In this work, we present a general approach to computing the Hewitt-Stromberg dimensions of a set $ A $ in a metric space. This technique, originally introduced by Cutler and Tricot and later expanded by Ben Nasr et al., offers a generalization of classical dimension estimates and yields deeper understanding of the scaling behavior of measures in metric spaces. We applied this framework to binomial measures and developed a multifractal one for a function with respect to a gauge function $ \varphi $. Additionally, we explored the regularity of sets and measures by applying a tailored density theorem, extending existing results and offering novel insights into Moran sets.
Citation: Amal Mahjoub, Najmeddine Attia. On the study of general multifractal analysis of sets using vector-valued functions[J]. AIMS Mathematics, 2025, 10(10): 24469-24499. doi: 10.3934/math.20251085
In this work, we present a general approach to computing the Hewitt-Stromberg dimensions of a set $ A $ in a metric space. This technique, originally introduced by Cutler and Tricot and later expanded by Ben Nasr et al., offers a generalization of classical dimension estimates and yields deeper understanding of the scaling behavior of measures in metric spaces. We applied this framework to binomial measures and developed a multifractal one for a function with respect to a gauge function $ \varphi $. Additionally, we explored the regularity of sets and measures by applying a tailored density theorem, extending existing results and offering novel insights into Moran sets.
| [1] | L. Olsen, A multifractal formalism, Adv. Math., 116 (1995), 82–196. https://doi.org/10.1006/aima.1995.1066 |
| [2] | J. Peyrière, A vectorial multifractal formalism, In: Proceedings of Symposia in Pure Mathematics, 2004,217–230. https://doi.org/10.1090/PSPUM/072.2 |
| [3] | E. Hewitt, K. Stromberg, Real and abstract analysis: A modern treatment of the theory of functions of a real variable, Springer, New York, 1965. |
| [4] |
N. Attia, R. Guedri, O. Guizani, Note on the multifractal measures of Cartesian product sets, Commun. Korean Math. Soc., 37 (2022), 1073–1097. https://doi.org/10.4134/CKMS.c210350 doi: 10.4134/CKMS.c210350
|
| [5] |
N. Attia, B. Selmi, A multifractal formalism for Hewitt-Stromberg measures, J. Geom. Anal., 31 (2021), 825–862. https://doi.org/10.1007/s12220-019-00302-3 doi: 10.1007/s12220-019-00302-3
|
| [6] |
H. K. Baek, Regularities of multifractal measures, P. Indian Acad. Sci., 118 (2008), 273–279. https://doi.org/10.1007/s12044-008-0019-3 doi: 10.1007/s12044-008-0019-3
|
| [7] |
O. Guizani, N. Attia, A note on scaling properties of Hewitt-Stromberg measure, Filomat, 36 (2022), 3551–3559. https://doi.org/10.2298/FIL2210551A doi: 10.2298/FIL2210551A
|
| [8] |
O. Guizani, A. Mahjoub, N. Attia, Some relations between Hewitt-Stromberg premeasure and Hewitt-Stromberg measure, Filomat, 37 (2023), 13–20. https://doi.org/10.2298/FIL2301013A doi: 10.2298/FIL2301013A
|
| [9] |
H. Haase, A contribution to measure and dimension of metric spaces, Math. Nachr., 124 (1985), 45–55. https://doi.org/10.1002/mana.19851240104 doi: 10.1002/mana.19851240104
|
| [10] | G. A. Edgar, Centered densities and fractal measures, New York J. Math., 13 (2007), 33–87. |
| [11] | M. Das, Strong and weak vitali propoerties, Real Anal. Exch., 27 (2001), 7–16. |
| [12] | L. Olsen, Random geometrically graph directed self-similar multifractals, Chapman and Hall/CRC, New York, 307 (1994). https://doi.org/10.1201/9780203741306 |
| [13] |
L. Olsen, Self-affine multifractal Sierpinski sponges in $\mathbb{R}^d$, Pac. J. Math., 183 (1998), 143–199. http://dx.doi.org/10.2140/pjm.1998.183.143 doi: 10.2140/pjm.1998.183.143
|
| [14] | Y. Pesin, Dimension theory in dynamical systems, Contemporary views and applications, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. |
| [15] |
N. Attia, On the exact dimension of Mandelbrot measure, Probab. Math. Stat., 39 (2019), 299–314. http://dx.doi.org/10.19195/0208-4147.39.2.4 doi: 10.19195/0208-4147.39.2.4
|
| [16] |
N. Attia, Hausdorff and packing dimensions of Mandelbrot measure, Int. J. Math., 31 (2020), 2050068. https://doi.org/10.1142/S0129167X20500688 doi: 10.1142/S0129167X20500688
|
| [17] | N. Attia, A Mahjoub, On the vectorial multifractal analysis in a metric space, AIMS Math., 8, (2023), 23548–23565. https://doi.org/10.3934/math.20231197 |
| [18] |
Y. Heurteaux, Dimension of measures: The probabilistic approach, Publ. Mat., 51 (2007), 243–290. https://doi.org/10.5565/PUBLMAT_51207_01 doi: 10.5565/PUBLMAT_51207_01
|
| [19] |
L. Huang, Q. Liu, G. Wang, Multifractal analysis of Bernoulli measures on a class of homogeneous Cantor sets, J. Math. Anal. Appl., 491 (2020), 124362. https://doi.org/10.1016/j.jmaa.2020.124362 doi: 10.1016/j.jmaa.2020.124362
|
| [20] |
R. Riedi, I. Scheuring, Conditional and relative multifractal spectra, Fractals, 5 (1997), 153–168. https://doi.org/10.1142/S0218348X97000152 doi: 10.1142/S0218348X97000152
|
| [21] |
S. Shen, Multifractal analysis of some inhomogeneous multinomial measures with distinct analytic Olsen's b and B functions, J. Stat. Phys., 159 (2015), 1216–1235. https://doi.org/10.1007/s10955-015-1223-z doi: 10.1007/s10955-015-1223-z
|
| [22] |
D. Cutler, Strong and weak duality principles for fractal dimension in Euclidean space, Math. Proc. Cambridge Philos. Soc., 118 (1995), 393–410. https://doi.org/10.1017/S0305004100073758 doi: 10.1017/S0305004100073758
|
| [23] |
C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc., 91 (1982), 54–74. https://doi.org/10.1017/S0305004100059119 doi: 10.1017/S0305004100059119
|
| [24] |
F. B. Nasr, I. Bhouri, Y. Heurteaux, The validity of the multifractal formalism: Results and examples, Adv. Math., 165 (2002), 264–284. https://doi.org/10.1006/aima.2001.2025 doi: 10.1006/aima.2001.2025
|
| [25] |
N. Attia, B. Selmi, C. Souissi, Some density results of relative multifractal analysis, Chaos Soliton. Fract., 103 (2017), 1–11. https://doi.org/10.1016/j.chaos.2017.05.029 doi: 10.1016/j.chaos.2017.05.029
|
| [26] |
R. Guedri, N. Attia, On the generalized Hausdorff and packing measures of product sets in metric space, Math. Inequal. Appl., 25 (2022), 335–358. http://dx.doi.org/10.7153/mia-2022-25-20 doi: 10.7153/mia-2022-25-20
|
| [27] |
X. S. Raymond, C. Tricot, Packing regularity of sets in $n$-space, Math. Proc. Cambridge Philos. Soc., 103 (1988), 133–145. https://doi.org/10.1017/S0305004100064690 doi: 10.1017/S0305004100064690
|
| [28] | P. Mattila, Geometry of sets and measures in Euclidean spaces: Fractals and rectifiability, Cambridge University Press, 1995. |
| [29] |
S. J. Taylor, C. Tricot, The packing measure of rectifiable subsets of the plane, Math. Proc. Cambridge Philos. Soc., 99 (1986), 285–296. https://doi.org/10.1017/S0305004100064203 doi: 10.1017/S0305004100064203
|
| [30] |
N. Attia, Relative multifractal spectrum, Commun. Korean Math. Soc., 33 (2018), 459–471. https://doi.org/10.4134/CKMS.c170143 doi: 10.4134/CKMS.c170143
|
| [31] |
M. Dai, Multifractal analysis of a measure of multifractal exact dimension, Nonlinear Anal., 70 (2009), 1069–1079. https://doi.org/10.1016/j.na.2008.01.033 doi: 10.1016/j.na.2008.01.033
|
| [32] | K. J. Falconer, Fractal geometry: Mathematical foundations and applications, Chichester, Wiley, 1990. |
| [33] | T. Wang, B. Selmi, Z. Li, General Hewitt-Stromberg measures: Properties and their role in multifractal formalism, Contemp. Math., 825 (2025), 181–200. |
| [34] | B. Mandelbrot, Les Objects fractales: Forme, hasard et dimension, JSTOR, 233 (1975), 143–147. |
| [35] | B. Mandelbrot, The fractal geometry of nature, New York, 1982. |
| [36] |
A. Mahjoub, N. Attia, A relative vectorial multifractal formalism, Chaos Soliton. Fract., 160 (2022), 112221. https://doi.org/10.1016/j.chaos.2022.112221 doi: 10.1016/j.chaos.2022.112221
|
| [37] |
A. Mahjoub, The relative multifractal analysis of a vector function in a metric space, Dynam. Syst., 39 (2024), 1–23. https://doi.org/10.1080/14689367.2024.2360208 doi: 10.1080/14689367.2024.2360208
|
| [38] | M. Menceur, A. B. Mabrouk, A joint multifractal analysis of vector valued non Gibbs measures, Chaos Soliton. Fract., 126 (2019). https://doi.org/10.1016/j.chaos.2019.05.010 |
| [39] |
F. B. Nasr, J. Peyrière, Revisiting the multifractal analysis of measures, Rev. Mat. Iberoam., 25 (2013), 315–328. https://doi.org/10.4171/rmi/721 doi: 10.4171/rmi/721
|
| [40] |
M. Wu, The multifractal spectrum of some Moran measures, Sci. China. Ser. A, 48 (2005), 97–112. https://doi.org/10.1360/022004-10 doi: 10.1360/022004-10
|
| [41] |
N. Attia, B. Selmi, On the fractal measures and dimensions of image measures on a class of Moran sets, Mathematics, 11 (2023), 1519. https://doi.org/10.3390/math11061519 doi: 10.3390/math11061519
|
| [42] |
N. Attia, B. Selmi, On the multifractal measures and dimensions of image measures on a class of Moran sets, Chaos Soliton. Fract., 174 (2023), 113818. https://doi.org/10.1016/j.chaos.2023.113818 doi: 10.1016/j.chaos.2023.113818
|
| [43] |
K. J. Falconer, The multifractal spectrum of statistically self-similar measures, J. Theor. Probab., 7 (1994), 681–702. https://doi.org/10.1007/BF02213576 doi: 10.1007/BF02213576
|
| [44] |
K. J. Falconer, Generalized dimensions of measures on self-affine sets, Nonlinearity, 12 (1999), 877–891. https://doi.org/10.1088/0951-7715/12/4/308 doi: 10.1088/0951-7715/12/4/308
|
| [45] | J. Peyrière, Multifractal measures, In: Byrnes, J. S., Byrnes, J. L., Hargreaves, K. A., Berry, K. (eds) Probabilistic and Stochastic Methods in Analysis, with Applications. NATO ASI Series, Springer, Dordrecht, 372 (1992), 175–186. https://doi.org/10.1007/978-94-011-2791-2_7 |
| [46] | A. Mitchell, L. Olsen, Coincidence and noncoincidence of dimensions in compact subsets of $[0, 1]$, arXiv preprint, 2018. https://doi.org/10.48550/arXiv.1812.09542 |
| [47] |
A. Besicovitch, A general form of the covering principle and relative differentiation of additive function, Proc. Cambridge Philos. Soc., 41 (1945), 103–110. https://doi.org/10.1017/S0305004100022453 doi: 10.1017/S0305004100022453
|
| [48] |
A. Besicovitch, On the sum of digits of real numbers represented in the dyadic system, Math Ann., 110 (1934), 321–330. https://doi.org/10.1007/BF01448030 doi: 10.1007/BF01448030
|
| [49] |
S. Jurina, N. MacGregor, A. Mitchell, L. Olsen, A. Stylianou, On the Hausdorff and packing measures of typical compact metric spaces, Aequationes Math., 92 (2018), 709–735. https://doi.org/10.1007/s00010-018-0548-5 doi: 10.1007/s00010-018-0548-5
|
| [50] |
I. Bhouri, On the projections of generalized upper $L^q$-spectrum, Chaos Soliton. Fract., 42 (2009), 1451–1462. https://doi.org/10.1016/j.chaos.2009.03.056 doi: 10.1016/j.chaos.2009.03.056
|
| [51] | P. Billingsley, Ergodic theory and information, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, 1965. |
| [52] | R. H. Riedi, An introduction to multifractals, Rice Univ., Houston, TX, Tech. Rep., 1997. Available from: https://hdl.handle.net/1911/20268. |
| [53] | Y. Heurteaux, An introduction to Mandelbrot cascades, New Trends in Applied Harmonic Analysis, Birkhäuser, Cham, 2016. https://doi.org/10.1007/978-3-319-27873-5_3 |
| [54] |
B. Selmi, A review on multifractal analysis of Hewitt–Stromberg measures, J. Geom. Anal., 32 (2022), 12. https://doi.org/10.1007/s12220-021-00753-7 doi: 10.1007/s12220-021-00753-7
|
| [55] |
G. Brown, G. Michon, J. Peyrière, On the multifractal analysis of mesures, J. Stat. Phys., 66 (1992), 775–790. https://doi.org/10.1007/BF01055700 doi: 10.1007/BF01055700
|
| [56] | G. Michon, Mesures de Gibbs sur les Cantor réguliers, Ann. Inst. H. Poincaré Phys. Théor., 58 (1993), 267–285. |
| [57] |
B. Selmi, The relative multifractal densities: A review and application, J. Interdiscip. Math., 24 (2021), 1627–1644. https://doi.org/10.1080/09720502.2020.1860286 doi: 10.1080/09720502.2020.1860286
|