In this study, we proposed novel estimators for finite population variance based on the raw moments of the study and auxiliary variables. Specifically, we developed both biased and unbiased estimators of variance using the raw moments of the study variable alone, as well as biased and unbiased difference-type estimators that incorporate the raw moments of a single auxiliary variable. These estimators were evaluated under two-stage cluster sampling (2SCS) and three-stage cluster sampling (3SCS) schemes. Their performance, with and without auxiliary information, was assessed using mean squared error (MSE), absolute bias (AB), and relative efficiency (RE) criteria. Results from two real populations showed that AB decreases and RE improves with increasing sample size. Notably, under 3SCS, the unbiased difference estimator, $ \hat{S}^2_{Y, DU} $, achieved the highest efficiency ($ RE_3 = 527.69 $), closely followed by the biased difference estimator, $ \hat{S}^2_{Y, DB} $ ($ RE_4 = 527.26 $). Both estimators substantially outperformed conventional variance estimators without auxiliary information (baseline $ RE $ = 100). These findings demonstrate that incorporating auxiliary variables significantly enhances estimation accuracy, offering a practical and robust approach for variance estimation in complex survey designs.
Citation: Mohsin Abbas, Muhammad Ahmed Shehzad, Hasnain Iftikhar, Paulo Canas Rodrigues, Abdulmajeed Atiah Alharbi, Jeza Allohibi. Efficient estimators of finite population variance using raw moments under two- and three-stage cluster sampling schemes[J]. AIMS Mathematics, 2025, 10(10): 23429-23466. doi: 10.3934/math.20251041
In this study, we proposed novel estimators for finite population variance based on the raw moments of the study and auxiliary variables. Specifically, we developed both biased and unbiased estimators of variance using the raw moments of the study variable alone, as well as biased and unbiased difference-type estimators that incorporate the raw moments of a single auxiliary variable. These estimators were evaluated under two-stage cluster sampling (2SCS) and three-stage cluster sampling (3SCS) schemes. Their performance, with and without auxiliary information, was assessed using mean squared error (MSE), absolute bias (AB), and relative efficiency (RE) criteria. Results from two real populations showed that AB decreases and RE improves with increasing sample size. Notably, under 3SCS, the unbiased difference estimator, $ \hat{S}^2_{Y, DU} $, achieved the highest efficiency ($ RE_3 = 527.69 $), closely followed by the biased difference estimator, $ \hat{S}^2_{Y, DB} $ ($ RE_4 = 527.26 $). Both estimators substantially outperformed conventional variance estimators without auxiliary information (baseline $ RE $ = 100). These findings demonstrate that incorporating auxiliary variables significantly enhances estimation accuracy, offering a practical and robust approach for variance estimation in complex survey designs.
| [1] |
M. H. Hansen, W. N. Hurwitz, On the theory of sampling from finite populations, Ann. Math. Statist., 14 (1943), 333–362. http://dx.doi.org/10.1214/aoms/1177731356 doi: 10.1214/aoms/1177731356
|
| [2] | W. G. Cochran, Sampling techniques, 3rd Edition, John Wiley, 1977. |
| [3] | C. E. Särndal, B. Swensson, J. Wretman, Model assisted survey sampling, Springer Science & Business Media, 2003. |
| [4] |
J. Rao, J. Kovar, H. Mantel, On estimating distribution functions and quantiles from survey data using auxiliary information, Biometrika, 77 (1990), 365–375. https://doi.org/10.2307/2336815 doi: 10.2307/2336815
|
| [5] |
R. K. Burdick, R. L. Sielken Jr, Variance estimation based on a superpopulation model in two-stage sampling, J. Am. Stat. Assoc., 74 (1979), 438–440. https://doi.org/10.1080/01621459.1979.10482533 doi: 10.1080/01621459.1979.10482533
|
| [6] |
R. M. Royall, W. G. Cumberland, Variance estimation in finite population sampling, J. Am. Stat. Assoc., 73 (1978), 351–358. https://doi.org/10.1080/01621459.1978.10481581 doi: 10.1080/01621459.1978.10481581
|
| [7] |
D. Haziza, J. Rao, Variance estimation in two-stage cluster sampling under imputation for missing data, J. Stat. Theory Pract., 4 (2010), 827–844. https://doi.org/10.1080/15598608.2010.10412021 doi: 10.1080/15598608.2010.10412021
|
| [8] | P. V. Sukhatme, B. Sukhatme, S. Sukhatme, C. Asok, Sampling theory of surveys with applications, 1984. |
| [9] |
L. Sahoo, A regression-type estimator in two-stage sampling, Calcutta Stat. Assoc. Bull., 36 (1987), 97–100. https://doi.org/10.1177/000806831987011 doi: 10.1177/000806831987011
|
| [10] |
R. Yang, H. Li, H. Huang, Multisource information fusion considering the weight of focal element's beliefs: a gaussian kernel similarity approach, Meas. Sci. Technol., 35 (2024), 025136. https://doi.org/10.1088/1361-6501/ad0e3b doi: 10.1088/1361-6501/ad0e3b
|
| [11] |
S. Ahmad, H. Iftikhar, M. Qureshi, I. Khan, A. S. Omer, E. A. T. Armas, et al., A new auxiliary variables-based estimator for population distribution function under stratified random sampling and non-response, Sci. Rep., 15 (2025), 13580. https://doi.org/10.1038/s41598-025-98246-y doi: 10.1038/s41598-025-98246-y
|
| [12] |
M. R. Garcia, A. A. Cebrian, Repeated substitution method: The ratio estimator for the population variance, Metrika, 43 (1996), 101–105. https://doi.org/10.1007/BF02613900 doi: 10.1007/BF02613900
|
| [13] |
L. N. Upadhyaya, H. P. Singh, S. Singh, A class of estimators for estimating the variance of the ratio estimator, J. Japan Stat. Soc., 34 (2004), 47–63. https://doi.org/10.14490/jjss.34.47 doi: 10.14490/jjss.34.47
|
| [14] | P. Chandra, H. Singh, A family of estimators for population variance using knowledge of kurtosis of an auxiliary variable in sample survey, Stat. Transit., 7 (2005), 27–34. |
| [15] |
A. Arcos, M. Rueda, M. Martınez, S. González, Y. Roman, Incorporating the auxiliary information available in variance estimation, Appl. Math. Comput., 160 (2005), 387–399. https://doi.org/10.1016/j.amc.2003.11.010 doi: 10.1016/j.amc.2003.11.010
|
| [16] |
C. Kadilar, H. Cingi, Improvement in variance estimation in simple random sampling, Commun. Stat. Theor. M., 36 (2007), 2075–2081. https://doi.org/10.1080/03610920601144046 doi: 10.1080/03610920601144046
|
| [17] |
L. K. Grover, A correction note on improvement in variance estimation using auxiliary information, Commun. Stat. Theor. M., 39 (2010), 753–764. https://doi.org/10.1080/03610920902785786 doi: 10.1080/03610920902785786
|
| [18] | Z. Zhou, Y. Wang, X. Liu, Z. Li, M. Wu, G. Zhou, Hybrid of neural network and physics-based estimator for vehicle longitudinal dynamics modeling using limited driving data, IEEE T. Intell. Transp., 2025. https://doi.org/10.1109/TITS.2025.3585346 |
| [19] |
P. Sharma, R. Singh, A generalized class of estimators for finite population variance in presence of measurement errors, J. Mod. Appl. Stat. Meth., 12 (2013), 231–241. https://doi.org/10.22237/jmasm/1383279120 doi: 10.22237/jmasm/1383279120
|
| [20] |
H. P. Singh, R. S. Solanki, Improved estimation of finite population variance using auxiliary information, Commun. Stat. Theor. M., 42 (2013), 2718–2730. https://doi.org/10.1080/03610926.2011.617485 doi: 10.1080/03610926.2011.617485
|
| [21] |
S. Ahmad, N. K. Adichwal, M. Aamir, J. Shabbir, N. Alsadat, M. Elgarhy, et al., An enhanced estimator of finite population variance using two auxiliary variables under simple random sampling, Sci. Rep., 13 (2023), 21444. https://doi.org/10.1038/s41598-023-44169-5 doi: 10.1038/s41598-023-44169-5
|
| [22] |
S. Bhushan, A. Kumar, A. Alsubie, S. A. Lone, Variance estimation under an efficient class of estimators in simple random sampling, Ain Shams Eng. J., 14 (2023), 102012. https://doi.org/10.1016/j.asej.2022.102012 doi: 10.1016/j.asej.2022.102012
|
| [23] |
U. Daraz, M. A. Alomair, O. Albalawi, A. S. Al Naim, New techniques for estimating finite population variance using ranks of auxiliary variable in two-stage sampling, Mathematics, 12 (2024), 2741. https://doi.org/10.3390/math12172741 doi: 10.3390/math12172741
|
| [24] |
A. Haq, M. Usman, M. Khan, Estimation of finite population variance under stratified random sampling, Commun. Stat. Simul. C., 52 (2023), 6193–6209. https://doi.org/10.1080/03610918.2021.2009866 doi: 10.1080/03610918.2021.2009866
|
| [25] |
A. Kumar, R. Suhail, S. Katara, Enhanced estimation of population variance under simple random sampling with an application to real data, Int. J. Agric. Stat. Sci., 20 (2024), 87–96. https://doi.org/10.59467/IJASS.2024.20.87 doi: 10.59467/IJASS.2024.20.87
|
| [26] |
S. Ahmad, M. Qureshi, H. Iftikhar, P. C. Rodrigues, M. Z. Rehman, An improved family of unbiased ratio estimators for a population distribution function, AIMS Math., 10 (2025), 1061–1084. https://doi.org/10.3934/math.2025051 doi: 10.3934/math.2025051
|
| [27] |
H. A. Lone, R. Tailor, Estimation of population variance in simple random sampling, J. Stat. Manag. Syst., 20 (2017), 17–38. https://doi.org/10.1080/09720510.2016.1187923 doi: 10.1080/09720510.2016.1187923
|
| [28] |
A. Sanaullah, I. Niaz, J. Shabbir, I. Ehsan, A class of hybrid type estimators for variance of a finite population in simple random sampling, Commun. Stat. Simul. C., 51 (2022), 5609–5619. https://doi.org/10.1080/03610918.2020.1776873 doi: 10.1080/03610918.2020.1776873
|
| [29] |
M. Abbas, M. Ahmed Shehzad, H. Khurram, M. Rabia, Estimation of finite population mean in a complex survey sampling, PLOS One, 20 (2025), e0324559. https://doi.org/10.1371/journal.pone.0324559 doi: 10.1371/journal.pone.0324559
|
| [30] |
M. Abbas, A. Haq, Estimation of finite population distribution function with auxiliary information in a complex survey sampling, SORT, 46 (2022), 67–94. https://doi.org/10.2436/20.8080.02.118 doi: 10.2436/20.8080.02.118
|
| [31] |
A. Haq, M. Abbas, M. Khan, Estimation of finite population distribution function in a complex survey sampling, Commun. Stat. Theor. M., 52 (2023), 2574–2596. https://doi.org/10.1080/03610926.2021.1955386 doi: 10.1080/03610926.2021.1955386
|
| [32] |
N. Nematollahi, M. M. Salehi, R. A. Saba, Two-stage cluster sampling with ranked set sampling in the secondary sampling frame, Commun. Stat. Theor. M., 37 (2008), 2404–2415. https://doi.org/10.1080/03610920801919684 doi: 10.1080/03610920801919684
|
| [33] |
M. Abbas, M. Ahmed Shehzad, H. Khurram, M. Rabia, Estimation of the distribution function of a finite population utilizing auxiliary information in the context of non-response within complex survey sampling, PLoS One, 20 (2025), e0322660. https://doi.org/10.1371/journal.pone.0322660 doi: 10.1371/journal.pone.0322660
|
| [34] | M. N. Murthy, Sampling theory and methods, 1967. |
| [35] |
A. Haq, J. Brown, E. Moltchanova, Hybrid ranked set sampling scheme, J. Stat. Comput. Sim., 86 (2016), 1–28. https://doi.org/10.1080/00949655.2014.991930 doi: 10.1080/00949655.2014.991930
|
| [36] | M. A. Shehzad, H. Khurram, Z. Iqbal, M. Parveen, M. N. Shabbir, Nutritional status and growth centiles using anthropometric measures of school-aged children and adolescents from multan district, Arch. Pédiatrie, 29 (2022), 133–139. https://doi.org/10.1016/j.arcped.2021.11.010 |
| [37] |
M. Yazdi, E. Zarei, S. Adumene, R. Abbassi, P. Rahnamayiezekavat, Uncertainty modeling in risk assessment of digitalized process systems, Method. Chem. proc. saf., 6 (2022), 389–416. https://doi.org/10.1016/bs.mcps.2022.04.005 doi: 10.1016/bs.mcps.2022.04.005
|
| [38] |
J. Pan, Y. Deng, Y. Yang, Y. Zhang, Location-allocation modelling for rational health planning: Applying a two-step optimization approach to evaluate the spatial accessibility improvement of newly added tertiary hospitals in a metropolitan city of china, Soc. Sci. Med., 338 (2023), 116296. https://doi.org/10.1016/j.socscimed.2023.116296 doi: 10.1016/j.socscimed.2023.116296
|
| [39] |
T. A. A. Ali, Z. Xiao, H. Jiang, B. Li, A class of digital integrators based on trigonometric quadrature rules, IEEE T. Ind. Electron., 71 (2024), 6128–6138. https://doi.org/10.1109/TIE.2023.3290247 doi: 10.1109/TIE.2023.3290247
|
| [40] | E. Zarei, M. Yazdi, R. Moradi, A. BahooToroody, Expert judgment and uncertainty in sociotechnical systems analysis, In: Safety causation analysis in sociotechnical systems: Advanced models and techniques, Cham: Springer, 2024. https://doi.org/10.1007/978-3-031-62470-4_18 |
| [41] |
Y. Lou, M. Cheng, Q. Cao, K. Li, H. Qin, M. Bao, et al., Simultaneous quantification of mirabegron and vibegron in human plasma by hplc-ms/ms and its application in the clinical determination in patients with tumors associated with overactive bladder, J. Pharmaceut. Biomed., 240 (2024), 115937. https://doi.org/10.1016/j.jpba.2023.115937 doi: 10.1016/j.jpba.2023.115937
|
| [42] |
S. Gupta, J. Shabbir, On the use of transformed auxiliary variables in estimating population mean by using two auxiliary variables, J. Stat. Plan. Infer., 137 (2007), 1606–1611. https://doi.org/10.1016/j.jspi.2006.09.008 doi: 10.1016/j.jspi.2006.09.008
|
| [43] | O. Olayiwola, A. Audu, O. Ishaq, S. Olawoore, A. Ibrahim, A class of ratio estimators of a finite population mean using two auxillary variables under two-phase sample scheme, In: Royal statistical society Nigeria local group annual conference proceedings, 2020, 80–95. |
| [44] | C. Kadilar, H. Cingi, Ratio estimators in stratified random sampling, Biometrical J., 45 (2003), 218–225. |