AIMS Mathematics, 10(10): 23821-23848.
DOI: 10.3934/math.20251059
AIMS Mathematics Received: 28 March 2025

Revised: 25 June 2025

Accepted: 03 July 2025
https://www.aimspress.com/journal/Math Published: 21 October 2025

Research article

Existence of a solution to the satellite web coupling problem and generating
neutrosophic fractals via a novel contraction

Muhammad Shaheryar!?, Fahim Ud Din'-*, Luminita-Ioana Cotirl#®> and Daniel Breaz**

' Abdus Salam School of Mathematical Sciences, GCU, Lahore 54600, Pakistan
2 Department of Mathematics, University of Management and Technology, Lahore, Pakistan
3 Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

* Department of Mathematics, “1 Decembrie 1918 University of Alba Iulia, Alba Iulia 510009,
Romania

* Correspondence: Email: fahim @sms.edu.pk, dbreaz@uab.ro.
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1. Introduction

The Banach fixed point theorem, also known as the contraction mapping principle, is a fundamental
result in fixed point theory. It guarantees the existence and uniqueness of fixed points for contraction
mappings defined on complete metric spaces. Due to its wide applicability in various fields such
as differential equations, dynamic systems, and numerical analysis, many authors have worked on
generalizing the classical Banach contraction principle.
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Over the years, several researchers have introduced extensions and generalizations of Banach-type
contractions to various abstract spaces. In particular, Berinde [1] introduced the concept of an enriched
Banach contraction, which allowed for more general conditions under which fixed point results could
still be obtained. These developments significantly broadened the scope of the classical theorem.

Later, the concept of a fuzzy metric space was introduced by Kramosil [2] to deal with uncertainty
and imprecision in measurement. In such spaces, the notion of distance is generalized using fuzzy
logic, which allows a better handling of real-world applications where exact values may not be
available. For further details on the generalizations of fuzzy metric spaces, readers may refer to the
following key references [3,4] that provide significant insights and developments in this area.

In 2024, a new generalization of the fuzzy Banach contraction was proposed by the author [5],
incorporating both fuzzy logic and a broader class of contractive conditions. A corresponding fixed
point result was established under this generalized framework, contributing to the ongoing efforts to
extend classical fixed point theorems to more complex and realistic settings.

The neutrosophic Banach fixed point (BFP) theorem [6] plays an important role in the framework
of neutrosophic fixed point (NFP) theory. It has numerous applications across mathematical
domains, particularly in solving linear and nonlinear ordinary differential and integral equations.
This theorem establishes the foundation for demonstrating the existence and uniqueness of fixed
points in neutrosophic metric spaces (NMSs), facilitating the resolution of complex mathematical
problems. Additionally, its relevance extends beyond mathematics into applied sciences, such as
engineering, where neutrophilic sets are instrumental in addressing uncertainty and imprecision [7-9].
The neutrosophic Banach contraction (NBC) theorem, by integrating three measures—the degree of
nearness, non-nearness, and naturalness—has proven valuable in areas like modeling uncertainty,
iterative algorithms, and system stability.

Theorem 1.1. [6] Let (I, U, B, C, 0,*) be a complete neutrosophic metric space. Let g : [ — I be a

mapping satisfying
A(uy, 1, 3) < Aguy, git, 473),

B(u, 12,3) = B(guy, gi, 473),
C(ur, 12, 3) > €(guy, gup, 473),
foreveryuj,uy € I, 0 < A* < 1. Then g possesses a uniquely determined fixed point.

Hutchinson’s foundational study on self-similarity [10] marked a pivotal development in the
evolution of fractal theory. Building on this, Barnsley [11] formulated the theory of iterated function
systems (ifs), demonstrating that a finite set of contractive maps is sufficient to generate fractal
structures within any metric space. The contributions of Hutchinson and Barnsley ignited a surge
of interest in self-similar sets, extending applications to image processing, signal modeling, and
pattern recognition [12—14]. In recent years, remote sensing and satellite imagery have leveraged
these concepts to enhance feature detection, reconstruction, and classification of terrain and spatial
data [15-17]. In the realm of remote sensing and electronic systems, notable contributions have
been made toward echo signal detection, crop classification using deep learning, simultaneous wireless
information, and power transfer systems [18-20].

This article broadens the scope of traditional contraction mappings by proposing a new class called
generalized neutrosophic contractions, which unify and extend the known neutrosophic contractions
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and non-expansive mappings. The primary aim is to establish the existence and uniqueness of fixed
points under these generalized mappings via the Krasnoselskij iterative scheme, and to demonstrate
strong convergence. These developments have practical significance by tackling satellite web coupling
challenges [21-23].

In a future direction, the proposed framework will be extended to neutrosophic Banach spaces
(NBSs), along with the definition of a new IFS governed by a Hutchinson—Barnsley-type operator.
We aim to utilize fixed point theorems to demonstrate the existence of unique attractors for these
systems. As in classical IFS theory, this generalized approach is expected to play a pivotal role
in modeling fractal structures and constructing self-similar objects in high-dimensional uncertainty
environments [24—27]. The proposed methodology, supported by analytical and graphical examples, is
particularly promising for real-world applications involving complex geometric and dynamic systems.

2. Preliminaries

Definition 2.1. [28] A mapping o : [0,1] x [0, 1] — [0, 1] is referred to as a continuous t-norm if it
satisfies the following:

(1) wol =uy, forall uy; €[0,1];

(2) wmpou, = 0wy forall up,u, €[0,1];

(3) wmpo(upouz) = (powy)ous, forall nuj,uy,u3 € [0,1];

(4) If u; <y and u3 <y, then wjous < 101y, forall up,u,usz,uy € [0, 1];
(5) o is continuous.

Definition 2.2. [28] A binary operation = : [0,1] x [0,1] — [0, 1] is a continuous t-conorm if *
satisfies the following conditions:

(a) * is commutative and associative;

(b) = is continuous;

(c) Oxu; =1y, Yu €[0,1];

(d) 1z =1y > 1y * Uy, whenever u; < uz and Uy > Uy, and Uy, uy, uz, uy € [0, 1].

Definition 2.3. [6] We say a 6-tuple (1,2, B, €, 0, *) is a neutrosophic normed space if a vector space
I, with a continuous t-norm and t-conorm o and * respectively, and N, B, € are neutrosophic sets on
I X (0, 00), fulfills the conditions given below for all v, u, € I, with 3,u > 0:

(a) (uy,3) + B(uy, 3) + C(uy,3) < 3,

(b) A(uy,3) >0,

(c) Wy, 3) = 1iffu; =0,

(d) ey, 3) = A(wy, ) for all @ # 0,

(e) Auy, 3)oW(ug, ) < A(uy + 12,3 + ),
(f) A(uy,-) : (0,00) — [0, 1] is continuous,
(g) limy_, A(wy, 3) = 1 and lim_o A(uy,3) = 0,
(h) Baw,3) = B(wy, ) for each a # 0,
(i) By, 3) * Bug, p) = B(uy + u, 3 + p),
(j) B(uy, ) : (0,00) — [0, 1] is continuous,
(k) lim;_o B(uy,3) = 1,
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(1) &y, 3) = € (wy, %) for each a # 0,
(m) €y, 3) * Cug, ) = €y + 1, 3 + p),
(n) €(uy,-) : (0,00) — [0, 1] is continuous,
(o) lim;_o €(uy,3) = 1.

In this case (U, B, C) is called a neutrosophic norm with respect to o and .

Definition 2.4. [6] Let (I,U, B, €, 0, x) be a neutrosophic normed space. For 3 > 0, we define the open
ball B(uy,x,3) with center uy € I and radius 0 <r < 1, as

B(u,r,3) ={up € [ : Ay —up,3) > 1 -1, By —1p,3) <1, iy —11p,3) < 1.

A subset A C I is called open if for each 1 € A, there exist 3 > 0 and 0 < v < 1 such that B(u,1,3) C A.
Let g s denote the family of all open subsets of 1. gu») is called the topology induced by the
neutrosophic norm.

Note that this topology is the same as the topology induced by the neutrosophic metric.

Definition 2.5. [6] The sequence 1, is said to be convergent to u € I in the NNS (I, U, B, €, o0, *) and
denoted by u, aBy, wif

A, —w,3) =1, B, -u,3) =0, and CQ,—-1,3) >0

whenever n — o for every 3 > 0.

Definition 2.6. [6] A sequence u, in an NNS (1,2, B, €, 0, *) is called a Cauchy sequence if for each
0 < e<1and3i>0, there exists ny € N such that

A, —u,,3)>1-€, B, —w,,3) <€, and C, —u,,3)<e€

for each n,m > ny.

Definition 2.7. [6] A Neutrosophic Banach space is an NNS in which every Cauchy sequence is
convergent.

Now, we are going to define the generalized neutrosophic Contraction (GNC).

Definition 2.8. Suppose (I,U,B, ¢, 0,*) is an NNS. A map g : I — [ is known to be a generalized
neutrosophic contraction if there exist d € [0, +00) and ¥ € [0,d + 1) such that

A(uy —up,3) < W(g(uy) — g(in) + d(1y — 1), ¥3)
By —1p,3) = B(g(1y) — g(up) + 01y — 1y), x3) 2.1)
Cuy —uy,3) > Ca(iy) — g(in) + d(uy — 1), ¥3)

forall uwy,uy € I and 3 > 0.
Keep in mind that all GNC mappings are continuous.

Example 2.1. . Any neutrosophic contraction g is a generalized neutrosophic contraction with d =
0 and x = A, with contraction constant 1%, i.e., § satisfies the system of inequalities (2.1) with
dD=0andx= 1" €[0,1).
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2. Assume that I = [0, 1] has the neutrosophic norm, which is defined by

A, 3) = 0 if 3=0, uel0,1]
A if 3>0, uel0,1]

3+{ul

B, 3) = 1 if 3=0, uel0,1]
R W if 3>0, uel0,1]

3+

€ 3) = 1 if 3=0, uel0,1]
e if 3>0, uel0,1]

3+2u]
The function g preserves distances when defined on I as (1) = 1 —u, making it neutrosophically
non-expansive.

Nevertheless, g does not fit the description of an NC. It fulfills the requirements for the GNC, though.

If g was an NC, a hypothetical scenario would support this claim, implying the existence of 1* € [0, 1)
such that

Ay —up,3) < Ay — 1y, A73),

By —1p,3) = By — 1y, 473),
and also,
COy —1p,3) = Cluy — 112, 473)

for any uy,uy € [0, 1]. But this presumption results in a contradiction for any 1, # W,. Alternatively,
the GNC condition (2.1) may be stated as

A((d = Dy —12), 13) = Ay — 112, 3),

By —1,3) = B((d — DOy — up), x3),

and also,

Cy —1p,3) = G((d = Dy —112), ¥3)

YV u,uy € [0,1], where x € [0,d + 1). This inequality applies for uj,u, € [0,1] when d € (0, 1) and
x = 1 = 0. Therefore, for any d € (0, 1), g constitutes a generalized neutrosophic contraction. It should
be noted that g(%) = %

Remark 2.1. For any initial value x,, the sequence described by x,,; = 1 — x, does not converge,
as shown in Example 2.1 (2), unless x, is already a fixed point of 9. This suggests that in this
instance, the Picard iterative method is ineffective. Consequently, another iterative technique—like the
Krasnoselskij iterative scheme—is needed to approximate the fixed point of a generalized neutrosophic
contraction (GNC). We prove the efficiency of the Krasnoselskij iterative scheme in the context of
generalized neutrosophic contractions by establishing an effective convergence result for it.

Remark 2.2. It is important to note that for g, a self-mapping defined on C, a convex subset of a linear
space I, the mapping g, is defined as follows:

ge(w) = (1 = e)u + eg(w) (2.2)
for all w € C. Specifically, Fix(g.) = Fix(g) is a feature of this mapping.
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3. Results

In this section we prove a fixed point result for this newly defined contraction.

Theorem 3.1. Let (I,,B, €, 0,*) be an NBS and g : I — I is a generalized neutrosophic contraction.
Then

1. Fix(g) = {p}.
2. There exists 0 < ¢ < 1 such that p is the limit of the iterative scheme {1}, given as:

Uy = (1 — e, + eguy, (3.1)
forany vy € I andn > 0.

Proof. Case (i): Let ¢ = ﬁ and d > 0. Then we have

A(gelty — Geltp, €x3) > (1 — 1y, 3), (3.2)

B(Gelt; — Gellz, x3) < B(uy — 1y, 3), (3.3)
and

C(gelt; = geltp, ex3) < C(uy — 112, 3) (3.4)

foreveryuj,u, € 1, as x € (0,d + 1) implies that ex € (0, 1). Hence g, is a neutrosophic contraction.
The Krasnoselskij iterative process {u,} , is precisely the Picard iteration associated with g, in
relation to Eq (2.2).

U = Ge(U,), n20. (35)
Take n; = 1, and v, = u,_y in (3.2) to get
QI(un+1 — Up, exﬁ) 2 ?I(un — Up—1, 3)’ forn > 1. (36)

From inequality (3.6), one obtains routinely the estimate:

ity 1 — 1y 3) = A1y — g, &), forn> 1. 3.7)
Let m € N and ex = a. Observe that
-1 +a+a®+..+a" ) =31-a") <3 (3.8)
Thus using (3.8), we have
Aty = s 3) = Aty 11, T D)
Take n; = u, and v, = u,_y in (3.3) to get
B,y — Uy, ex3) < B(w, —u,-1,3), forn > 1. (3.9
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Similarly, using (3.8), we obtain

1 -
%(un = Uptms 3) < 5B(ul — U, 3( P a)

)

and using (3.4), we get
3(1-0a)

an

).

Q:(un = Uptms 3) < Q(ul — Uy,

This implies that {u,} ", becomes a Cauchy sequence so it is convergent in neutrosophic Banach space
(1, U, B, E, 0, *). Let us indicate

lim u, = u. (3.10)

n—oo

By letting n — oo in (3.5) and using the continuity of g., we can get

u = g.(u),

and hence u € Fix(g.). Now suppose another FP of g, is u*. Then, using (3.2)—(3.4), we obtain a
contradiction, proving uniqueness, as we know that Fix(g) = Fix(g.) by Remark 2.2.

Case (ii): Let ¢ = 1 and d = 0, and then by using similar steps as in case (i), but substituting
g = g1 for g., then we can prove that the Krasnoselskij iteration contracts, and it reduces to the Picard
iteration associated with g;

U1 = 6(,), n20.

Remark 3.1. In the particular case, we derive the classical NBC fixed point theorem [6] by virtue of
Theorem 3.1: d = 0.

4. Application to a satellite web coupling problem

The specified non-linear boundary value problem that describes radiation from the web coupling
between two satellites at a temperature w(?) is:

d*w .
—W:mw, O<t<1, w0 =w()=0, “4.1)
where the radiation temperature at any position ¢ € [0, 1] is represented by w(¢), and
2a’K?
m= a >0
Yh

is a non-dimensional positive constant. The constant absolute temperature of both satellites is denoted
by K, meaning that radiation from the web’s surface is emitted into space at O degrees Celsius. The
distance between the two satellites is represented by /, and the radiation properties of the web’s surface
are described by a—a positive constant that takes into account radiation from both the top and bottom
surfaces. The thermal conductivity is represented by ¢, and the thickness is denoted by A.

The Green’s function g(u, ¢) is given by:
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wl-¢), O<ux<e,
g(u,c) =
c(l—u), c<u<l.

The integral form of Eq (4.1) is:

1
w) =1- mf g(u, ow*(c) de — (%) w().
0

Consider a collection of Riemann integrable functions defined on [0, 1] as I = R[0, 1]. We define

—Ju—uy |P
A —1uy,3) = sup e 5,
3€[0,1]

—|u—ul\p
Bu—u,3)=1-2supe 5 ,
3€[0,1]

—Ju—uy |P
Clu—uy,3)=1-—supe 5 ,
3€[0,1]

for all u,u; € I, with the operation o such that 101, = uju,, and * such that 1y = uy = max{uy, uy}. It
is easy to prove that (1,2, B, €, 0, *) is an NBS. A mapping U : [ — [ is defined by

1 —
UAW) =1- mf g, 1)A* (u))du, — (%) A(u). 4.2)
0

Then, 1
U (A()) =e- (1 -m f g(u,ul)A4(u])du1). 4.3)
0

Theorem 4.1. Let 1 : I — [ be a mapping that is defined as in Eq (4.2) and for d = %, where
e € (0, 1), the following conditions are true:

(i)
(AQ) + QM)A () + QX)) <

|em|P”
(ii) There exists a continuous function g : [0, 1] X [0, 1] = R* such that
g
sup f g, uy)duy < 1.
1ef0,11 Jo

Then, the satellite web coupling boundary value problem (4.1) has only one solution.
Proof. Consider the following for all A,Q € I:

1 —
ADA) — Q) + U(Aw)) — U(Q(w)), ¥3) = QI(TQ(A(H) = Q) + U(A(w)) — U(Q(1)), x3)
(1= AW ~ (1 = Q) + UWAW) ~ WQM)

= A( . 3)
= AQU(AQ)) — U (Q(1)), ex3)

=2 (AQ) e (Qu))|P
= sup e E2

3€[0,1]
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—\c-(l—m-fol F{CRI] )A4(111 )duy )—c-(l—m-fol gy )94(ul )dy )|p

= sup e B3
3€[0,1]
—\m(l—mfol gy )A4(\|1 Yy )—e~(]—m«f01 gy )94(111 ) )|p —\em\l’|(A4(ul)—94(111))f01 g(uuy)duy [P
Sup e X3 = Sup e eX3
3€[0,1] 3€[0,1]
=[(AQu)-Q(uy)) fol gy )dy P
> sup e 3
3€[0,1]
—I(A@)-Qu)IP
> sup e E
3€[0,1]

= AA(;) — Q(1y), 3).

1 -
B(dAMW) - Q) + WAW) - WQW), ¥3) = 23(TQ(A(H) — Q) + U(A®w) — UQ(w)), x3)

COdAW) -

AIMS Mathematics

= BU(A)) — U (Q(1)), ex3)
—Ue (AQ)-Ue Q)P
=1-2supe &
3€[0,1]
—|c<(1—m<f01 gy )A4(ul)dul )—c-(l—m-ﬁ)l g(u,ul)ﬂ4(ul )duy )|p
=1-2supe x5
3€[0,1]

—|em|p\(A4(ul )—94(111 ) fol gy )duy [P
=1-2supe %
3€[0,1]

=[(AQ))=-Qu1y)) ]()l g(u,nl)dnl\p
<1-2supe 5
3€(0,1]

—l(AQ)-Qu )P
<1-2supe 5
3€[0,1]

= B(A(w) — Q) 3).

1 -
Q) + WAW) - W(Qw)), 13) = @(TQ(A(u) — Q@) + UA(w) — W), ¥3)
= CU(AW) — Uc(Q(1)), ex3)

—IMe(A@)-Ue Q)P

=l—-supe %
3€[0,1]
—\v:-(l—m-fol F{CRI )A4(11| )duq )—e-(l—m-J(‘)l gy )94(111 )y )|p
=]l-supe %
3€[0,1]
—lemfP (A% (-0 u) ! gty 1P
=1-supe %
3€[0,1]
—l(Au)-Q(uy)) fol g(uuy)duy [P
<l-supe 5
3€[0,1]
—IA@)-Qu))IP
<l-supe 5
3€[0,1]
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= C(AQ) — Q(1y), 3).

Therefore, U has a unique FP since all of the assumptions of Theorem 3.1 are met. So, the diffrential
equation (4.1) has a unique solution.

5. Application to fractals

In this section, we generate fractals using the generalized neutrosophic contraction and illustrate
how this concept applies to the creation of intricate and captivating fractal patterns.

Definition 5.1. [6] Consider the NNS (I, U, B, €, 0, ) and the topology Y« %) that is produced by the
neutrosophic norm (U, B, €). The set of all non-empty compact subsets of (I, Y ) will be denoted
by the symbol O(I).

Define, W(u—T,3) = sup o A1t —4,3), B(u—TI,3) = inf e C(11 -4, 3), and C(u—-T, 3) = inf o C(11—
A,3). Similarly WA = T,3) = infyep A1 = T, 3), B(A =T,3) = sup,c, C(u =T,3), and €A -T,3) =
sup,ep C(u—T,3) forallu € I and A, T € O(I). The Hausdorff neutrosophic norm is denoted by Hy 3 s),
where Hy, Hy, Hg: ©(1) X (0, 00) — [0, 1] are neutrosophic sets defined by

Hy(A -T,3) = min{(A - T',3), A(I" - A, 3)},

Hy(A -T,3) = max{B(A - T,3), BT - A,3)},

and
Hg(A -T,3) = max{C(A - T, 3), &I - A, 3)}.

Hence, (O(1), Hy, Hy, Hg, 0, %) is a Hausdorf{f NNS.
If (1,U,8,C, 0, %) is a complete NNS then (O(1), Hy, Hg, Hg, 0, *) is a complete Hausdorff NNS.

Definition 5.2. Let (1,%U,B, ¢, 0,%) be an NNS and {gy : I —» I : n = 1,2,3..., N} is a finite collection
of generalized neutrosophic contractions. The operator T : O(I) — O(I) defined by

N
T(A) = 1A U ga(A) U .. U gw(A) = |_Jai(a),

i=1
for all A € O(l), is a generalized neutrosophic H-B operator.

Definition 5.3. Let (1,2, B, ¢, 0, %) be an NNS. If {gny : [ = I : n=1,2,3..., N} is a finite collection of
generalized neutrosophic contractions, then (I : gy, 92, 93, ..., On) is called the generalized neutrosophic
IFS (GNIFS).

Definition 5.4. A compact set A that is not empty serves as an attractor for the GNIFS if

1. T(A) = A
2. An element Q exists in the set V'« ) such that A C Q and lim_,oo(THT), A, 3) = 1, considering
any compact setI' C Q and 3 > 0.

To bolster our next conclusion, we established the following lemma.
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Lemma S5.1. Let (I,U,B, ¢, 0, *) be an NNS. Then, for every A,T',Q, A € O(I) belonging to O(I), the
following conditions are satisfied:
i)IfT" C Q, then
inf A(u — Q,3) > inf A(w - T, 3)
ueA ueA

sup B — Q,3) < supB(u—T,3)

ueA ueA
sup C(u — Q, 3) < sup C(u —-T,3).
ueA ueA
i)
uélggl" A —Q,3) = mm{i@f A - Q,3), 1};{ A1 - Q,3)}
sup B(u — Q, 3) = max{sup B(u — €2, 3), sup B(1 — €2, 3)}
ueAul UEA Ael
sup C(u — Q,3) = max{sup C(ut — Q, 3), sup €&(1 — Q, 3)}.
ueAul’ ueA Ael’

" Hy(AUT —QUA,3) > min{Hy(A — Q,3), Hy(I' — A, 3)}
Hy(AUT —QUA,3) < max{Hg(A - Q,3), Hg(I' — A, 3)}
Hg(AUT — QU A,3) <max{Hg(A - Q,3), He(I' — A, 3)}.

Proof. (i): Given that I" C Q, then for all u € A, it follows that

A —T,3) = supA(u — A,3) < sup A —7,3) = Wu—Q,3)
Aer [eQ

which implies that
inf A —T,3) < inf A(u — Q, 3)
UueEA ueA

Bu—-TI,3) =inf Bt — 4,3) > inf B(u - £, 3) = B —€Q,3)
Aell leQ

which implies that
sup B(u —1T,3) > sup B — Q,3)

ueA ueA

Cu-TI,3)=infCu—-A,3)>infCu—-7,3) =Cu-9Q,3)
Ael eQ

which implies that
sup C(u —1T7,3) > sup C(u — €, 3).
ueA ueA

(ii):

inf A —Q,3) = nf{A(n - Q,3) : ue AUT} = min{inf A(u - Q, 3), 1An§ A1 - Q,3)}
€

ueAurl’ ueA

sup B(u—Q,3) =sup{Bu —Q,3): ue AUT} = max{sup Bu — Q, 3), sup B(1 — Q,3)}

ueAul’ ueA Aell

sup C(u—Q,3) = sup{Cu—Q,3) : ue AUT} = max{sup C(u — Q, 3), sup €&(1 — Q,3)}.

ueAul’ UeEA Ael’
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(iii): It follows from (ii) that
inf A(u—QUA,3) = min{inf A(u — Q U A, 3),inf A(1 — QU A, 3)}
ueAUl ueA Ael’
> minf{inf A(u — Q, 3), inf A1 — A, 3)}
ueA Aer
> min{min{in£ A(u — Q, 3), }n}; WA -,3)},
min{inf A(1 - A, 3), };Ef AT - B, )N
= min{Hy(A — Q,3), Hy(I' — A, 3)}.

In a similar way, we obtain that

ing A(u— AUT,3) > min{Hy(A — Q,3), Hu(I' — A, 3)}.
ueQuU

Hence it follows that
Hy(AUT —QU A,3) =min{ inf Alu-QUA,3), inf Alu-AUT,3)}
ueAul’ ueQUA

> min{Hy(A — Q,3), Hy(I' = A, 3)}.

sup B(u - QU A,3) = max{sup B(u — QU A, 3),sup B(1 - QU A,3)}

ueAul’ ueA Ael
< max{sup B(u — €, 3), sup B(1 — A, 3)}
ueA Ael
< max{max{sup B(u — Q, 3), sup B(A -, 3)},
ueA LeQ
max{sup B(4 — A, 3), sup B - B,3)}}
Aelr BEA

= max{Hy(A — Q,3), Hy(I' = A, 3)}.
In a similar way, we obtain that

sup B(u—-AUT,3) < max{Hg(A - Q,3), Hg(I' = A, 3)}.
ueQUA

Hence it follows that
Hg(AUT —QUA,3) =max{sup B(u—QUA,3), sup B(u—AUT,3)}
ueAUl ueQUA

< max{Hg(A - Q,3), Hg(I' = A, 3)}.

sup C(u—-QUA,3) =max{supC(u-QUA,3),supC1—-QUA,3)}

ueAurl’ UEA Ael
< max{sup €(ut — €, 3), sup €(1 — A, 3)}
ueA Ael’
< max{max{sup €(u - Q, 3), sup €(A - £,3)},
ueA eQ
max{sup €(1 — A, 3), sup &I - B, 3)}}
Ael’ BeA

= max{Hg(A — Q,3), Hs(I' — A, 3)}.
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In a similar way, we obtain that

sup C(u—-AUT,3) < max{Hg(A — Q,3), Hg(I' — A, 3)}.
ueQUA

Hence it follows that

Hg(AUT —QUA,3) =max{sup C(u—-QUA,3), sup C(u—-AUT,3)}
ueAur’ ueQUA

< max{H¢(A - Q,3), Hs(I' - A, 3)}.

Theorem 5.2. Let (1,2, B, €, 0,*) be an NNS and {g,: n = 1,2,3, ..., N} a finite family of generalized
neutrosophic contraction mappings on 1. Define T: ©(I) — O() by

T(A) = 81(A) U 32(A) U g3(A) U ... U gn(A),

foreach A € O(I). Then T is a generalized neutrosophic contraction on O(I).
Proof. We will show for N = 2.

Let g1,0,: I — I be two generalized neutrosophic contractions. Take A, A € O() with
Hy(T(A), T(A),3) # 0, H(T(A), T(A),3) # 0, and Hg(T(A), T(N),3) # 0. Lemma 5.1 (iii) clearly
implies that

Hy(d(A = A) + T(A) — T(A), x3) = Ha(d(A — A) + 61(A) U g2(A) — 1(A) U g2(A), %3)
> min{Hy(d(A = A) + g1(A) — g1(A), ¥3),
Hy(d(A = A) + g2(A) — g2(A), ¥3)}
> Hy(A - A,3))

Hg(d(A = A) + T(A) — T(A), x3) = Hy(D(A — A) + 81(A) U 32(A) — 61(A) U 32(A), %3)
< max{Hy(d(A - A) + g1(A) — 91(A), ¥3),
Hg(d(A — A) + 32(A) — 92(A), 13)}
< Hy(A - A,3))
Hs(d(A = A) + T(A) — T(A), x3) = He(D(A — A) + 61(A) U 32(A) — 61(A) U 32(A), %3)
< max{Hg(d(A — A) + 61(4) — g1(A), %3),
Hg(®(A = A) + 32(A) — 52(A), ¥3)}
< Hg(A - A,33)).
Hence, Tis a GNC on O(I).

Theorem 5.3. Consider (I,U,B,C,0,x) is an NBS and {g,: n = 1,2,3,...,N} a finite collection of
GNCs on I. On O(1), define a mapping T as

T(A) = 31(A) U 32(A) U g3(A) U ... U gn(A),

for each A € O(I).
Theni) T: O(I) - O().
ii) T has a unique FP A € O(]), that is, A = T(A).
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Proof. i) Since every g; is a generalized neutrosophic contraction, by Theorem 5.2 and the definition of
T, the result follows immediately.

ii) From Theorem 5.2, T: O(I) — O(I) is a generalized neutrosophic contraction. Furthermore,
(®(), Hy, Hy, Hg, 0, %) is a Hausdorff NBS because (I,2,B,¢,0,*) is an NBS. Thus, Theorem 3.1
implies (ii).

Definition 5.5. Let (I,U,B,C,0,%) be an NNS. A mapping T: O(I) — O(I) is a generalized
neutrosophic (Ur, By, €r) contraction if there exist d € [0, +00) and x € [0, d+ 1) such that the following
holds for each A, A € O(I) with Hy(T(A), T(A),3) # 0, Hg(T(A), T(A),3) # 0, He(T(A), T(A),3) # O:

Hy(®(A = A)+ T(A) — T(A), x3) = Ap(A — A, 3) 5.1
where
Ar(A = A, 3) = min{Hy(A — A, 3), Hu(A — T(A), 3), Hu(A = T(A), 3)}
Hy(D(A = A) + T(A) — T(A), ¥3) < Br(A-A,3) (5.2)
where
Br(A - A,3) = max{Hy(A — A, 3), Hg(A — T(A), 3), Hy(A — T(A), 3)}
Hs(d(A—-A)+T(A) —T(A),x3) < Cr(A-A,3) (5.3)
where

Cr(A = A, 3) = max{He(A - A,3), Ho(A = T(A), 3), Hs(A = T(N), 3)}.

It should be noted that T is trivially a generalized neutrosophic (Ur, Br, Cr) contraction if T, as
outlined in Theorem 5.2, is a GNC.

Theorem 5.4. Ler (I,,B, a,0,*) be an NBS and {I;9,,n = 1,2,3,..N} is a GNIFS. Let T: O(I) —
O(]) be a generalized neutrosophic (Ur, Br, ar) contraction operator defined by
T(A) = g1 (A) U ga(A) U ... U gn(A), foreach A e O().
Then

1. T has only one FP.
2. for some ¢ € (0, 1], the iterative scheme {A,}’. , given by

A1 = (1 = A, + eT(A)), (5.4)

for n >0, converges to the fixed point of T, for any A, € I.

Proof. (i): Let ¢ = Dl—l and d > 0. Then for ¢ € (0,1), T is a generalized neutrosophic (Uz, Br, Cr)
contraction, and therefore for each A,I' € O(I) with Hy(T(A), T(I'),3) # 0, Hg(T(A), T(I'),3) # O,
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Hy(d(A-T)+T(A)—T(T),x3) = U (A -T,3) (5.5
where
Ar(A —T,3) = min{Hy(A - T,3), Hu(A — T(A), 3), Hy(I' — T(I'), 3)}
Hy(dO(A-T)+T(A) - TT),x3) < Br(A-T,3) (5.6)
where
Br(A-T,3) = max{Hg(A - T,3), Hg(A — T(A), 3), Hy(I' = T(I), 3)}.
And then
HiOA-D)+TA)-TI),x3) <C(A-T,3) (5.7)
where

Cr(A -T,3) = max{He(A - T,3), He(A - T(A), 3), He(I' - T(T), 3)}

1
Hy(>(A =) + T(A) = T(1), x3) = Hu((7 = DA =) + T(A) - T(T). x3)

1 _
: YA -T) + T(A) - T(D), 3)

= Hy((
= Hy((1 = ¢)(A =T) + T(A) — eT(D), ex3)
= Hy(T(A) = T.T, ex3).

By using inequality (5.5), we have

Hy(T(A) = To(I), ex3) > Ar(A - T, 3). (5.8)
Similarly,

Hy(T(A) — T (), ex3) < Br(A - T,3) (5.9)

Hg(T(A) — T ('), ex3) < Cr(A - T, 3). (5.10)

Let Ay be any element of O(I). If Ay = T.(Ay), the evidence is complete. Therefore, we assume that
Ay # T(Ap). Define
Ap =T(Ao), Ay =Te(A1), ...i Appr =Te(An)

form e N.
Suppose that A, = A1 for allm € N.

HH(Am+1 - Am+27 exﬁ) = H‘l[(Tc(Am) - Te(Am+l)a €3E3)
> (A = D15 3)
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where
?IT(Am - Am+1, 3) = min{H‘H(Am - Am+19 3)9 H‘lI(Am - Am+1, 3)7 H‘ZI(Am+1 - Am+27 3)}

This implies that

H‘ZI(Am+1 - Am+2a QX?)) > min{H‘lI(Am - Am+1’ 3)a H?I(Am+1 - Am+2a 3)}
= H?I(Am - Am+1, 3)

The estimate is typically obtained from the above inequality:

Hy(A,q — Ay, 3) > Hy(Ap — Ay, &), fornz1. (5.11)

Suppose m € N and ex = a. Note that
31—l +a+a>+ ...+ =31-a" <3 (5.12)
Thus using inequality (5.12), we have

Hy(Ay = Duims 3) 2 Hu(Ay = Ay 3(1 = ™))
= Hy(Ay = Ay, 3(L —)(1 + a4+ 0 + ...+ a™h))
> Hu(A, = Api153(1 = )oHy(Ani1 = Ayia, 3(1 — a)a)o
e 0Hu(Apim-1 = Dy 3(1 = 2™ )

3(1—a) 3(1 —a) 3(1—a)
> Hy(Ay — Ao, o JoHy (A} — A, = )0...0Hy (A} — Ay, = )
3(1—a)
= Ha(h - Bg, 0=,
a
And
Hy(Api1 = Apsa, x3) = Ha(Te(Ay) — To(Apsr), €x3)
< EBT(Am - Am+1’ 3)
where
%T(Am - Am+] s 3) = maX{H%(Am - Am+1 ) 3)7 H%(Am - Am+l, 3)’ H%(Am+] - Am+2, 5)}
This implies that
H%(Am+1 - Am+2’ QXS) < maX{H%(Am - Am+1a 3)9 HQS(Am+l - Am+2, 3)}
= H%(Am - AnH—la 3)
From the above inequality,
Hy(At — A 3) < Hu(Ay — Ay, ——), forn > 1. (5.13)

(ex)”
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Thus using inequality (5.12), we have

H%(An - An+ma 3) < H%(An - An+ma 3(1 - am))
= Hy(Ay — Ay 31 — )1+ a+ a + ...+ ™))
S H%(An - An+1’ 3(1 - Cl)) * H%(A}Hl - An+2, 3(1 - (l)(l)*
oo ® Hy(Apymot = Dy 3(1 = @)™ ")

< Hy(A; = A, 3(1(1: V)« Ha(Ar - Ao, 3(1a; cO) % .. % Hy(A) — Ao, 3(1a; cl))
= Hy(As — A, S(IC; 9y,
And
Hs(Aps1 = Anaz, €33) = Ho(Te(A) — Te(Api1), €x3)
< Cr(Apm = Apr1,3)
where

(ET(Am - Am+1 > 3) = maX{HC(Am - Am+l, 3)’ H(Z(Am - Am+] s 3)’ H(C(Am+] - Am+2, 3)}'
This implies that

H(S(Am+1 - Am+2’ 9353) < max{H@(Am - Am+1, 3), H(S(Am+l - Am+2, 3)}
= H(C(Am - Am+1, 3)

From the above inequality,
HelBror = A 3) < Helb = Ao, 7500, forn = 1 (5.14)
Thus using inequality (5.12), we have

H(\:(An - An+ma 3) < H(Y(An - An+ma 3(1 - am))
= Hg(Ay = A, 3(1 — (1 + a+ a® + ... + ™))
< H(E(An - An+l’ 3(1 - a)) * H(‘Z(An+l - An+2a 3(1 - (1)(1)*
e ¥ H@(An+m—1 - An+rna 3(1 - a)am—l)

< He(A; - Ao, a(la: V' 4 He(Ar - Ao, 3“; D s He(Ar = A, S(IGZ v,
= He(A — Ay, 3(1a: U
So, {A,} is a Cauchy sequence and hence is convergent. Let us denote
lim A, = A. (5.15)

n—oo

As n approaches infinity in Eq (5.4), we readily obtain

A= TQ(A)’
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so A'is the FP of T.. Now we are going to show that T, has only one FP. Let I" be another fixed point of
T.. Afterward, by inequalities (5.8)—(5.10),

Hy(A —T,ex3) > Hy(A -T,3)

Hy(A -1, ex3) < Hy(A-T,3)

Hg(A —T,ex3) < Hg(A-T,3)

which is contradictory. Hence, Fix(T,) = A and by Remark 2.2, Fix(T) = Fix(T,).

Case (ii): Let ¢ = 1 and d = 0, and then we can prove, by using similar steps as in case (i), but
substituting T = T, for g., that the Krasnoselskij iteration contracts, it reduces to the Picard iteration
associated with T:

A1 = T(A,), n2=0.

Corollary 5.5. Let (I,%,B,C€,0,%) be an NBS and {I;¢;,i = 1,2,..N} a GNIFS. Let g : I — I be
a self-mapping as defined in Remark 2.2. If there exist d € [0, +c0) and x € [0,d + 1) such that the
following is valid for each u,u, € I:

AdO — wp) + g(wy) — g(i2), ¥3) > Ag (g — 112, 3) (5.16)
where Ag(1; — 1, 3) = minfAQuy — 12, 3), Ay — g(1y), 3), Az — g(2), 3)},

B(d(u — 1) + g(uy) — 9(112), ¥3) < By — 112, 3) (5.17)
where B(1; — 1,3) = max{B(u; — 11, 3), B(wy — g(wy), 3), Bz — a(12),3)},

CdO — 1) + g(uy) — g(u2), 13) < Ey(1y — 112, 3) (5.18)

where (1) — 11z, 3) = max{€(iy — uy, 3), €(uy — g(wy), 3), €y — g(w2), 3)},
then g has a unique fixed point. Moreover, for any choice of u; € I and n € N, the sequence {11,,} defined
by

Ui = (I = euy, + eg(uy)
converges to the fixed point.
Example 5.1. Let I = R? and (U, B, €) be the neutrosophic norm defined by:
-ViZew 2

A((u,u’),3) =exp~ 5

. — V2 +*)?
B((u,u*),3)=1-2exp T ,

and I
CLu),3) =1 —exp 5 .
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Let a1, 02,03 : I — I be defined by:

R T L T T
g1, u =Gt55) and gz3(u,u") =

I\JIS:
-lkvl
| =

u
g1(u,u’) = (2 2

Letd=0andx = 5, and then

A, 1) = (o, 105) + 0, 14) = (o, 1), 1) = Ao %)—(; 5) 5)

_ 2 W=, 1
- 9’[(( 2 ’ 2 )’ 23)

1 1
= 91(5((111 — 1), (1] —113)), 53)
= Ay = ), (] —113)),3)

= A(((uy, u}) — (up, 15)), 3)

BO((uy, 17) — (2, 115)) + g1 (g, 1p) — 1 (2, 113), ¥3) = %((— 3)—(7 3) 5 3)

— U

= %(( 2 s 2 )a 53)

1 1
= 23(5((111 — 1), (1] —113)), 53)

= B(((1; — up), (1] —13)),3)
= B(((ug, 1) — (up,115)), 3)

and
G(b((lll,ll#f) (Uz,uz)) + 91(111,11 ) — 91(112,112) x3) = Q((E %) - (E 7) 5 3)

- (X u2 il . b, —3)
= Q:(E((ul — 1), (1] — 1)), 3)
= C(((; —1p), (1] —113)),3)
= C(((uy, 1) — (12,113)), 3).

Now,

Oy, 1)) = (1p,15)) + G211, u}) = G2(1n, U5), X3) = ((3 = )—(— 5 2) 2)

= A(( 2 , 2 ), 23)
1 1
= 91(5((111 — ), (1] —113)), 53)

= A(((u; = up), (1] —113)), 3)
= A(((uy, u}) — (up, 15)), 3)
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1
Bd((uy, up) — (2, 113)) + @21y, u7) — G2, 105), ¥3) = %((— + )—(— 5 2) 23)
112 T
- B ), 53)

1
= %(5((111 — 1), (17 1)), 53)

= B(((1; — up), (1] — 13)),3)
= B(((ug, 1) — (uz,115)), 3)

and
1w 1w 1
S0, 5) = (13, 149) + (o, 1) = @200 15),15) = S5+ 2,5 = (2 2,20, 29)
N e I N ¢
- (Z(( 2 ’ 2 )a 23)
1
= G:(E((ul — 1), (U] —113)), 3)
= C(((1; = up), (U] —113)),3)
= G(((ul ’ uT) - (u27 u;))a 3)
Similarly,
Ay, u7) — (12, 115)) + g3(uy, 1)) — 83(11p, 13), ¥3) = A(((uy, u7) — (12, 11)), 3),
QS(b((ul’ LIT) - (112, u;)) + 93(111, u’{) - g3(u29 u;)’ xS) = 23(((ul’ uT) - (112, u;))’ 3)’
and

@(b((ul, UT) - (uZ’ u;)) + 93(111, u’{) - g3(u29 u;)’ xS) = (‘:(((ul’ UT) - (112’ u;)), 3)’

which implies that g1, 8,2, and g3 are generalized neutrosophic contraction mappings.
Consider the GNIF'S {I; a1, 62, 93} with the mapping T : O(I) — O(I) given as

T(A) = g1(A) U 62(A) U g3(A)
for all A € O(I). We have, by Theorem 5.4,
Hy(d(A — A) + T(A) — T(N), x3) = Ha(A — A, 3),

Hyp(d(A = A) + T(A) = T(A), 13) < Hy(A = A, 3),

and
Hs(d(A = A)+T(A) — T(A), x3) < Hs(A — A, 3).

As a result, the requirements listed in Theorem 5.4 are satisfied. Additionally, for any starting set
Ay € O(D), the sequence of compact sets {Ay, T(Ao), T>(Ao), ...} is convergent and has a limit that is the
attractor of T.
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Example 5.2. Let I = R? and (W, B, €) be the neutrosophic norm defined by:

A, u),3) =exp™ oy

=(lu[+*])

B((u,u*),3)=1-2exp” 5 ,

and

()

C((w,u),3) =1 —exp™ s
Let g1, 82, 83, 84, 85, 96 - I — I be defined Dy:

(u,u") = 9u+3 cosﬂ 911 +3 smﬂ (u,) u+3 cos X u* + —rsin dl
== —r — —r =[— —r —, — —rsin —
o 20" T3 %3t TN )8 ’

9 3 9 3
gs(u, u) = (2—011 + grcosn 2011* + gr sinﬂ) gs(u,u’) = (—u + —rcos —, —u* + —rsin —),

9 3 Sr 9 3 Sn . 9 3 9 . 3 .
gs(u, 1) = | —=u+ =rcos —, —u* + —rsin — 3 , Ge(u, ) = %u+—r00527r —u +§rsm27r .

20 5 3720 5 5 20
Letd=0andx = 20, and then
. i i . (290111 + 3 rcos % 290117 + 3 rsm ) 9
QI(D((U], u]) - (HZ’ uz)) + gl(ul’ u]) - gl(HZa 112), 33) = s 379
( U + rcos3 %u + rs1n3) 20

9 9 * *
=U ((20( — 1), %(W - uz)) ) %3)

= A(( = wp), () —113)),3)
=A ((111, UT) - (112, u;)’ 3)

. . . . ( u + rcos 3 Zou] + rsm ) 9
§B(b((ub 111) - (1’12, uz)) + gl(ula u]) - gl(u25 u2)a XS) =B 9 s 379
( Uy + rcos u2 + r sin 3) 20

20 3220

9 9 9
=B ((2—0(111 — 1), %( - uz)) 20 )

= B () — ), (u — 13)),3)
=N ((111, 11#[) - (112, ll;), 3)

and

u; + rcos ,—u + rsm 9
G(b((ub uT) - (1’125 u;)) + gl(ula uT) - gl(u25 u;)a XS) =C ( : 372001 ) sy 73
( Uy + rcos3,20u2+ rsm3) 20

9 9 9
=C ((%(ul ) 2_0( - 112)) 20 )
= € (((w = ), (1] —113)),3)
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=C ((111 s 11?) - (112, u;)’ 3) .

Hence, g, is a GNC. Similarly we can prove that g,, 93, 04, 85, and g¢ are GNCs.
Consider the GNIFS {I; g1, 92, 93, 04, 85, 86, 87} With the mapping T : ©(1) — O(I) given as

7
(A) = | Jai(a)
i=1

for all A € ©(I). We have, by Theorem 5.4,
Hy(d(A — A) + T(A) — T(AN), x3) = Ha(A — A, 3),

Hyg(d(A - A) + T(A) — T(A), x3) < Hy(A - A,3),

and
Hs(dO(A = A) + T(A) — T(A), x3) < Hg(A — A, 3).

As a result, the requirements listed in Theorem 5.4 are satisfied. Additionally, for any starting set
Ay € O(I), the sequence of compact sets {A, T(Ag), T (M), ...} is convergent and has a limit that is the
attractor of T.

The convergence of T to the GNIFS attractor in Example 5.2 is depicted in Figures 1-6.
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Figure 1. A,.
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Figure 2. T(Ay).

Figure 3. T>(A).
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Figure 6. T>(A).

6. Conclusions

We have presented a new class of mappings, called GNCs, which extends the notion of neutrosophic
BCs and some neutrosophic non-expansive mappings. We have shown that the FP of any GNC may be
efficiently found using the Krasnoselskij iterative approach. The classical neutrosophic BC principle
emerges as a special case of our results. Moreover, we have shown that the class of neutrosophic
BCs is contained in the class of GNCs. We have focused on mappings that are not neutrosophic
contractions but are included in the category of GNCs. We have also identified a unique solution
to the satellite web coupling problem. Moreover, we have demonstrated the adaptability of these
GNCs in producing complex fractal structures by applying them to the construction of fractals utilizing
Hutchinson—Barnsley operators. By using the FPT via a GNC, our result goes beyond conventional
fractal creation techniques. We have set the stage for future studies in applied mathematics, stability
analysis, and fixed point theory by utilizing neutrosophic contraction principles. Future investigations
may explore the application of generalized neutrosophic contractions to other types of functional
equations, such as Volterra or integro-differential equations. Further research could also focus on
stochastic or random fixed point problems under the GNC framework. Additionally, the use of GNCs
in higher-dimensional or fuzzy-neutrosophic metric spaces can lead to new insights in the modeling of
uncertainty. Another interesting direction could be the design of algorithms for machine learning and
optimization that are grounded in GNC-based fixed point principles. Finally, deeper exploration of the
connection between GNCs and dynamical systems, especially in control theory or population models,
may uncover rich mathematical structures and practical applications.
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