This paper proposes a dynamic volatility spillover conditional autoregressive range-mixed data sampling (DVS-CARR-MIDAS) model to forecast volatility in the Chinese crude oil futures market by incorporating dynamic volatility spillovers from the dominant US crude oil futures market to the emerging Chinese crude oil futures market. Empirical results based on West Texas Intermediate (WTI) crude oil and Shanghai International Energy Exchange (INE) data revealed significant and time-varying spillover effects from the US to the Chinese market. In addition, the DVS-CARR-MIDAS model consistently showed that the proposed model consistently outperforms benchmark models in both in-sample fitting and out-of-sample forecasting. These findings were robust to the Diebold-Mariano (DM) test, $ R_{oos}^2 $ test, alternative dominant market, and different out-of-sample forecast windows. Furthermore, the economic value analysis demonstrated that the proposed model provides meaningful benefits for portfolio management.
Citation: Xinyu Wu, Yuanzheng Liu, Junlin Pu, Xiaona Wang. Forecasting Chinese crude oil futures volatility using dynamic volatility spillover CARR-MIDAS model[J]. AIMS Mathematics, 2025, 10(10): 23919-23942. doi: 10.3934/math.20251063
This paper proposes a dynamic volatility spillover conditional autoregressive range-mixed data sampling (DVS-CARR-MIDAS) model to forecast volatility in the Chinese crude oil futures market by incorporating dynamic volatility spillovers from the dominant US crude oil futures market to the emerging Chinese crude oil futures market. Empirical results based on West Texas Intermediate (WTI) crude oil and Shanghai International Energy Exchange (INE) data revealed significant and time-varying spillover effects from the US to the Chinese market. In addition, the DVS-CARR-MIDAS model consistently showed that the proposed model consistently outperforms benchmark models in both in-sample fitting and out-of-sample forecasting. These findings were robust to the Diebold-Mariano (DM) test, $ R_{oos}^2 $ test, alternative dominant market, and different out-of-sample forecast windows. Furthermore, the economic value analysis demonstrated that the proposed model provides meaningful benefits for portfolio management.
| [1] |
F. Ma, C. Liang, Y. H. Ma, M. I. M. Wahab, Cryptocurrency volatility forecasting: a Markov regime-switching MIDAS approach, J. Forecast., 39 (2020), 1277–1290. https://doi.org/10.1002/for.2691 doi: 10.1002/for.2691
|
| [2] |
F. Ma, C. Liang, Q. Zeng, H. B. Li, Jumps and oil futures volatility forecasting: a new insight, Quant. Finance, 21 (2021), 853–863. https://doi.org/10.1080/14697688.2020.1805505 doi: 10.1080/14697688.2020.1805505
|
| [3] |
C. Q. Luo, Y. Qu, Y. Y. Su, L. Dong, Risk spillover from international crude oil markets to China's financial markets: evidence from extreme events and US monetary policy, N. Am. J. Econ. Finance, 70 (2024), 102041. https://doi.org/10.1016/j.najef.2023.102041 doi: 10.1016/j.najef.2023.102041
|
| [4] |
M. Liu, C. C. Lee, Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting, Energy Econo., 103 (2021), 105622. https://doi.org/10.1016/j.eneco.2021.105622 doi: 10.1016/j.eneco.2021.105622
|
| [5] |
C. W. Sun, J. L. Min, J. C. Sun, X. Gong, The role of China's crude oil futures in world oil futures market and China's financial market, Energy Econ., 120 (2023), 106619. https://doi.org/10.1016/j.eneco.2023.106619 doi: 10.1016/j.eneco.2023.106619
|
| [6] |
T. Su, B. Q. Lin, Reassessing the information transmission and pricing influence of Shanghai crude oil futures: a time-varying perspective, Energy Econ., 140 (2024), 107977. https://doi.org/10.1016/j.eneco.2024.107977 doi: 10.1016/j.eneco.2024.107977
|
| [7] |
Z. K. Zhang, Y. D. Wang, J. H. Xiao, Y. J. Zhang, Not all geopolitical shocks are alike: identifying price dynamics in the crude oil market under tensions, Resour. Policy, 80 (2023), 103238. https://doi.org/10.1016/j.resourpol.2022.103238 doi: 10.1016/j.resourpol.2022.103238
|
| [8] |
Y. Y. Yang, Y. R. Ma, M. Hu, D. Y. Zhang, Q. Ji, Extreme risk spillover between Chinese and global crude oil futures, Finance Res. Lett., 40 (2021), 101743. https://doi.org/10.1016/j.frl.2020.101743 doi: 10.1016/j.frl.2020.101743
|
| [9] |
X. H. Huang, S. P. Huang, Identifying the comovement of price between China's and international crude oil futures: a time-frequency perspective, Int. Rev. Financ. Anal., 72 (2020), 101562. https://doi.org/10.1016/j.irfa.2020.101562 doi: 10.1016/j.irfa.2020.101562
|
| [10] |
J. P. Li, M. Umar, J. L. Huo, The spillover effect between Chinese crude oil futures market and Chinese green energy stock market, Energy Econ., 119 (2023), 106568. https://doi.org/10.1016/j.eneco.2023.106568 doi: 10.1016/j.eneco.2023.106568
|
| [11] |
Z. F. Dai, H. Y. Zhu, Time-varying spillover effects and investment strategies between WTI crude oil, natural gas and Chinese stock markets related to belt and road initiative, Energy Econ., 108 (2022), 105883. https://doi.org/10.1016/j.eneco.2022.105883 doi: 10.1016/j.eneco.2022.105883
|
| [12] |
Y. Jin, H. Zhao, L. Bu, D. Y. Zhang, Geopolitical risk, climate risk and energy markets: a dynamic spillover analysis, Int. Rev. Financ. Anal., 87 (2023), 102597. https://doi.org/10.1016/j.irfa.2023.102597 doi: 10.1016/j.irfa.2023.102597
|
| [13] |
L. B. Salem, M. Zayati, R. Nouira, C. Rault, Volatility spillover between oil prices and main exchange rates: evidence from a DCC-GARCH-connectedness approach, Resour. Policy, 91 (2024), 104880. https://doi.org/10.1016/j.resourpol.2024.104880 doi: 10.1016/j.resourpol.2024.104880
|
| [14] | M. Parkinson, The extreme value method for estimating the variance of the rate of return, J. Bus., 53 (1980), 61–65. |
| [15] | R. Y. Chou, Forecasting financial volatilities with extreme values: the conditional autoregressive range (CARR) model, J. Money Credit Banking, 37 (2005), 561–582. |
| [16] |
Y. He, A. Han, Y. M. Hong, Y. Y. Sun, S. Y. Wang, Forecasting crude oil price intervals and return volatility via autoregressive conditional interval models, Econ. Rev., 40 (2021), 584–606. https://doi.org/10.1080/07474938.2021.1889202 doi: 10.1080/07474938.2021.1889202
|
| [17] |
B. Wang, Y. X. Qian, E. P. Yu, Bayesian analysis for functional coefficient conditional autoregressive range model with applications, Econ. Model., 144 (2025), 107003. https://doi.org/10.1016/j.econmod.2024.107003 doi: 10.1016/j.econmod.2024.107003
|
| [18] |
S. K. Tan, K. H. Ng, J. S. K. Chan, Predicting returns, volatilities and correlations of stock indices using multivariate conditional autoregressive range and return models, Mathematics, 11 (2023), 1–24. https://doi.org/10.3390/math11010013 doi: 10.3390/math11010013
|
| [19] |
X. Y. Wu, H. B. Xie, H. M. Zhang, Time-varying risk aversion and renminbi exchange rate volatility: evidence from CARR-MIDAS model, N. Am. J. Econ. Finance, 61 (2022), 101703. https://doi.org/10.1016/j.najef.2022.101703 doi: 10.1016/j.najef.2022.101703
|
| [20] |
X. Y. Wu, H. Cui, L. Wang, Forecasting oil futures price volatility with economic policy uncertainty: a CARR-MIDAS model, Appl. Econ. Lett., 30 (2023), 120–125. https://doi.org/10.1080/13504851.2021.1977232 doi: 10.1080/13504851.2021.1977232
|
| [21] |
X. V. Vo, T. T. A. Tran, Modelling volatility spillovers from the US equity market to ASEAN stock markets, Pac. Basin Finance J., 59 (2020), 101246. https://doi.org/10.1016/j.pacfin.2019.101246 doi: 10.1016/j.pacfin.2019.101246
|
| [22] |
G. T. H. Vuong, M. H. Nguyen, A. N. Q. Huynh, Volatility spillovers from the Chinese stock market to the U.S. stock market: the role of the COVID-19 pandemic, J. Econ. Asymmetries, 26 (2022), e00276. https://doi.org/10.1016/j.jeca.2022.e00276 doi: 10.1016/j.jeca.2022.e00276
|
| [23] |
C. Inclan, G. C. Tiao, Use of cumulative sums of squares for retrospective detection of changes of variance, J. Amer. Statist. Assoc., 89 (1994), 913–923. https://doi.org/10.1080/01621459.1994.10476824 doi: 10.1080/01621459.1994.10476824
|
| [24] |
P. R. Hansen, A. Lunde, J. M. Nason, The model confidence set, Econometrica, 79 (2011), 453–497. https://doi.org/10.3982/ECTA5771 doi: 10.3982/ECTA5771
|
| [25] |
D. Kwon, The impacts of oil price shocks and United States economic uncertainty on global stock markets, Int. J. Finance Econ., 27 (2022), 1595–1607. https://doi.org/10.1002/ijfe.2232 doi: 10.1002/ijfe.2232
|
| [26] |
F. X. Diebold, R. S. Mariano, Comparing predictive accuracy, J. Bus. Econom. Statist., 20 (2002), 134–144. https://doi.org/10.1198/073500102753410444 doi: 10.1198/073500102753410444
|
| [27] |
J. Fleming, C. Kirby, B. Ostdiek, The economic value of volatility timing using "realized" volatility, J. Financ. Econ., 67 (2003), 473–509. https://doi.org/10.1016/S0304-405X(02)00259-3 doi: 10.1016/S0304-405X(02)00259-3
|
| [28] |
X. He, S. Hamori, The higher the better? Hedging and investment strategies in cryptocurrency markets: insights from higher moment spillovers, Int. Rev. Financ. Anal., 95 (2024), 103359. https://doi.org/10.1016/j.irfa.2024.103359 doi: 10.1016/j.irfa.2024.103359
|
| [29] |
X. He, S. Hamori, Is volatility spillover enough for investor decisions? A new viewpoint from higher moments, J. Int. Money Finance, 116 (2021), 102412. https://doi.org/10.1016/j.jimonfin.2021.102412 doi: 10.1016/j.jimonfin.2021.102412
|