In this paper, we provide the notion of a generalized neutrosophic contraction, which extends the concepts of neutrosophic non-expansive mappings and neutrosophic Banach contractions. Using this approach, we proved a fixed point theorem and demonstrated the existence and uniqueness of a solution in the context of neutrosophic metric space and discussed its importance with some appealing applications such as the satellite web coupling problem. We also investigated a new avenue in fractal function production, where fractal structures are constructed using neutrosophic Hutchinson-Barnsley (NHB) operators. We have provided a variety of very interesting examples to illustrate the efficiency of our work in complicated dynamical systems, fractal geometry, and iterated function systems (IFS). We set the stage for future studies in applied mathematics, stability analysis, and fixed point theory by utilizing neutrosophic contraction principles.
Citation: Muhammad Shaheryar, Fahim Ud Din, Luminiţa-Ioana Cotîrlă, Daniel Breaz. Existence of a solution to the satellite web coupling problem and generating neutrosophic fractals via a novel contraction[J]. AIMS Mathematics, 2025, 10(10): 23821-23848. doi: 10.3934/math.20251059
In this paper, we provide the notion of a generalized neutrosophic contraction, which extends the concepts of neutrosophic non-expansive mappings and neutrosophic Banach contractions. Using this approach, we proved a fixed point theorem and demonstrated the existence and uniqueness of a solution in the context of neutrosophic metric space and discussed its importance with some appealing applications such as the satellite web coupling problem. We also investigated a new avenue in fractal function production, where fractal structures are constructed using neutrosophic Hutchinson-Barnsley (NHB) operators. We have provided a variety of very interesting examples to illustrate the efficiency of our work in complicated dynamical systems, fractal geometry, and iterated function systems (IFS). We set the stage for future studies in applied mathematics, stability analysis, and fixed point theory by utilizing neutrosophic contraction principles.
| [1] |
V. Berinde, M. Păcurar, Approximating fixed points of enriched contractions in Banach spaces, J. Fix. Point Theory A., 22 (2020), 1–10. https://doi.org/10.1007/s11784-020-00776-y doi: 10.1007/s11784-020-00776-y
|
| [2] | I. Kramosil, J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 336–344. |
| [3] | M. Zahid, F. U. Din, K. Shah, T. Abdeljawad, Fuzzy fixed point approach to study the existence of solution for Volterra type integral equations using fuzzy Sehgal contraction, PLoS One, 2024. https://doi.org/10.1371/journal.pone.0303642 |
| [4] |
I. Khan, M. Shaheryar, F. U. Din, U. Ishtiaq, I. L. Popa, Fixed-point results in fuzzy S-metric space with applications to fractals and satellite web coupling problem, Fractal Fract., 9 (2025), 164. https://doi.org/10.3390/fractalfract9030164 doi: 10.3390/fractalfract9030164
|
| [5] |
M. Shaheryar, F. U. Din, A. Hussain, H. Alsulami, Fixed point results for fuzzy enriched contraction in fuzzy Banach spaces with applications to fractals and dynamic market equilibrium, Fractal Fract., 8 (2024), 609. https://doi.org/10.3390/fractalfract8100609 doi: 10.3390/fractalfract8100609
|
| [6] | M. Kirişci, N. Şimşek, Neutrosophic metric spaces, Math. Sci., 14 (2020), 241–248. https://doi.org/10.1007/s40096-020-00334-w |
| [7] |
F. Nie, H. Fang, J. Wang, L. Zhao, C. Jia, S. Ma, et al., An adaptive solid-state synapse with Bi-directional relaxation for multimodal recognition and spatio-temporal learning, Adv. Mater., 37 (2025), 2412006. https://doi.org/10.1002/adma.202412006 doi: 10.1002/adma.202412006
|
| [8] |
J. Chen, J. Wang, J. Wang, L. Bai, Joint fairness and efficiency optimization for CSMA/CA-based multi-user MIMO UAV ad hoc networks, IEEE J.-STSP, 18 (2024), 1311–1323. https://doi.org/10.1109/JSTSP.2024.3435348 doi: 10.1109/JSTSP.2024.3435348
|
| [9] |
N. Jiang, Q. Feng, X. Yang, J. He, B. Li, The octonion linear canonical transform: Properties and applications, Chaos Soliton. Fract., 192 (2025), 116039. https://doi.org/10.1016/j.chaos.2025.116039 doi: 10.1016/j.chaos.2025.116039
|
| [10] | J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713–747. https://doi.org/10.1512/iumj.1981.30.30055 |
| [11] | M. Barnsley, Fractals everywhere, 2 Eds., Academic Press, 1993. |
| [12] |
G. Zhou, J. Li, Z. Tian, J. Xu, Y. Bai, The extended stumpf model for water depth retrieval from satellite multispectral images, IEEE J.-STARS, 17 (2024), 6779–6790. https://doi.org/10.1109/JSTARS.2024.3368761 doi: 10.1109/JSTARS.2024.3368761
|
| [13] |
Z. Zhang, Y. Xu, J. Song, Q. Zhou, J. Rasol, L. Ma, Planet craters detection based on unsupervised domain adaptation, IEEE Trans. Aero. Elec. Syst., 59 (2023), 7140–7152. https://doi.org/10.1109/TAES.2023.3285512 doi: 10.1109/TAES.2023.3285512
|
| [14] |
X. Xu, X. Fu, H. Zhao, M. Liu, A. Xu, Y. Ma, Three-dimensional reconstruction and geometric morphology analysis of lunar small craters within the patrol range of the Yutu-2 rover, Remote Sens., 15 (2023), 4251. https://doi.org/10.3390/rs15174251 doi: 10.3390/rs15174251
|
| [15] |
P. Ma, T. Yao, W. Liu, Z. Pan, Y. Chen, H. Yang, et al., A 7-kW narrow-linewidth fiber amplifier assisted by optimizing the refractive index of the large-mode-area active fiber, High Power Laser Sci., 12 (2024), e67. https://doi.org/10.1017/hpl.2024.41 doi: 10.1017/hpl.2024.41
|
| [16] |
Q. Shi, S. Wang, J. Yang, Small parameters analysis applied to two potential issues for Maxwell–Schrödinger system, J. Differ. Equ., 424 (2025), 637–659. https://doi.org/10.1109/EUMC.2007.4405149 doi: 10.1109/EUMC.2007.4405149
|
| [17] | S. Guha, H. Govil, G. Mishra, R. K. Giri, Hydrothermally altered mineral mapping of the Malanjkhand copper mineralization in India using Landsat satellite data, Geol. Ecol. Landsc., 2024, 1–18. https://doi.org/10.1080/24749508.2024.2441025 |
| [18] |
G. Zhou, C. Xu, H. Zhang, X. Zhou, D. Zhao, G. Wu, et al., PMT gain self-adjustment system for high-accuracy echo signal detection, Int. J. Remote Sens., 43 (2022), 7213–7235. https://doi.org/10.1080/01431161.2022.2155089 doi: 10.1080/01431161.2022.2155089
|
| [19] | G. Zhou, W. Liu, Q. Zhu, Y. Lu, Y. Liu, ECA-mobilenetv3 (large)+ SegNet model for binary sugarcane classification of remotely sensed images, IEEE T. Geosci. Remote., 60 (2022). https://doi.org/10.1109/TGRS.2022.3215802 |
| [20] |
Y. Yang, Z. Zhang, Y. Zhou, C. Wang, H. Zhu, Design of a simultaneous information and power transfer system based on a modulating feature of magnetron, IEEE T. Microw. Theory, 71 (2023), 907–915. https://doi.org/10.1109/TMTT.2022.3205612 doi: 10.1109/TMTT.2022.3205612
|
| [21] |
Y. Jin, G. Lu, W. Sun, Genuine multipartite entanglement from a thermodynamic perspective, Phys. Rev. A, 109 (2024), 042422. https://doi.org/10.1103/PhysRevA.109.042422 doi: 10.1103/PhysRevA.109.042422
|
| [22] |
M. Huo, Z. Fan, J. Qi, N. Qi, D. Zhu, Fast analysis of multi-asteroid exploration mission using multiple electric sails, J. Guid. Control Dyn., 46 (2023), 1015–1022. https://doi.org/10.2514/1.G006972 doi: 10.2514/1.G006972
|
| [23] |
W. Feng, Z. Fan, J. Qi, M. Huo, N. Qi, Asteroid descent trajectory optimization with online thrust-loss identification, IEEE T. Aero. Elec. Syst., 61 (2025), 2601–2611. https://doi.org/10.1109/TAES.2024.3478189 doi: 10.1109/TAES.2024.3478189
|
| [24] |
Z. Tian, A. Lee, S. Zhou, Adaptive tempered reversible jump algorithm for Bayesian curve fitting, Inverse Probl., 40 (2024), 045024. https://doi.org/10.1088/1361-6420/ad2cf7 doi: 10.1088/1361-6420/ad2cf7
|
| [25] |
F. Jiang, T. Li, X. Lv, H. Rui, D. Jin, Physics-informed neural networks for path loss estimation by solving electromagnetic integral equations, IEEE T. Wirel. Commun., 23 (2024), 15380–15393. https://doi.org/10.1109/TWC.2024.3429196 doi: 10.1109/TWC.2024.3429196
|
| [26] |
S. Zhang, T. Li, D. Jin, Y. Li, NetDiff: A service-guided hierarchical diffusion model for network flow trace generation, Proc. ACM Netw., 2 (2024), 1–21. https://doi.org/10.1145/3676870 doi: 10.1145/3676870
|
| [27] |
Q. Cheng, W. Chen, R. Sun, J. Wang, D. Weng, RANSAC-based instantaneous real-time kinematic positioning with GNSS triple-frequency signals in urban areas, J. Geod., 98 (2024), 24. https://doi.org/10.1007/s00190-024-01833-6 doi: 10.1007/s00190-024-01833-6
|
| [28] | B. Schweizer, A. Sklar, Statistical metric spaces, Pac. J. Math., 10 (1960), 313–334. https://doi.org/10.2140/pjm.1960.10.313 |