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Abstract: This paper proposes a dynamic volatility spillover conditional autoregressive range-
mixed data sampling (DVS-CARR-MIDAS) model to forecast volatility in the Chinese crude oil
futures market by incorporating dynamic volatility spillovers from the dominant US crude oil futures
market to the emerging Chinese crude oil futures market. Empirical results based on West Texas
Intermediate (WTI) crude oil and Shanghai International Energy Exchange (INE) data revealed
significant and time-varying spillover effects from the US to the Chinese market. In addition, the
DVS-CARR-MIDAS model consistently showed that the proposed model consistently outperforms
benchmark models in both in-sample fitting and out-of-sample forecasting. These findings were robust
to the Diebold-Mariano (DM) test, R2

oos test, alternative dominant market, and different out-of-sample
forecast windows. Furthermore, the economic value analysis demonstrated that the proposed model
provides meaningful benefits for portfolio management.

Keywords: volatility forecasting; dynamic volatility spillover; DVS-CARR-MIDAS; crude oil market
Mathematics Subject Classification: 62M10, 91B84, 91G20

1. Introduction

Crude oil has always been a vital component of the global energy system, serving not only
as a fundamental fuel source but also as a strategic commodity that exerts profound influence
over macroeconomic and financial dynamics. Its price volatility affects a wide array of economic
outcomes, including inflation rates, monetary policy transmission, investment allocation, asset pricing,
and overall financial stability, thereby highlighting the necessity of precise volatility measurement and
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modeling [1, 2]. As the global energy market becomes increasingly interconnected, the Chinese crude
oil futures market has increasingly aligned with international markets, enhancing China’s role in energy
pricing and risk management. This trend reflects China’s rising role in global commodity markets but
also introduces greater vulnerability to external shocks and market contagion [3].

Numerous studies have shown that shocks originating from major global benchmarks like West
Texas Intermediate (WTI) and Brent Crude are transmitted into the Chinese crude oil futures market,
with China primarily functioning as a recipient in the spillover network. Specifically, Liu and Lee [4]
demonstrated that the Shanghai International Energy Exchange (INE) crude oil futures market is
strongly affected by global financial uncertainty and exhibits asymmetric connectedness with WTI
and Brent. Using a time-varying parameter vector autoregression (VAR) model, Sun et al. [5] showed
that China’s crude oil futures primarily serve as a net information receiver in global crude oil and
spot markets, although their transmitting role has slightly increased in recent years. From a time-
varying perspective, Su and Lin [6] also found that Shanghai crude oil futures consistently act as a net
receiver of price information from international benchmarks, with their pricing influence strengthening
gradually after 2021. These spillover effects are closely tied to extreme events such as geopolitical
tensions and financial crises, all of which can induce large and sudden shifts in crude oil price
dynamics [3, 7]. Recognizing and modeling these transmission effects is essential for accurately
forecasting volatility in the Chinese crude oil futures market.

Crucially, these cross-market spillover effects are not stable over time. Recent studies have
identified substantial time variation in both the magnitude and direction of volatility transmission.
For instance, Yang et al. [8] utilized asymmetric VAR connectedness networks to demonstrate that
spillover effects are state-dependent and shift over time, particularly during periods of heightened
uncertainty. Similarly, Huang and Huang [9] showed that the intensity of spillovers fluctuates across
different investment horizons, reflecting distinct mechanisms in short- and long-term transmission.
These findings underscore the need for models that go beyond static linear assumptions to capture both
dynamic interdependence and potential structural changes in volatility regimes.

Meanwhile, a growing strand of literature has focused on modeling time-varying volatility
spillovers using frameworks such as dynamic connectedness networks, time-varying parameter
vector autoregressions (TVP-VAR), and multivariate generalized autoregressive conditional
heteroskedasticity (GARCH) models. For instance, Li et al. [10] employed both static and dynamic
connectedness approaches to examine return and volatility spillovers between China’s crude oil futures
market and green energy equity sectors, finding that the dominance structure of volatility transmission
evolves over time and is significantly affected by external shocks such as the COVID-19 pandemic
and the launch of China’s carbon trading market. Similarly, Dai and Zhu [11] utilized a TVP-VAR
model to analyze volatility interactions among WTI crude oil, natural gas futures, and various Chinese
stock indices, revealing substantial spillover variability and regime shifts during crisis episodes.
Building on frequency-domain analysis, Jin et al. [12] employed the Barunı́k-Křehlı́k (BK) spectral
decomposition approach to show that spillover effects among geopolitical risk, climate risk, and
energy markets are not only significant but also highly frequency-dependent, with high-frequency
components being particularly sensitive to geopolitical tensions. In parallel, Salem et al. [13] used
the dynamic conditional correlation (DCC) GARCH-connectedness framework to capture the time-
varying volatility transmission between oil prices and major exchange rates, offering insights into the
co-movement and dynamic hedging behavior under market uncertainty.
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These approaches have significantly advanced our understanding of dynamic interdependence.
However, most of them rely exclusively on close-to-close return data. As a result, they tend to neglect
the rich intraday information embedded in the price range, which may provide more accurate and
timely signals of market uncertainty.

To improve the utilization of information, range-based volatility estimators have been proposed.
These estimators rely on the daily high-low price range and provide a more efficient and timely
proxy for volatility under standard assumptions. Parkinson [14] was among the first to show that
range-based measures outperform squared returns in estimating true volatility. Building on this
insight, Chou [15] introduced the conditional autoregressive range (CARR) model, which models the
conditional expectation of price ranges and has shown empirically superior forecasting performance
relative to traditional GARCH models. Similarly, He et al. [16] showed that CARR-based and interval-
valued models outperform GARCH-type models in forecasting the volatility and directional movement
of crude oil prices, further reinforcing the practical value of range-based volatility models. Moreover,
recent extensions of the CARR framework focus on enhancing its flexibility and multivariate modeling
capabilities. Wang et al. [17] proposed the functional coefficient autoregressive range (FCARR) model,
which incorporates varying coefficient functions to better capture nonlinear dynamics and asymmetries
in financial volatility. Using Bayesian P-spline estimation, their simulation and empirical results–
based on Chinese stock market data–demonstrate the model’s ability to adapt to complex fluctuation
patterns. In a separate study, Tan et al. [18] introduced a multivariate CARR (MCARR) and a two-
stage MCARR-return framework to jointly estimate volatilities, correlations, and returns across US
equity indices. Their models outperform traditional alternatives in both in-sample fit and out-of-sample
forecasting.

Among the extensions of the CARR framework, the CARR mixed data sampling (CARR-MIDAS)
model has attracted growing attention for its ability to integrate high-frequency range-based volatility
measures with low-frequency macro-financial variables. By combining the CARR model with the
mixed data sampling (MIDAS) approach, the CARR-MIDAS model offers a parsimonious yet flexible
structure for capturing multi-scale drivers of volatility and has been shown to improve forecasting
performance. Recent studies have explored the incorporation of additional macro-financial variables.
For example, Wu et al. [19] incorporated time-varying risk aversion into the CARR-MIDAS model to
forecast renminbi exchange rate volatility, finding that the model delivers more accurate forecasts than
several competing approaches. Similarly, Wu et al. [20] integrated economic policy uncertainty (EPU)
indices into the CARR-MIDAS framework to predict WTI crude oil futures volatility, showing that the
model incorporating EPU indices significantly improve volatility forecasts.

Furthermore, while range-based models like the CARR and its MIDAS extensions have significantly
improved the accuracy and flexibility of volatility forecasting by incorporating intraday price
information, further methodological refinements are needed to capture time-varying cross-market
spillovers. To date, few studies have integrated time-varying cross-market volatility spillovers into the
CARR modeling framework. In addition, a growing body of studies has shown that structural breaks in
financial return volatility are widespread in financial markets. Ignoring such structural breaks may lead
to an overestimation of volatility persistence, a misclassification of volatility regimes, and a failure to
adequately capture volatility spillovers across different regimes. In particular, WTI crude oil futures, as
one of the most important derivatives in the global oil market, are highly sensitive to major economic
and political events. These events can trigger significant changes in volatility regimes, leading to
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structural breaks in volatility dynamics. Therefore, explicitly accounting for potential structural breaks
in the volatility of the WTI crude oil futures market is crucial for accurately capturing cross-market
dynamic volatility spillovers and enhancing market risk management.

To address this limitation, we extend the standard CARR-MIDAS framework by allowing the
spillover effect to vary across structural regimes. These regimes are externally identified using the
iterated cumulative sum of squares (ICSS) algorithm applied to the dominant US market, enabling
the model to capture dynamic volatility spillovers from the US crude oil futures market to the
Chinese crude oil futures market. Empirical studies have demonstrated its effectiveness across diverse
financial contexts. For instance, Vo and Tran [21] applied the ICSS-augmented EGARCH model to
detect excessive volatility shifts when analyzing spillovers from the US to ASEAN equity markets,
highlighting its role in improving volatility forecast accuracy under structural instability. Similarly,
Vuong et al. [22] used a modified ICSS-EGARCH framework to examine volatility transmission from
China to the US during the COVID-19 pandemic, showing that the inclusion of volatility breakpoints
allows for a better characterization of cross-market contagion episodes.

This paper investigates the modeling and forecasting of volatility in the Chinese crude oil futures
market by incorporating range-based volatility measures and dynamic volatility spillovers. By doing
so, this paper contributes to the literature in several aspects. First, we extend the CARR-MIDAS
framework by allowing the spillover coefficient to vary across structural regimes identified from the
US market, thereby capturing dynamic spillover effects. Second, empirical results show that spillovers
from the US to China are both statistically significant and time-varying, improving the model’s
in-sample fit. Third, in out-of-sample forecasting, the proposed model consistently outperforms
benchmark alternatives, with robustness confirmed by DM and R2

oos tests across different forecast
windows and alternative dominant markets. In addition, we assess the economic value of these
forecasts in portfolio allocation, confirming that more accurate volatility predictions provide practical
benefits for investors.

The remainder of this paper is organized as follows: Section 2 introduces the DVS-CARR-MIDAS
model, the ICSS algorithm, the estimation methodology, and the forecast evaluation method. Section 3
presents the data, empirical results, and robustness checks. Section 4 concludes the study.

2. Methodology

2.1. The range

To capture crude oil futures’ market volatility, we employ the intraday range proposed by
Parkinson [14]. The intraday range Rt on day t is defined as

Rt =
log(Ht) − log(Lt)√

4 log(2)
, (2.1)

where Ht and Lt denote the highest and lowest prices of the asset in the trading day.

2.2. The CARR model

The CARR model, originally proposed by Chou [15], provides a natural framework for modeling
volatility dynamics using the intraday high-low price range rather than squared returns. Similar in
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spirit to the GARCH model, the CARR specification captures persistence in conditional volatility
while ensuring positivity and stationarity.

The CARR (1,1) process is defined as

Rt = λtεt, εt | Ft−1 ∼ exp(1), (2.2)
λt = ω + αRt−1 + βλt−1, (2.3)

where Rt denotes the intraday range on day t, λt is its conditional expectation given the past information
set Ft−1, and εt follows a unit-mean exponential distribution. The parameter restrictions ω > 0, α ≥ 0,
β ≥ 0, and α + β < 1 guarantee that the conditional mean is positive and that the process is covariance
stationary.

Compared with return-based GARCH models, the CARR model exploits the intraday range, which
is a more efficient estimator of daily volatility under log-normal price dynamics. This property makes
the CARR model particularly suitable for analyzing futures markets, where range-based measures
capture high-frequency price variability with reduced noise.

2.3. The CARR-MIDAS model

The CARR-MIDAS model extends the basic CARR specification by decomposing the conditional
mean of the range into short- and long-run components. The short-run dynamics are captured by a
CARR (1,1) process, while the long-run component is driven by lagged realized range volatility (RRV)
through a MIDAS regression structure. The CARR-MIDAS model is specified as follows:

Rt = λtεt, εt | Ft−1 ∼ exp(1), (2.4)
λt = gtτt, (2.5)

gt = (1 − α − β) + α
Rt−1

τt−1
+ βgt−1, (2.6)

log(τt) = m + θ
K∑

k=1

φk(γ) log(RRVt−k), (2.7)

where λt is the conditional mean of the intraday range, decomposed into a short-term component gt

and a long-term component τt.
The long-run component τt depends on the RRV, defined as a rolling sum of past squared ranges:

RRVt =

22∑
i=1

R2
t−i, (2.8)

which smooths high-frequency variability and provides a persistent measure of volatility dynamics.
The weights φk(γ) in the MIDAS structure follow a one-parameter beta polynomial:

φk(γ) =
(1 − k/K)γ−1∑K
j=1(1 − j/K)γ−1

, (2.9)

where K denotes the number of lags. This functional form guarantees
∑K

k=1 φk(γ) = 1 and
parsimoniously allocates decaying weights to past observations. In this paper, we set K = 66,
corresponding to three months of lagged daily observations.
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2.4. The VS-CARR-MIDAS model

The VS-CARR-MIDAS model extends the CARR-MIDAS by allowing volatility spillovers from a
dominant market to a following market. In this framework, the dominant market is first modeled with
a standard CARR-MIDAS, and its conditional mean serves as an input into the following market. The
spillover coefficient is assumed constant across the sample period.

2.4.1. The intraday range process for the dominant (US) market

It is assumed that the intraday range of the dominant US market follows the dynamic process as
follows:

Rd,t = λd,tεd,t, εd,t | Fd,t−1 ∼ exp(1), (2.10)
λd,t = τd,tgd,t, (2.11)

gd,t = (1 − αd − βd) + αd
Rd,t−1

τd,t−1
+ βdgd,t−1, (2.12)

log(τd,t) = md + θd

Kd∑
k=1

φk(γd) log(RRVd,t−k), (2.13)

where Rd,t is the daily range of the dominant market, and the MIDAS structure, including the
decomposition of λd,t, the weighting function φk(γd), and the definition of RRVd,t, is specified as in
the CARR-MIDAS model introduced earlier (see Section 2.3).

2.4.2. The intraday range process for the emerging (Chinese) market

Similar to the dominant market, the intraday range of the Chinese crude oil futures is modeled within
the CARR-MIDAS framework. The key difference is that, in addition to its own past information, the
Chinese market is also influenced by the volatility spillovers from the dominant US market. The
process is specified as follows:

R f ,t = λ f ,tε f ,t, ε f ,t | F f ,t−1 ∼ exp(1), (2.14)
λ f ,t = τ f ,tg f ,t, (2.15)

g f ,t = (1 − α f − β f ) + α f
R f ,t−1

τ f ,t−1
+ β f g f ,t−1 + κλd,t−1, (2.16)

log(τ f ,t) = m f + θ f

K f∑
k=1

φk(γ f ) log(RRV f ,t−k), (2.17)

where κ denotes the constant volatility spillover effect from the dominant market to the following
market. λd,t is the conditional range mean of the dominant market. All other parameters follow the
same definitions as in the CARR-MIDAS model.

2.5. The DVS-CARR-MIDAS model

While the VS-CARR-MIDAS model provides a useful framework by incorporating a constant
volatility spillover effect from the dominant (US) market to the emerging (Chinese) market, it assumes
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that the spillover intensity remains unchanged over the entire sample period. This assumption may
be restrictive in practice, since structural breaks or market regime shifts can lead to substantial time
variation in the degree of cross-market volatility transmission.

To address this limitation, we propose the DVS-CARR-MIDAS model. As in the VS-CARR-
MIDAS specification, the dominant market is modeled using a standard CARR-MIDAS specification,
and its conditional range mean enters the emerging market equation as the channel of spillover. The
key innovation is that the spillover coefficient is allowed to vary across structural regimes, thereby
capturing potential changes in spillover dynamics over time. Specifically, the intraday range process
for the emerging (Chinese) market is specified as

R f ,t = λ f ,tε f ,t, ε f ,t | F f ,t−1 ∼ exp(1), (2.18)
λ f ,t = τ f ,tg f ,t, (2.19)

g f ,t = (1 − α f − β f ) + α f
R f ,t−1

τ f ,t−1
+ β f g f ,t−1 +

m∑
j=1

κ jBreak jλd,t−1, (2.20)

log(τ f ,t) = m f + θ f

K f∑
k=1

φk(γ f ) log(RRV f ,t−k), (2.21)

where κ j represents the volatility spillover effect from the dominant US market to the emerging Chinese
market during the period between breakpoints ( j−1) and j. The dummy variable Break j equals 1
if time t falls within the j-th regime, and is 0 otherwise. The regime-specific nature of κ j allows
the spillover intensity to vary across structurally segmented periods, with breakpoints exogenously
identified using the ICSS algorithm described in the next subsection. All other parameters are defined
analogously to those in the VS-CARR-MIDAS model.

It is worth noting that the proposed specification is highly flexible, as it nests several existing models
as special cases. Specifically, when κ j is set to a constant, the model reduces to the VS-CARR-MIDAS
model. When κ j = 0, it reduces to the CARR-MIDAS model. When κ j = 0 and θ f = 0 simultaneously,
it further simplifies to the basic CARR model.

2.6. ICSS algorithm

To detect structural changes in the volatility of the dominant market, we apply the ICSS algorithm
proposed by Inclan and Tiao [23] into the DVS-CARR-MIDAS framework. The ICSS algorithm
identifies structural variance shifts in a time series by examining the cumulative behavior of squared
residuals. It assumes that the variance remains constant within each regime but may shift abruptly at
unknown breakpoints.

Let T denote the total number of observations in the sample, and let m represent the number of
identified breakpoints, occurring at times S 1 < S 2 < · · · < S m. The intraday range series (e.g., WTI
intraday ranges) can thus be described as

var(rUS
t ) =


λ0, 1 < t ≤ S 1,

λ2
1, S 1 < t ≤ S 2,
...

...

λ2
m, S m < t ≤ T.

(2.22)
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To locate these breakpoints, the ICSS algorithm calculates the cumulative sum of squared residuals
up to each time point j:

S S j =

j∑
t=1

e2
t , (2.23)

where j = 1, 2, . . . ,T , and et represents the residual at time t. The total sum of squares over the entire
sample is denoted as S S T . The test statistic is defined as

D j =
S S j

S S T
−

j
T
, (2.24)

where D0 = DT = 0, i.e., the test statistic is inherently zero at the start and end of the series. If there is
no change in the unconditional variance, the test statistic D j will fluctuate mildly around zero. Under
the null hypothesis of constant variance, the statistic D j are expected to oscillate within predefined
lower and upper bounds, which serve as the critical values. In other words, if the absolute value of D j

exceeds the critical threshold, the null hypothesis of no variance break is rejected. The procedure is
then applied iteratively to each identified segment to detect additional breakpoints.

2.7. Maximum likelihood estimation

The DVS-CARR-MIDAS model can be estimated using the quasi-maximum likelihood method.
We assume that the conditional distributions of εd,t and ε f ,t follow a simple exponential distribution.
Under this assumption, the log-likelihood function is given by

ℓ(R;Θ) = −
T∑

t=1

Nt∑
i=1

[
log(λd,t) −

Rd,t

λd,t
+ log(λ f ,t) −

R f ,t

λ f ,t

]
, (2.25)

where Θ = (md, θd, γd, αd, βd,m f , θ f , γ f , α f , β f , κ f )′ represents the vector of parameters to be estimated.
The quasi-maximum likelihood estimators, denoted as Θ̂, are obtained by maximizing the log-
likelihood function in Eq (2.25):

Θ̂ = arg max
Θ
ℓ(Θ). (2.26)

2.8. Evaluation of volatility forecasting performance

2.8.1. Loss functions

We adopt four standard loss functions to evaluate out-of-sample forecast accuracy: mean absolute
error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and quasi-
likelihood (QLIKE). These metrics collectively assess absolute deviation, relative error, squared error,
and likelihood-based loss. The loss functions are defined as follows:

MAE: Losst(λt, λ̂t) =
1
T

T∑
t=1

∣∣∣λ̂t − λt

∣∣∣ , (2.27)

MSE: Losst(λt, λ̂t) =
1
T

T∑
t=1

(
λ̂t − λt

)2
, (2.28)
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MAPE: Losst(λt, λ̂t) =
1
T

T∑
t=1

∣∣∣∣∣∣ λ̂t − λt

λt

∣∣∣∣∣∣ , (2.29)

QLIKE: Losst(λt, λ̂t) =
1
T

T∑
t=1

(
log λ̂t +

λt

λ̂t

)
, (2.30)

where λ̂t denotes the forecasted volatility and λt the realized volatility at time t.

2.8.2. MCS test

To evaluate the statistical significance of differences in forecasting performance across competing
volatility models, we adopt the model confidence set (MCS) procedure proposed by Hansen et al. [24].
This approach identifies a subset of models that exhibit superior predictive ability by applying a
sequence of hypothesis tests and an iterative elimination rule. Let M0 denote the initial pool of
candidate models. The core of the MCS procedure is an equivalence test for equal predictive accuracy,
formulated as

H0,M : E(duv,t) = 0, ∀u, v ∈ M, M ⊆M0, (2.31)

where duv,t = Losst(u)−Losst(v) represents the loss differential between model u and model v at time t.
To test H0,M, we employ the range statistic:

TM = max
u,v∈M

|tuv|, (2.32)

where tuv =
d̄uv√

V̂ar(d̄uv)
, d̄uv =

1
n

∑n
t=1 duv,t, and V̂ar(d̄uv) is a bootstrap estimate of the variance of d̄uv.

If the null hypothesis is rejected, the model with the poorest relative performance is removed.
Specifically, the elimination rule is defined as

eM = arg max
u∈M

sup
v∈M

tuv. (2.33)

This iterative process continues until the null hypothesis of equal predictive ability cannot be rejected
for the remaining models.

The final subset of models, for which predictive accuracy cannot be statistically distinguished,
constitutes the MCS. We implement the MCS using a block bootstrap procedure with 10,000
replications and set the significance level at 10%.

3. Empirical analysis

3.1. Data

This study employs the DVS-CARR-MIDAS model to capture the dynamic volatility spillover
effects from the dominant US crude oil futures market to the emerging Chinese market and evaluates
their implications for volatility modeling and forecasting. Given the dominant role of the US crude oil
market in global energy trading [9, 25], we use the WTI crude oil futures as a proxy for the dominant
US crude oil futures market. Correspondingly, we use crude oil futures traded on the Shanghai INE
to represent the Chinese market. The sample covers the period from May 1, 2018, to May 1, 2025,
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yielding a total of 1627 trading days during which both markets were open. All data are obtained from
the Wind database.

Figure 1 displays the time series plots of daily ranges for the WTI and INE crude oil futures
markets. As shown, both series of daily ranges exhibit classic features of financial time series, such as
time-varying volatility and volatility clustering. Table 1 reports descriptive statistics for the WTI and
INE daily ranges series. All series exhibit positive skewness and excess kurtosis, indicating fat-tailed
distributions. The Jarque-Bera test results indicate that none of the series follow a normal distribution.
To assess serial correlation, we apply the Ljung-Box Q test up to 20 lags. The results reveal strong
persistence in the daily ranges series.

26-Mar-2018 17-Jul-2020 08-Nov-2022 01-Mar-2025
0

0.1

0.2

0.3
WTI

Daily range

26-Mar-2018 17-Jul-2020 08-Nov-2022 01-Mar-2025
0

0.02

0.04

0.06

0.08

0.1
INE

Daily range

Figure 1. Daily ranges of WTI and INE crude oil futures.

Table 1. Daily range summary statistics.

Mean Min Max Std Skewness Kurtosis Jarque-Bera Q(20)
INE 0.0165 0.0036 0.0888 0.0088 1.9960 9.6036 4036.6403 2618.7736
WTI 0.0220 0.0055 0.2739 0.0169 5.5244 55.0574 191989.1480 7338.8062

Note: Q(20) is the Ljung-Box statistic for autocorrelation up to 20 lags.

Moreover, to account for potential structural shifts in volatility, we apply the ICSS algorithm to
the WTI return series. Figure 2 graphically presents the structural breakpoints in the volatility of
WTI crude oil ranges, as identified by the ICSS algorithm. The red vertical lines represent the timing
of structural breaks. Specifically, the ICSS algorithm detects nine structural breaks, occurring on
dates such as 2018-11-09 (Break ID 1), 2020-03-05 (Break ID 3), and 2025-02-28 (Break ID 9),
among others. These breakpoints mark significant shifts in volatility dynamics, often aligned with
major macroeconomic or energy-related events. For clarity, Table 2 summarizes the break dates
and their corresponding identifiers, which define the structural regimes across which the volatility
spillover effects are estimated. Additionally, the table reports the range-based volatility for each
regime, capturing the level of market fluctuation within each structural segment. The results indicate
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considerable variation in volatility intensity across regimes. For example, Regime 4 (2020-03-06 to
2020-05-07) exhibits the highest average volatility (0.0693). In contrast, periods such as Regime 9
(2024-02-03 to 2025-02-28) show substantially lower volatility (0.0146), suggesting relatively calm
market conditions. This variation underscores the need for a regime-specific modeling approach in
capturing dynamic volatility spillovers.

200 400 600 800 1000 1200 1400 1600

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 2. Volatility breakpoints in the WTI ranges identified by the ICSS algorithm.

Table 2. Break dates identified by the ICSS algorithm.

Break ID Regime period Range-based volatility
1 2018-05-01 – 2018-11-09 0.0138
2 2018-11-10 – 2019-01-09 0.0274
3 2019-01-10 – 2020-03-05 0.0159
4 2020-03-06 – 2020-05-07 0.0693
5 2020-05-08 – 2020-11-11 0.0377
6 2020-11-12 – 2021-11-24 0.0178
7 2021-11-25 – 2022-12-12 0.0320
8 2022-12-13 – 2024-02-02 0.0216
9 2024-02-03 – 2025-02-28 0.0146

3.2. Estimation results

We estimate the CARR, CARR-MIDAS, VS-CARR-MIDAS, and DVS-CARR-MIDAS models
using the maximum likelihood. Figure 3 presents the in-sample estimates of conditional range (λ f ,t)
for each model. Overall, all models demonstrate a reasonable ability to capture the volatility dynamics
of China’s crude oil futures market. For instance, each model successfully captures periods of elevated
volatility, such as during the COVID-19 outbreak in 2020.

Table 3 reports the parameter estimates obtained using the quasi-maximum likelihood estimation
method. Across all models, the persistence parameter, defined as α + β, is generally close to one,
indicating strong volatility clustering in China’s crude oil market. Additionally, a similarly high level
of persistence is observed for the US market in the CARR-MIDAS specification.
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Figure 3. In-sample estimates of conditional variance for China’s crude oil market.

Table 3. Parameter estimation results.

CARR CARR-MIDAS VS-CARR-MIDAS DVS-CARR-MIDAS
Chinese US Chinese

ω 6.1726E-04 -2.9970 -1.9525 -5.3965 -1.6069
(5.6344E-04) (0.1019) (0.0683) (0.3045) (0.0745)

θ 0.2693 0.5648 -0.3847 0.5939
(0.0315) (0.0235) (0.0484) (0.0284)

γ 24.0647 6.4124 14.9929 5.0276
(1.3731) (0.3407) (0.8534) (0.2544)

β 0.7892 0.8682 0.6257 0.6618 0.7241
(0.0431) (0.0464) (0.0615) (0.0517) (0.0685)

α 0.1734 0.1007 0.1312 0.3026 0.1396
(0.0392) (0.0361) (0.0522) (0.0460) (0.0493)

κ 2.5205
(0.3286)

Log-lik 5035.0501 5035.1492 5035.7714 4647.9950 5047.54

Note: Log-lik stands for the log-likelihood and the numbers in parentheses are the asymptotic standard errors.
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In the MIDAS-augmented models, the estimated θ parameter is significantly positive across all
specifications, indicating that monthly RRV provides useful information for capturing long-term
volatility dynamics in the Chinese market.

In addition, the estimated volatility spillover coefficient in the VS-CARR-MIDAS model, κ =
2.5205, is positive and statistically significant. This indicates that volatility spillovers from the
dominant US market exert a strong and persistent amplifying effect on China’s crude oil futures market
when the spillover intensity is assumed to be constant. While this provides initial evidence of cross-
market volatility transmission, the static nature of κ in this specification limits the model’s ability to
account for structural changes over time. This limitation motivates the introduction of the DVS-CARR-
MIDAS model, which allows spillover effects to vary across regimes defined by exogenous structural
breakpoints.

Figure 4 illustrates the decomposition of λ f ,t into its long-run component (τ f , t) and short-run
component (g f ,t) under the DVS-CARR-MIDAS model. As shown in the figure, the long-run
component evolves smoothly over time, effectively capturing persistent trends in volatility, while the
short-run component typically reverts to a long-run level of 1.
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Figure 4. Conditional range (λt) and its long-term component (τt) and short-run component
(gt) from the DVS-CARR-MIDAS model.

According to Table 4, the proposed DVS-CARR-MIDAS model achieves the best in-sample fit
among all specifications, with the highest log-likelihood value (5047.54). This superior performance
highlights the importance of incorporating structural dynamic spillover effects from the dominant
market when modeling China’s crude oil futures volatility.

Table 4 links these breakpoints to major macroeconomic or energy-related events that likely
triggered regime shifts. The coefficients κ j quantify the time-varying impact of US volatility on the
Chinese oil futures market. Positive values indicate that volatility in the US amplified fluctuations in
the Chinese market, while negative values suggest a dampening effect.
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Table 4. Structural breakpoints and relevant economic events.
Break ID Break Date κ j Effect Associated Economic Event
1 2018-11-09 3.73 Amplifying US-China trade tensions escalated
2 2019-01-09 -4.31 Dampening China launched economic stimulus measures
3 2020-03-05 1.90 Amplifying COVID-19 spreads globally, demand collapses
4 2020-05-07 1.37 Amplifying US oil prices briefly turn negative (WTI futures crash)
5 2020-11-11 -1.93 Dampening Chinese record crude import surge for stockpiling
6 2021-11-24 0.09 Mild Amplifying US-led coordinated SPR release to ease global prices
7 2022-12-12 0.20 Mild Amplifying China announced reopening policy signals
8 2024-02-02 1.29 Amplifying US tech stock rally intensified
9 2025-02-28 -1.13 Dampening China imposes new fuel tax policy impacting

teapot refiners

Several breakpoints are particularly noteworthy due to the magnitude or sign of the spillover effects.
For instance, κ3 = 1.90 on 2020-03-05 reflects a strong amplifying effect during the global outbreak
of COVID-19. Although the pandemic originated in China, global market panic intensified after
major disruptions in the US, leading to a crash in WTI prices that transmitted heightened volatility
to the China’s market. Conversely, κ2 = −4.31 on 2019-01-09 shows that volatility from the US
had a stabilizing effect on the Chinese market, potentially due to positive sentiment driven by Chinese
economic stimulus measures. Other events, such as the US strategic petroleum reserve (SPR) release on
2021-11-24 (κ6 = 0.09), produced only mild spillover, implying that the presence of broad international
policy coordination can help moderate spillover effects from the US crude oil futures market.

Overall, these results highlight that volatility spillovers are time-varying in magnitude and direction
of influence (amplifying vs. dampening), shaped by event-specific market responses.

3.3. Out-of-sample results

For market participants, the out-of-sample forecasting performance of volatility models is of greater
practical relevance. In this study, the in-sample period spans from May 2, 2018, to December 31, 2021,
which is used for model estimation. The subsequent period from January 4, 2022, to February 28, 2025,
is reserved for out-of-sample evaluation.

To generate volatility forecasts, we adopt a rolling window approach. Specifically, the procedure
is as follows. First, we estimate each model using data from May 2, 2018, to December 31, 2021,
and generate a one-step-ahead forecast for the volatility on the next trading day. Then, we move the
estimation window forward by one day, keeping the window length fixed. For example, the model is
re-estimated using data from May 3, 2018, to January 4, 2022, and a new one-step-ahead forecast is
produced. This rolling estimation and forecasting process continues until the end of the sample period.
Additionally, to assess forecast accuracy, we apply the four loss functions introduced in Section 2.8.1,
including MAE, MSE, MAPE, and QLIKE.

Figure 5 presents the out-of-sample volatility forecasts for Chinese crude oil futures from the
proposed DVS-CARR-MIDAS model and competing specifications. All models capture the broad
dynamics of volatility, but their forecasting accuracy differs across periods. Table 5 reports the
out-of-sample performance under four loss functions. The CARR-MIDAS model outperforms the
baseline CARR model, showing that incorporating mixed-frequency information improves forecasts
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by capturing long-memory features of volatility. The VS-CARR-MIDAS model, which includes
a constant spillover effect from the US market, further enhances accuracy, underscoring the role
of international volatility transmission. The DVS-CARR-MIDAS model delivers the best overall
performance across all loss functions. By allowing spillover intensity to vary across regimes, it captures
dynamic cross-market effects more effectively, demonstrating the value of jointly modeling MIDAS
components and dynamic spillovers.
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Figure 5. Out-of-sample forecast results of conditional variance for China’s crude oil market.

Table 5. Volatility forecast evaluation results.

CARR CARR-MIDAS VS-CARR-MIDAS DVS-CARR-MIDAS
MAE 4.9405E-03 4.9266E-03 4.8883E-03 4.5558E-03
MSE 4.5267E-05 4.5325E-03 4.5019E-05 3.8635E-05
MAPE 3.4242E-01 3.4064E-01 3.3251E-01 3.1702E-01
QLIKE 7.9588E-02 7.9162E-02 7.6256E-02 6.9609E-02

Note: Bold entries indicate the model with the lowest loss value.

Further, we assess the forecast performance of all models using the MCS procedure. As shown in
Table 6, the DVS-CARR-MIDAS model is consistently retained in the MCS across all loss functions,
indicating its superior and statistically robust out-of-sample forecasting performance.
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Table 6. MCS test results.

CARR CARR-MIDAS VS-CARR-MIDAS DVS-CARR-MIDAS

MAE 0.0000 0.0000 0.0000 1.0000
MSE 0.0002 0.0002 0.0002 1.0000
MAPE 0.0000 0.0000 0.0000 1.0000
QLIKE 0.0000 0.0000 0.0000 1.0000

Note: The numbers in the table are the p-values from the MCS test. A p-value greater than 0.1 (the bold numbers)
indicates that the model is included in the MCS, meaning it is a model with better predictive ability.

3.4. Robustness tests

For robustness, we further conduct a series of additional tests, including the Diebold-Mariano (DM)
test, R2

oos, different dominant markets, and alternative forecast windows.

3.4.1. DM test

To evaluate whether the predictive accuracy of two competing models differs significantly, we
employ the DM test proposed by Diebold and Mariano [26]. The test is based on the null hypothesis
that the two forecasts have equal expected accuracy with respect to a specified loss function, and this
hypothesis can be formally expressed as

H0 : E(du,v) = 0, (3.1)

where duv,t denotes the loss differential between model u and model v at time t. The DM test statistic is
computed as

DM =

√
M d̄
σ̂
, (3.2)

where d̄ = 1
M

∑M
t=1 duv,t is the sample mean of the loss differential, and σ̂ is the standard deviation

estimator of duv,t.
Under the null hypothesis, the DM statistic follows an asymptotically standard normal distribution:

√
M d̄
σ̂

M→∞
−−−−→ N(0, 1). (3.3)

When H0 is rejected, it indicates that the difference in forecasting accuracy between the two models is
statistically significant.

Empirical results reported in Table 7 show that the DVS-CARR-MIDAS model consistently
outperforms its competitors in out-of-sample forecasting across several loss functions, including MAE,
MSE, MAPE, and QLIKE. The positive and statistically significant DM test statistics at the 10% level
support the superior predictive performance of the DVS-CARR-MIDAS model.
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Table 7. DM test results.

CARR CARR-MIDAS VS-CARR-MIDAS

MAE loss function
CARR-MIDAS 1.5409
VS-CARR-MIDAS 3.12*** 2.4466**
DVS-CARR-MIDAS 6.3811*** 6.0998*** 5.4359***

MSE loss function

CARR-MIDAS 0.3023
VS-CARR-MIDAS 1.1488 1.3870
DVS-CARR-MIDAS 4.8932*** 4.6589*** 4.5635***

MAPE loss function

CARR-MIDAS 3.3011***
VS-CARR-MIDAS 6.4292*** 5.6501***
DVS-CARR-MIDAS 7.1234*** 6.7196*** 4.2419***

QLIKE loss function

CARR-MIDAS 2.3279**
VS-CARR-MIDAS 5.4659*** 4.9782***
DVS-CARR-MIDAS 7.3202*** 7.0741*** 4.9104***

Note: A positive test statistic indicates that the model in the row outperforms the model in the column, and vice versa.
The symbols *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. MAE, MSE,
MAPE, and QLIKE represent the mean absolute error, mean absolute percentage error, root mean squared error, and
quasi-likelihood loss, respectively.

3.4.2. R2
oos test

We conduct the out-of-sample R2
oos test to evaluate the forecast performance for robustness.

Specifically, the out-of-sample R2
oos is formulated as follows:

R2
oos = 1 −

MSPEm

MSPEbm
, (3.4)

MSPEm =
1
M

M∑
t=1

(Rt − R̂(m)
t )2, (3.5)

MSPEbm =
1
M

M∑
t=1

(Rt − R̂(bm)
t )2, (3.6)

where MSPEm and MSPEbm represent the mean squared prediction from the competing model and the
benchmark model, as well as Rt, R̂(m)

t , and R̂(bm)
t denoting the true range, the forecasted range from the

model, and the forecasted range from the benchmark model, respectively. Then, we adopt the GARCH
model as the benchmark model in this paper. It is obvious that a positive R2

oos suggest that the competing
model outperforms the benchmark model in predictive accuracy, as reflected by a lower MSPE.
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To test the statistical significance of R2
oos, we employ the MSPE-adjusted statistic, defined as

f̂t = (Rt − R̂(bm)
t )2 − (Rt − R̂(m)

t )2 + (R̂(bm)
t − R̂(m)

t )2. (3.7)

The CW statistic is computed by regressing f̂t on a constant.
Table 8 reports the out-of-sample evaluation results based on the R2

oos test. All competing models
yield significantly positive R2

oos values, indicating improvements in MSPE over the benchmark CARR
model. Among them, the DVS-CARR-MIDAS model achieves the highest R2

oos value, together with
the largest CW statistic and zero p-value, confirming its superior performance for Chinese crude oil
futures volatility.

Table 8. MCS test results.

R2
oos% CW statistic p-value

CARR-MIDAS 0.13 1.0091 0.4964
VS-CARR-MIDAS 5.50 2.0680 0.0193
DVS-CARR-MIDAS 14.65 5.4857 0.0000

3.4.3. Alternative dominant crude oil futures market

Moreover, we consider replacing the WTI crude oil data with Brent crude oil data. Given that
Brent serves as a major global benchmark and reflects broader international oil market conditions,
this substitution allows us to examine whether the predictive performance remains consistent across
alternative dominant crude oil markets.

Table 9. Volatility forecast evaluation results: different dominant markets.

CARR CARR-MIDAS VS-CARR-MIDAS DVS-CARR-MIDAS

MAE 4.9197E-03 4.9077E-03 4.8544E-03 4.5245E-03
MSE 6.0138E-05 6.0152E-05 5.9739E-05 3.8106E-05
MAPE 3.3968E-01 3.3805E-01 3.2930E-01 3.1419E-01
QLIKE 7.8476E-02 7.8084E-02 7.5173E-02 6.8151E-02

Note: Bold entries indicate the model with the lowest loss value.

Table 10. MCS test results.

CARR CARR-MIDAS VS-CARR-MIDAS DVS-CARR-MIDAS

MAE 0.0000 0.0000 0.0000 1.0000
MSE 0.0008 0.0008 0.0008 1.0000
MAPE 0.0000 0.0000 0.0000 1.0000
QLIKE 0.0000 0.0000 0.0000 1.0000

Note: The numbers in the table are the p-values from the MCS test. A p-value greater than 0.1 (the bolded numbers)
indicates that the model is included in the MCS, meaning it is a model with better predictive ability.
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As shown in Table 9, the DVS-CARR-MIDAS model continues to deliver the lowest forecast errors
across all loss metrics, consistent with the earlier findings. The MCS results in Table 10 further confirm
its robustness, with DVS-CARR-MIDAS being the only model included in the 90% confidence set
across all evaluation criteria. These results demonstrate the robustness of our model’s forecasting
performance across alternative dominant crude oil markets.

3.4.4. Different out-of-sample forecast windows

To further evaluate the robustness of the forecasting results, we evaluate each model over out-of-
sample windows of 120, 240, and 480 trading days, corresponding to approximately half-year, one-
year, and two-year horizons.

Table 11 reports the volatility forecasting results under different out-of-sample forecast windows.
Across all windows (120, 240, and 480 days), the DVS-CARR-MIDAS model consistently achieves
the lowest loss values under all four evaluation metrics. These results highlight the robustness of the
model in capturing volatility dynamics over both short-term and long-term forecast periods.

Table 11. Volatility forecast evaluation results: different prediction windows.

CARR CARR-MIDAS VS-CARR-MIDAS DVS-CARR-MIDAS

prediction windows : 120 days
MAE 7.2455E-03 7.2631E-03 7.2248E-03 6.1051E-03
MSE 9.3507E-05 9.4508E-05 9.3281E-05 7.4746E-05
MAPE 3.1053E-01 3.1076E-01 3.0961E-01 2.7055E-01
QLIKE 6.7897E-02 6.8087E-02 6.7489E-02 5.4325E-02

prediction windows : 240 days
MAE 6.3356E-03 6.3486E-03 6.3341E-03 5.8961E-03
MSE 7.2566E-05 7.3257E-05 7.2584E-05 6.0913E-05
MAPE 3.1490E-01 3.1542E-01 3.1443E-01 3.0088E-01
QLIKE 6.9152E-02 6.9512E-02 6.8802E-02 6.2710E-02

prediction windows : 480 days
MAE 5.4844E-03 5.4829E-03 5.4962E-03 5.0326E-03
MSE 5.5676E-05 5.5901E-05 5.5669E-05 4.7282E-05
MAPE 3.2076E-01 3.2045E-01 3.2288E-01 2.9567E-01
QLIKE 7.1429E-02 7.1391E-02 7.1862E-02 6.2459E-02

Note: Bold entries indicate the model with the lowest loss value.

3.5. Economic value of volatility timing

This paper evaluates the economic value of volatility forecasts by assessing their contribution to
portfolio allocation performance. We adopt a mean-variance framework in which the optimal portfolio
weight is derived conditional on the volatility predictions. Specifically, assuming that an investor
makes decisions based on conditional mean-variance optimization, the utility function is defined as

Ut(rp,t+1) = E[rp,t+1|Φt] −
A
2

Var[rp,t+1|Φt], (3.8)
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where rp,t+1 denotes the portfolio return, A is the coefficient of risk aversion, and E[rp,t+1|Φt]
and Var[rp,t+1|Φt] are the conditional mean and variance of the portfolio return, respectively. By
maximizing Ut(rp,t+1), the optimal weight allocated to the risky asset is obtained as

w∗t =
E[rt+1|Φt] − rc,t+1

AVar[rt+1|Φt]
, (3.9)

where rt+1 is the return of the risky asset (INE crude oil futures), rc,t+1 is the risk-free rate, and E[rt+1|Φt]
and Var[rt+1|Φt] are the conditional mean and variance of the risky asset return, respectively. The three-
month Shanghai Interbank Offered Rate (SHIBOR) is used as a proxy for the risk-free rate, while the
expected return of the risky asset is estimated using a rolling-sample average. The conditional variance
of the risky asset return is provided by volatility forecasts from the models considered in this paper
(i.e., the DVS-CARR-MIDAS model and its competing specifications). To avoid excessive leverage
and reflect realistic trading conditions, we impose the constraint 0 ≤ w∗t ≤ 1.5. Given the optimal
weight, the realized portfolio return is calculated as

rp,t+1 = rc,t+1 + w∗t (rt+1 − rc,t+1). (3.10)

To evaluate the performance of competing volatility models, we employ a utility-based comparison.
Following Fleming et al. (2003) [27], we use the average realized utility to compare competing
strategies against a benchmark. The average realized utility is expressed as

Ū(rp) =
1
T

T−1∑
t=0

rp,t+1 −
A
2

rp,t+1 −
1
T

T−1∑
t=0

rp,t+1

2 . (3.11)

To further quantify the incremental economic benefit of each model, we compute the performance fee,
defined as the additional fee an investor would be willing to pay in order to switch from the benchmark
to the competing strategy:

∆ = Ū(rp) − Ū(rp,bm), (3.12)

where Ū(rp,bm) denotes the average realized utility under the benchmark model.
For robustness, we also report the Sharpe ratio (SR) as an alternative measure of portfolio

performance:

SR =
E[rp,t+1|Φt] − rc,t+1√

Var[rp,t+1|Φt]
. (3.13)

A higher SR indicates greater excess return per unit of risk, thus reflecting higher economic value
of the volatility forecasts.

In the empirical analysis, we take the standard CARR model as the benchmark and evaluate
portfolio performance under different levels of investor risk aversion (A = 3, 6, 9). Table 12
reports annualized performance fees and Sharpe ratios across models. The results show that all
three extended specifications (CARR-MIDAS, VS-CARR-MIDAS, and DVS-CARR-MIDAS) deliver
positive performance fees, with the DVS-CARR-MIDAS consistently ranking highest. Specifically, its
performance fees range from 35 to 106 basis points, followed by the VS-CARR-MIDAS model (30
to 92 basis points). These findings highlight that explicitly incorporating dynamic volatility spillovers
from the US oil market substantially enhances the economic value of volatility forecasts. Moreover,
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the DVS-CARR-MIDAS model also attains the highest Sharpe ratios, confirming its superior portfolio
performance. Overall, the evidence suggests that modeling dynamic cross-market spillovers yields
robust improvements across different levels of risk aversion.

Table 12. The performance of the investment portfolio.

A = 3 A = 6 A = 9

∆ SR ∆ SR ∆ SR

CARR - 0.2500 - 0.1512 - 0.1226
CARR-MIDAS 72.2710 0.2820 48.2103 0.1697 24.0903 0.1369
VS-CARR-MIDAS 92.1154 0.3700 61.4440 0.2236 30.7051 0.1809
DVS-CARR-MIDAS 106.9250 0.4360 71.2913 0.2640 35.6417 0.2139

Note: Bold entries indicate the model with the highest economic value.

4. Conclusions

This paper proposes a range-based dynamic volatility spillovers CARR-MIDAS (DVS-CARR-
MIDAS) model to forecast volatility in the Chinese crude oil futures market. The model integrates
daily range information and allows the spillover intensity from the dominant US crude oil market to
vary across structural regimes. Empirically, we find that spillovers from the US to the Chinese crude oil
futures market are significant and time-varying, alternating between amplifying and dampening across
regimes. The DVS-CARR-MIDAS model delivers superior in-sample fit and out-of-sample forecasts
relative to competing CARR-type benchmarks, with robustness confirmed by the DM test, the R2

oos

test, alternative specifications of the dominant market, and different forecast horizons. Moreover, an
economic-value analysis shows that the model provides meaningful portfolio benefits.

These findings align with a strand of recent research that documents time-varying volatility
transmission across markets when flexible, time-adaptive methods are used. In particular, prior
work that employs time-varying parameter and dynamic connectedness frameworks has similarly
emphasized that volatility spillovers evolve over time and respond to changing market conditions. Our
results complement that literature by demonstrating consistent time variation in cross-market volatility
transmission when a range-based, MIDAS-type approach is employed.

At the same time, our approach departs from studies that focus on frequency-domain or time-
frequency decompositions of spillovers. The key novelty of this paper is the explicit incorporation
of structural regime shifts into a range-based CARR-MIDAS framework and the estimation of regime-
dependent spillover coefficients. By externally identifying breakpoints in the dominant market and
allowing spillover parameters to change across these regimes, the model captures sudden structural
changes in transmission intensity while still exploiting both short-run and long-run information through
the MIDAS structure. This combination of range-based intraday information, mixed-frequency long-
run drivers, and regime-dependent spillover dynamics distinguishes our contribution methodologically.

The contributions of this study can be summarized along three dimensions. First, methodologically,
this study advances beyond static spillover models by incorporating regime-dependent spillover
coefficients, which enable the transmission intensity from the dominant market to vary across different
structural states. Second, from a practical perspective, the findings provide valuable implications for
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policymakers and market participants. Understanding how spillovers vary across regimes can inform
risk management practices and portfolio allocation strategies, while also shedding light on the price
discovery process between US and Chinese oil futures. Third, the modeling framework is general and
can be extended to other commodity markets (e.g., metals, agricultural products) or financial assets
(e.g., equities, exchange rates), thereby offering a versatile tool for future empirical research.

For future research, this study could be extended to examine higher-moment spillovers, which have
gained attention in recent work (He and Hamori [28, 29]).
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