x (a (s)) − ~2 (s) xδ (a (s))

]
− [~1 (s) xγ (a (s)) − ~ (s) x (a (s))] . (3.2)

If we apply the inequality (2.2) with λ = δ > 1, C = ~1/δ
2 (s) x (a (s)) , and D =

(
1
δ
~ (s) ~−1/δ

2 (s)
) 1
δ−1
,

we get

~ (s) x (a (s)) − ~2 (s) xδ (a (s)) ≤ (δ − 1) δ
δ

1−δ~
1

1−δ
2 (s) ~

δ
δ−1 (s) = p2 (s) . (3.3)

Similarly, if we apply (2.3) with λ = γ < 1, C = ~1/δ
1 (s) x (a (s)) , and D =

(
1
γ
~ (s) ~−1/γ

1 (s)
) 1
γ−1
, we get

~1 (s) xγ (a (s)) − ~ (s) x (a (s)) ≤ (1 − γ) γ
γ

1−γ~
1

1−γ

1 (s) ~
γ
γ−1 (s) = p1 (s) . (3.4)

By substituting (3.3) and (3.4) into (3.2), we get

x (s) ≥ Z (s) − p1 (s) − p2 (s) =

(
1 −

p1 (s) + p2 (s)
Z (s)

)
Z (s) . (3.5)
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SinceZ′(s) > 0, we findZ (s) ≥ c0 for some c0 > 0. Therefore, (3.5) leads to

x (s) ≥
(
1 −

p1 (s) + p2 (s)
c0

)
Z (s) .

In light of (3.1), there exists a constant c ∈ (0, 1) such that

x (s) ≥ cZ (s) . (3.6)

By substituting (3.6) into (1.1), we obtain(
κ(s)

[
Z′′′ (s)

]α)′
= −q(s)xβ(b(s)) ≤ −cβq(s)Zβ(b(s)).

Thus, the proof is finished. �

Theorem 3.1. Let β ≥ α. If there are nondecreasing functions φ, φ1 ∈ C1([s0,∞), (0,∞)) such that

lim sup
s→∞

∫ s

s0

Lcβφ (υ) q(υ)
(
R2(b (υ))

R2(υ)

)β
−

1
(α + 1)α+1

(φ′ (υ))α+1

(R1 (υ) φ (υ))α

 dυ = ∞, (3.7)

and

lim sup
s→∞

∫ s

s0

L1cβφ1 (`)
∫ ∞

`

 1
κ (u)

∫ ∞

u
q (υ)

(
b (υ)
υ

)β/ε
dυ

1/α

du −

[
φ′1 (`)

]2

4φ1 (`)

 d` = ∞, (3.8)

hold for every c, ε ∈ (0, 1) , L, L1 > 0. Then (1.1) is oscillatory.

Proof. Assume, for the sake of contradiction, that Eq (1.1) admits an eventually positive solution x (s).
Then, by Lemma 2.4, the corresponding function Z and its derivatives must satisfy one of the two
alternative conditions, namely (C1) or (C2) .
Suppose that case (C1) holds. We now introduce an auxiliary function w (s) defined by

w (s) := φ (s)
κ(s) (Z′′′ (s))α

Zα (s)
> 0. (3.9)

Thus

w′ (s) = φ′ (s)
κ(s) (Z′′′ (s))α

Zα (s)
+ φ (s)

(
κ(s) (Z′′′ (s))α

)′
Zα (s)

− αφ (s)
κ(s) (Z′′′ (s))αZ′ (s)

Zα+1 (s)
. (3.10)

Using (ii), (3.9), and (3.10), we deduce that

w′ (s) ≤ −cβφ (s) q(s)
Zβ (b(s))
Zα (s)

+
φ′ (s)
φ (s)

w (s) − α
Z′ (s)
Z (s)

w (s) . (3.11)

From Lemma 2.5(b), we have that

Z(b (s))
R2(b (s))

≥
Z(s)
R2(s)

,
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and hence,
Z (b (s))
Z (s)

≥
R2(b (s))

R2(s)
. (3.12)

It follows from (2.5) that
Z′ (s) ≥ κ1/α(s)Z′′′ (s) R1 (s) , (3.13)

for every sufficiently large s. Thus, by (3.11)–(3.13), we have

w′ (s) ≤ −cβφ (s) q(s)Zβ−αZ
β (b(s))
Zβ (s)

+
φ′ (s)
φ (s)

w (s) − α
κ1/α(s)Z′′′ (s) R1 (s)

Z (s)
w (s)

= −cβφ (s) q(s)Zβ−α (s)
(
R2(b (s))

R2(s)

)β
+
φ′ (s)
φ (s)

w (s) −
αR1 (s)
φ1/α (s)

w(1+α)/α (s) . (3.14)

SinceZ′ (s) > 0, and β ≥ α, there exists an s1 ≥s0 and a constant L > 0 such that

Zβ−α (s) > L. (3.15)

Thus, the inequality (3.14) gives

w′ (s) ≤ −Lcβφ (s) q(s)
(
R2(b (s))

R2(s)

)β
+
φ′ (s)
φ (s)

w (s) −
αR1 (s)
φ1/α (s)

w(1+α)/α (s) . (3.16)

Using Lemma 2.1, where we define D = φ′ (s) /φ (s) , C = αR1 (s) /φ1/α (s) , and u (s) = w (s) , we find

w′ (s) ≤ −Lcβφ (s) q(s)
(
R2(b (s))

R2(s)

)β
+

1
(α + 1)α+1

(φ′ (s))α+1

(R1 (s) φ (s))α
.

Integrating the above inequality from s2 ≥s1 to s, one arrives at∫ s

s2

Lcβφ (υ) q(υ)
(
R2(b (υ))

R2(υ)

)β
−

1
(α + 1)α+1

(φ′ (υ))α+1

(R1 (υ) φ (υ))α

 dυ ≤ w (s2) ,

this contradicts (3.27) as s→ ∞.
Consider the case where (C2) holds. From (ii) , we obtain(

κ(s)
[
Z′′′ (s)

]α)′
≤ −cβq(s)Zβ(b(s)). (3.17)

Integrating (3.17) from s to S, we obtain∫ S

s

(
κ(υ)

[
Z′′′ (υ)

]α)′ dυ ≤ −cβ
∫ S

s
q(υ)Zβ(b(υ))dυ.

By the Fundamental Theorem of Calculus, it follows that

κ(S)
[
Z′′′ (S)

]α
− κ(s)

[
Z′′′ (s)

]α
≤ −cβ

∫ S

s
q(υ)Zβ(b(υ))dυ.

Letting S→ ∞ gives

lim
S→∞

κ(S)
[
Z′′′ (S)

]α
− κ(s)

[
Z′′′ (s)

]α
≤ −cβ

∫ ∞

s
q(υ)Zβ(b(υ))dυ. (3.18)
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Since
(
κ(s) [Z′′′ (s)]α

)′
≤ 0, then κ(s) [Z′′′ (s)]α is positive and monotonically decreasing, and thus

lim
S→∞

κ(S)
[
Z′′′ (S)

]α
= 0.

Substituting this into (3.18) yields

−κ(s)
[
Z′′′ (s)

]α
≤ −cβ

∫ ∞

s
q(υ)Zβ(b(υ))dυ,

or equivalently,

κ(s)
[
Z′′′ (s)

]α
≥ cβ

∫ ∞

s
q(υ)Zβ(b(υ))dυ. (3.19)

As Z (s) > 0, Z′ (s) > 0, and Z′′ (s) < 0, Lemma 2.3 implies that Z (s) ≥ εsZ′ (s) for all ε ∈ (0, 1).
Integrating (3.19) from b (s) to s, we get

Z (b (s))
Z (s)

≥

(
b (s)

s

)1/ε

.

Therefore, (3.19) becomes

κ(s)
[
Z′′′ (s)

]α
≥ cβ

∫ ∞

s
q(υ)

(
b (υ)
υ

)β/ε
Zβ (υ) dυ.

SinceZ′ (s) > 0, then

κ(s)
[
Z′′′ (s)

]α
≥ cβZβ (s)

∫ ∞

s
q(υ)

(
b (υ)
υ

)β/ε
dυ,

or equivalently

Z′′′ (s) ≥ cβ/αZβ/α (s)
 1
κ (s)

∫ ∞

s
q(υ)

(
b (υ)
υ

)β/ε
dυ

1/α

. (3.20)

By integrating (3.20) from s to∞, it follows that

Z′′ (s) ≤ −cβ/αZβ/α (s)
∫ ∞

s

 1
κ (u)

∫ ∞

u
q (υ)

(
b (υ)
υ

)β/ε
dυ

1/α

du. (3.21)

Now, define

F (s) := φ1 (s)
Z′ (s)
Z (s)

. (3.22)

Then, F (s) ≥ 0 for s≥s1 ≥s0 and

F′ = φ′1 (s)
Z′ (s)
Z (s)

+ φ1 (s)
Z′′ (s)
Z (s)

− φ1 (s)
[Z′ (s)]2

Z2 (s)

= φ1 (s)
Z′′ (s)
Z (s)

+
φ′1 (s)
φ1 (s)

F (s) −
1

φ1 (s)
F2 (s) .

Hence, by (3.21), we get

F′ (s) ≤ −cβ/αφ1 (s)Zβ/γ−1 (s)
∫ ∞

s

 1
κ (u)

∫ ∞

u
q (υ)

(
b (υ)
υ

)β/ε
dυ

1/α

du
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+
φ′1 (s)
φ1 (s)

F (s) −
1

φ1 (s)
F2 (s) . (3.23)

BecauseZ′ (s) > 0 and β ≥ α, there exist constants L1 > 0 and s2 ≥s1 such that

Zβ/α−1 (s) ≥ L1. (3.24)

Substituting (3.24) into (3.23), we have

F′ (s) ≤ −L1cβ/αφ1 (s)
∫ ∞

s

 1
κ (u)

∫ ∞

u
q (υ)

(
b (υ)
υ

)β/ε
dυ

1/α

du

+
φ′1 (s)
φ1 (s)

F (s) −
1

φ1 (s)
F2 (s) . (3.25)

Using Lemma 2.1 with D = φ′1 (s) /φ1 (s) , C = 1/φ1 (s), and u (s) = F (s) , we obtain

φ′1 (s)
φ1 (s)

F (s) −
1

φ1 (s)
F2 (s) ≤

[
φ′1 (s)

]2

4φ1 (s)
.

Consequently, (3.25) leads to

F′ (s) ≤ −L1cβ/αφ1 (s)
∫ ∞

s

 1
κ (u)

∫ ∞

u
q (υ)

(
b (υ)
υ

)β/ε
dυ

1/α

du +
φ2

1 (s)
4φ1 (s)

. (3.26)

By integrating (3.26) from s2 to s, we get∫ s

s2

L1cβ/αφ1 (`)
∫ ∞

`

 1
κ (u)

∫ ∞

u
q (υ)

(
b (υ)
υ

)β/ε
dυ

1/α

du −

[
φ′1 (`)

]2

4φ1 (`)

 d` ≤ F (s2) ,

which contradicts (3.8) as s→ ∞. This completes the proof. �

Theorem 3.2. Let β ≥ α. If there is a nondecreasing functions φ2 ∈ C1([s0,∞), (0,∞)) such that

lim sup
s→∞

∫ s

s0

cβφ2 (υ) q(υ) −
1

(α + 1)α+1

[
φ′ (υ)

]α+1

(L2b′ (υ) R1 (b (υ)) φ2 (υ))α

 dυ = ∞, (3.27)

and (3.8) holds, for every c ∈ (0, 1) , L2 > 0. Then (1.1) is oscillatory.

Proof. Assume, for the sake of contradiction, that Eq (1.1) admits an eventually positive solution x (s).
Then, by Lemma 2.4, the corresponding function Z (s) and its derivatives must satisfy one of the two
alternative conditions, namely (C1) or (C2) .
Suppose that case (C1) holds. Now, define a function w1 (s) by

w1 (s) := φ2 (s)
κ(s) (Z′′′ (s))α

Zβ (b (s))
> 0, s ≥ s1. (3.28)

Thus,

w′1 (s) = φ′2 (s)
κ(s) (Z′′′ (s))α

Zβ (b (s))
+ φ2 (s)

(
κ(s) (Z′′′ (s))α

)′
Zβ (b (s))
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−βφ2 (s) b′ (s)
κ(s) (Z′′′ (s))α · Z′ (b (s))

Zβ+1 (b (s))
. (3.29)

We see from (ii), (3.28), and (3.29) that

w′1 (s) ≤
φ′2 (s)
φ2 (s)

w1 (s) − cβφ2 (s) q(s) − βb′ (s)
Z′ (b (s))
Z (b (s))

w1 (s) . (3.30)

Applying (2.5), we get
Z′ (b (s)) ≥ κ1/α(b (s))Z′′′ (b (s)) R1 (b (s)) , (3.31)

holds for sufficiently large s. By substituting (3.31) into (3.30), we derive

w′1 (s) ≤
φ′2 (s)
φ2 (s)

w1 (s) − cβφ2 (s) q(s) − αb′ (s)
κ1/α(b (s))Z′′′ (b (s)) R1 (b (s))

Z (b (s))
w1 (s)

= −cβφ2 (s) q(s) +
φ′2 (s)
φ2 (s)

w1 (s) − αb′ (s) R1 (b (s))
κ1/α(b (s))Z′′′ (b (s))

Z (b (s))
w1 (s) .

Since
(
κ(s) (Z′′′(s))α

)′ < 0, then

κ1/α (s)Z′′′ (s) ≤ κ1/α (b (s))Z′′′ (b (s)) .

Then

w′1 (s) ≤ −cβφ2 (s) q(s) +
φ′2 (s)
φ2 (s)

w1 (s) − αb′ (s) R1 (b (s))
κ1/α (s)Z′′′ (s)
Z (b (s))

w1 (s)

= −cβφ2 (s) q(s) +
φ′2 (s)
φ2 (s)

w1 (s) −
αb′ (s) R1 (b (s))

φ1/α
2 (s)

[Z (b (s))]
β−α
α w

α+1
α

1 (s) . (3.32)

SinceZ′ > 0 and β ≥ α, we know there exist constants L2 > 0 and s2 ≥s1 such that

[Z (b (s))]
β−α
α ≥ L2, s ≥ s2. (3.33)

Thus, the inequality (3.32) gives

w′1 (s) ≤ −cβφ2 (s) q(s) +
φ′2 (s)
φ2 (s)

w1 (s) −
L2αb′ (s) R1 (b (s))

φ1/α
2 (s)

w
α+1
α

1 (s) . (3.34)

By applying Lemma 2.1, with the substitutions D = φ′2 (s) /φ2 (s) , C = L2αb′ (s) R1 (b (s)) /φ1/α
2 (s) ,

and u (s) = w1 (s) , we get

w′1 (s) ≤ −cβφ2 (s) q(s) +

[
φ′2 (s)

]α+1

(α + 1)α+1 (L2b′ (s) R1 (b (s)) φ2 (s))α
. (3.35)

Integrating (3.35) from s3 ≥s2 to s, one arrives at∫ s

s3

cβφ2 (υ) q(υ) −
1

(α + 1)α+1

[
φ′ (υ)

]α+1

(L2b′ (υ) R1 (b (υ)) φ2 (υ))α

 dυ ≤ w (s3) ,

this contradicts (3.27) as s→ ∞.
Suppose that case (C2) holds, as shown in the proof of (3.8) in Theorem 3.1.
This completes the proof. �
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Theorem 3.3. Let 0 < β < α. If there is a nondecreasing function φ1, φ2 ∈ C1([s0,∞), (0,∞)) such that

lim sup
s→∞

∫ s

s0

cβφ2 (υ) q(υ) −
1

(β + 1)β+1

[
φ′2 (υ)

]β+1

(L3b′ (υ) R1 (υ) φ2 (υ))β

 dυ = ∞, (3.36)

and

lim sup
s→∞

∫ s

s0

L̃φ1 (`) (` − s0)
β−γ
γ

∫ ∞

`

 1
κ (u)

∫ ∞

u
q (υ)

(
b (υ)
υ

) β
ε

dυ


1/α

du −

(
φ′1 (`)

)2

4φ1 (`)

 d` = ∞, (3.37)

hold for some c, ε ∈ (0, 1) , L3 > 0, L̃ = cβ/αLβ/γ−1
3 . Then (1.1) is oscillatory.

Proof. Assume, for the sake of contradiction, that Eq (1.1) admits an eventually positive solution x (s).
Then, by Lemma 2.4, the corresponding function Z and its derivatives must satisfy one of the two
alternative conditions, namely (C1) or (C2) .

Case where (C1) is satisfied, as shown in the proof of (3.27) in Theorem 3.2. The function w1 (s) is
defined in (3.28), then (3.29) holds. By using (ii), (3.28), and (3.29), we conclude that

w′1 (s) ≤ −cβφ2 (s) q(s) +
φ′2 (s)
φ2 (s)

w1 (s) − βb′ (s)
Z′ (b (s))
Z (b (s))

w1 (s) .

By using (2.5), we see that

w′1 (s) ≤ −cβφ2 (s) q(s) +
φ′2 (s)
φ2 (s)

w1 (s) − βb′ (s) κ1/α(s)R1 (s)
[
Z′′′ (s)

] β−α
β

[Z′′′ (s)]α/β

Z (b (s))
w1 (s)

= −cβφ2 (s) q(s) +
φ′2 (s)
φ2 (s)

w1 (s) −
βb′ (s) κ1/α(s)R1 (s)

(φ2 (s) κ (s))1/β

[
Z′′′ (s)

] β−α
β w(β+1)/β

1 (s)

= −cβφ2 (s) q(s) +
φ′2 (s)
φ2 (s)

w1 (s) −
βb′ (s) R1 (s)

φ
1/β
2 (s)

[
κ1/α(s)Z′′′ (s)

] β−α
β w(β+1)/β

1 (s) .

Note that 0 < β < α and (C1) holds. Since κ′ (s) ≥ 0, we deduce that Z(4) (s) ≤ 0; this readily infers

that Z′′′ (s) is nonincreasing. Also,
[
κ1/α(s)Z′′′ (s)

] β−α
β is increasing. Then there are L3 > 0 and s2 ≥s1

such that [
κ1/α(s)Z′′′ (s)

] β−α
β
≥ L3, s ≥ s2. (3.38)

By using (3.38), it follows that

w′1 (s) ≤ −cβφ2 (s) q(s) +
φ′2 (s)
φ2 (s)

w1 (s) −
βL3b′ (s) R1 (s)

φ
1/β
2 (s)

w
β+1
β

1 (s) . (3.39)

By applying Lemma 2.1, with the substitutions: D = φ′2 (s) /φ2 (s) , C = βL3b′ (s) R1 (s) /φ1/β
2 (s) , and

u (s) = w1 (s) . From (3.39), we get

w′1 (s) ≤ −cβφ2 (s) q(s) +
1

(β + 1)β+1

[
φ′2 (s)

]β+1

(L3b′ (s) R1 (s) φ2 (s))β
. (3.40)
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The integration of (3.40) within the interval [s3, s], yields

∫ s

s3

cβφ2 (υ) q(υ) −
1

(β + 1)β+1

[
φ′2 (υ)

]β+1

(L3b′ (υ) R1 (υ) φ2 (υ))β

 dυ ≤ w (s2) ,

which contradicts (3.36) as s→ ∞.
Case where (C2) is satisfied, as shown in the proof of (3.8) in Theorem 3.1. The function F (s) is

given in (3.22), and therefore (3.23) holds, which can be written as follows:

F′ (s) ≤ −cβ/αφ1 (s)Zβ/γ−1 (s)
∫ ∞

s

 1
κ (u)

∫ ∞

u
q (υ)

(
b (υ)
υ

)β/ε
dυ

1/α

du

+
φ′1 (s)
φ1 (s)

F (s) −
1

φ1 (s)
F2 (s) . (3.41)

SinceZ′′ < 0, it follows thatZ′ is decreasing. Consequently, we have

Z (s) =

∫ s

s1

Z′ (υ) dυ ≤ Z′ (s1) (s − s1) = L4 (s − s1) , L4 := Z′ (s1) > 0. (3.42)

From (3.42), combined with the fact that 0 < β < α, implying 0 < β/α < 1, we conclude

Zβ/α−1 (s) ≥ Lβ/α−1
4 (s − s1)β/α−1 . (3.43)

Hence, the inequality (3.41) becomes

F′ (s) ≤ −cβ/αLβ/α−1
4 φ1 (s) (s − s1)β/α−1

∫ ∞

s

 1
κ (u)

∫ ∞

u
q (υ)

(
b (υ)
υ

)β/ε
dυ

1/α

du

+
φ′1 (s)
φ1 (s)

F (s) −
1

φ1 (s)
F2 (s) . (3.44)

Applying Lemma 2.1 with C = φ′1 (s) /φ1 (s) , D = 1/φ1 (s), and u (s) = F (s) , we can deduce that

φ′1 (s)
φ1 (s)

F (s) −
1

φ1 (s)
F2 (s) ≤

(
φ′1 (s)

)2

4φ1 (s)
.

Consequently, (3.44) leads to

F′ (s) ≤ −cβ/αLβ/α−1
4 φ1 (s) (s − s1)β/γ−1

∫ ∞

s

 1
κ (u)

∫ ∞

u
q (υ)

(
b (υ)
υ

)β/ε
dυ

1/α

du +

(
φ′1 (s)

)2

4φ1 (s)
. (3.45)

By integrating (3.45) from s2 to s, we deduce

∫ s

s2

L̃φ1 (`) (` − s1)β/α−1
∫ ∞

`

 1
κ (u)

∫ ∞

u
q (υ)

(
b (υ)
υ

)β/ε
dυ

1/α

du +

(
φ′1 (`)

)2

4φ1 (`)

 d` ≤ F (s2) ,

which contradicts (3.8) as s→ ∞. Thus, we have completed the proof. �
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Remark 3.1. Theorem 3.3 extends the results of Theorems 3.1 and 3.2 by covering the case 0 < β < α,
providing more general oscillation conditions than those of the previous two theorems.

Remark 3.2. It is worth noting that Eq (1.1) analyzed in this study is a generalization of
several equations previously studied in the literature. For example, if α = β = 1, ~1 (s) = ~2 (s) = 0,
and (s) = 1, Eq (1.1) reduces to the linear model taken in [24]. In the case of α = β, with
~1 (s) = ~2 (s) = 0, it matches the quasi-linear models studied in [26]. If only ~1 (s) = ~2 (s) = 0, it
reverts to the form used in [28, 29]. If both conditions are met, γ = 1 and ~2 (s) = 0, the equation
takes the form shown in [30, 31], while if only ~2 (s) = 0, it takes the form shown in [32].

4. Examples

In this section, two illustrative examples are presented that support the validity of the theoretical
results and highlight their relevance in the context of the study.

Example 4.1. Consider the NDE given by:(
s−1

(
x (s) +

1
s

x1/3
(
1
2

s
)
− x3

(
1
2

s
))′′′)′

+
q0

s5 x
(
1
3

s
)

= 0, s ≥ 1. (4.1)

Here, the parameters are defined as:

α = β = 1, γ =
1
3
, δ = 3, a (s) =

1
2

s, b (s) =
1
3

s,

κ (s) = s, ~ (s) = ~1 (s) =
1
s
, ~2 (s) = 1, and q (s) =

q0

s5 .

Now, we calculate ∫ ∞

s0

1
κ1/α (υ)

dυ =

∫ ∞

1
υdυ = ∞.

Next, we find

R0 (s) =
s2

2
, R1 (s) =

s3

6
, R2 (s) =

s4

24
,

p1 (s) = (1 − γ) γ
γ

1−γ~
1

1−γ

1 (s) ~
γ
γ−1 (s) =

2

3
√

3

1
s
,

and

p2 (s) = (δ − 1) δ
δ

1−δ~
1

1−δ
2 (s) ~

δ
δ−1 (s) =

2

3
√

3

1
s3/2 .

Hence,

lim
s→∞

[
p1 (s) + p2 (s)

]
= lim

s→∞

[
2

3
√

3
·

1
s

+
2

3
√

3
·

1
s3/2

]
= 0,

which confirms the validity of condition (3.1). The asymptotic behavior of p1 (s) + p2 (s) is illustrated
in Figure 1:
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Figure 1. Illustrates the asymptotic behavior of p1(s) + p2(s).

To further examine the oscillatory behavior, we employ various test functions and apply the
corresponding conditions:
1. Using φ (s) = s4 and applying condition (3.7):

lim sup
s→∞

∫ s

1

Lcυ4 ·
q0

υ5 ·

(
1
34

)
−

1
22 ·

42
(
υ3

)2

υ3

6 υ
4

 dυ = lim sup
s→∞

∫ s

1

(
Lcq0 ·

(
1
34

)
− 24

)
·

1
υ

dυ,

which diverges to infinity if

q0 >
1944

Lc
, L > 0 and c ∈ (0, 1) . (4.2)

2. Using φ2 (s) = s4 and applying condition (3.27):

lim sup
s→∞

∫ s

1

cυ4 ·
q0

υ5 −
1
22 ·

42
[
υ3

]2

L2
1
3 ·

υ3

6(3)3 · υ4

 dυ = lim sup
s→∞

∫ s

1

(
cq0 −

23 · 35

L2

)
1
υ

dυ,

which diverges provided that

q0 >
1944
cL2

, L2 > 0 and c ∈ (0, 1) . (4.3)

3. Using φ1 (s) = s and applying condition (3.8):

lim sup
s→∞

∫ s

1

(
L1c`

∫ ∞

`

(
u
∫ ∞

u

q0

υ5

(
υ

3υ

)1/ε
dυ

)
du −

1
4`

)
d`

= lim sup
s→∞

∫ s

1

(
L1c
31/ε `

∫ ∞

`

q0

4u3 du −
1
4`

)
d`
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= lim sup
s→∞

∫ s

1

(
L1cq0
8 · 31/ε −

1
4

)
·

1
`

d`,

which diverges if:

q0 >
2

L1c
· 31/ε , L1 > 0 and c, ε ∈ (0, 1) . (4.4)

Therefore, in accordance with Theorems 3.1 and 3.2, if inequalities (4.2)–(4.4) are satisfied, then
Eq (4.1) exhibits oscillatory behavior.

Figure 2 presents the oscillatory region of Eq (4.1), with conditions (4.2)–(4.4) satisfied. The shaded
intersection indicates the parameter set in which the solutions exhibit oscillatory behavior. Parameters
are chosen as L = L1 = 1, ε = 0.25, and c ∈ (0, 1) .

Figure 2. Oscillatory region of Eq (4.1) satisfying conditions (4.2)–(4.4).

Example 4.2. Consider the NDE given bys−1/3
((

x (s) +
1
s

x1/5
(
1
2

s
)
− x5

(
1
2

s
))′′′)1/3′ + q0s7/3 x1/3

(
1
2

s
)

= 0, s ≥ 1, (4.5)

for s ≥ 1, and b0 > 0. The associated parameters are specified as follows:

α = β =
1
3
, γ =

1
5
, δ = 5, a (s) =

1
2

s, b (s) =
1
2

s,

κ (s) = s−1/3, ~ (s) = ~1 (s) =
1
s
, ~2 (s) = 1, and q (s) =

q0

s7/3 .

Next, we find

R0 (s) =
s2

2
, R1 (s) =

s3

6
, R2 (s) =

s4

24
.

Moreover,

p1 (s) =
4

55/4s
and p2 (s) =

4
55/4s5/4 .
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Therefore

lim
s→∞

[
p1 (s) + p2 (s)

]
= lim

s→∞

[
4

55/4

1
s

+
4

55/4

1
s5/4

]
= 0,

which implies that condition (3.1) is satisfied. The asymptotic behavior of p1 (s) + p2 (s) is illustrated
in Figure 3:

Figure 3. Illustrates the asymptotic behavior of p1(s) + p2(s).

To further examine the oscillatory behavior, we employ various test functions and apply the
corresponding conditions:
1. Using φ (s) = s4/3 and applying condition (3.7):

lim sup
s→∞

∫ s

1

Lc1/3υ4/3 ·
q0

υ7/3 ·

(
1
24

)1/3

−
1(

4
3

)4/3 ·

(
4
3υ

1
3

) 4
3(

υ3

6 · υ
4/3

)1/3

 dυ

= lim sup
s→∞

∫ s

1

(
c1/3Lq0

24/3 − 61/3
)
·

1
υ

dυ,

which diverges to infinity if:

q0 >

(
96
cL

)1/3

, L > 0 and c ∈ (0, 1) . (4.6)

2. Using φ2 (s) = s4/3 and applying condition (3.27):

lim sup
s→∞

∫ s

s0

c1/3υ4l3 ·
q0

υ7/3 −
1(

4
3

)4/3 ·

[
4
3 · υ

1/3
]4/3(

L2
1
2 ·

υ3

6(23) · υ
4l3

)1/3

 dυ
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= lim sup
s→∞

∫ s

s0

c1/3
q0 −

25/331/3

L1/3
2

 1
υ

dυ,

which diverges if:

q0 >

(
96
cL2

)1/3

, L2 > 0 and c ∈ (0, 1) . (4.7)

3. Using φ1 (s) = s and applying condition (3.8):

lim sup
s→∞

∫ s

1

cL1`

∫ ∞

`

u1/3
∫ ∞

u

q0

υ7/3 ·

 1
3υ

υ

1/3ε2

dυ


3

du −
1
4`

 d`

= lim sup
s→∞

∫ s

1

L1`

∫ ∞

`

3c1/3q0

4
·

(
1
3

)1/3ε2
3

·
1
u3 du −

1
4`

 d`

= lim sup
s→∞

∫ s

1

1
2

3c1/3q0σ
1/3ε2

4
·

(
1
3

)1/3ε2
3

−
1
4

 1
`

d`,

which is satisfied provided that

q0 >

(
32

27cL3
1

· 31/ε2

)1/3

, L1 > 0, and c, ε ∈ (0, 1) . (4.8)

Hence, in accordance with Theorems 3.1 and 3.2, if inequalities (4.6)–(4.8) are satisfied, then the
solution of Eq (4.5) exhibits oscillatory behavior.

Figure 4 illustrates the oscillatory region of Eq (4.5) where the conditions (4.6)–(4.8) are satisfied.
The shaded intersection represents the parameter domain in which the solutions of Eq (4.5) exhibit
oscillatory behavior. The parameters are L = L1 = 1, ε = 0.25, and c ∈ (0, 1) .

Figure 4. Oscillatory region of Eq (4.5) satisfying conditions (4.6)–(4.8).
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Remark 4.1. The results in [28–30] are not applicable to Examples 4.1 and 4.2, as they do not cover
cases involving a mixed neutral term. Accordingly, our results provide a clear extension that
encompasses these specific cases.

5. Conclusions

In this paper, new oscillation criteria have been established for a class of fourth-order nonlinear
neutral differential equations involving mixed neutral terms. The main contribution of the study lies in
deriving novel and more general sufficient conditions that extend and refine existing results in the
literature. The employed methodology, based on a generalized Riccati transformation, allows the
conversion of the original fourth-order neutral differential equation into an equivalent system of
first-order differential inequalities, providing an efficient analytical framework to examine the
oscillatory nature of solutions. These results not only broaden the theoretical understanding of
neutral-type equations but also introduce flexible techniques applicable to a wider range of functional
differential systems.

For future research, it would be of interest to relax some of the current assumptions, particularly
the condition (3.1), to develop more comprehensive oscillation criteria. Furthermore, extending the
present results to odd-order equations and exploring alternative neutral structures such as

Z (s) := x (s) + ~1 (s) xγ (a1 (s)) + ~2 (s) xδ (a2 (s))

may provide deeper insights into the dynamics of nonlinear systems with neutral terms.
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