Research article Topical Sections

An inertial hybrid CGP-based algorithm with restart strategy for constrained nonlinear equations and impulse noise image restoration

  • Received: 26 August 2025 Revised: 24 September 2025 Accepted: 10 October 2025 Published: 15 October 2025
  • MSC : 65K05, 90C56

  • The conjugate gradient method is widely recognized as one of the most efficient approaches for solving large-scale optimization problems. In this paper, we have propose a novel hybrid conjugate gradient projection (CGP)-based algorithm that integrates an improved conjugate coefficient derived from the Hestenes-Stiefel (HS) and Polak-Ribière-Polak (PRP) formulas. The proposed algorithm exhibits several key characteristics: (ⅰ) The hybrid coefficient with a single parameter was employed to construct a search direction that ensures both the sufficient descent condition and trust-region feature, enhanced via a restart strategy; (ⅱ) we incorporated an inertial-relaxed scheme alongside a projection technique in a hybrid CGP-based framework for further improving performance; (ⅲ) we established the global convergence of the proposed algorithm under relaxed assumptions, providing a solid theoretical foundation; and (iv) extensive numerical experiments demonstrated the superior numerical performance of the proposed algorithm compared to existing algorithms on large-scale constrained nonlinear equations and impulse noise image restoration problems.

    Citation: Yan Xia, Dandan Li. An inertial hybrid CGP-based algorithm with restart strategy for constrained nonlinear equations and impulse noise image restoration[J]. AIMS Mathematics, 2025, 10(10): 23360-23379. doi: 10.3934/math.20251037

    Related Papers:

  • The conjugate gradient method is widely recognized as one of the most efficient approaches for solving large-scale optimization problems. In this paper, we have propose a novel hybrid conjugate gradient projection (CGP)-based algorithm that integrates an improved conjugate coefficient derived from the Hestenes-Stiefel (HS) and Polak-Ribière-Polak (PRP) formulas. The proposed algorithm exhibits several key characteristics: (ⅰ) The hybrid coefficient with a single parameter was employed to construct a search direction that ensures both the sufficient descent condition and trust-region feature, enhanced via a restart strategy; (ⅱ) we incorporated an inertial-relaxed scheme alongside a projection technique in a hybrid CGP-based framework for further improving performance; (ⅲ) we established the global convergence of the proposed algorithm under relaxed assumptions, providing a solid theoretical foundation; and (iv) extensive numerical experiments demonstrated the superior numerical performance of the proposed algorithm compared to existing algorithms on large-scale constrained nonlinear equations and impulse noise image restoration problems.



    加载中


    [1] G. Ma, J. Jin, J. Jian, J. Yin, D. Han, A modified inertial three-term conjugate gradient projection method for constrained nonlinear equations with applications in compressed sensing, Numer. Algor., 92 (2023), 1621–1653. https://doi.org/10.1007/s11075-022-01356-1 doi: 10.1007/s11075-022-01356-1
    [2] M. Koorapetse, P. Kaelo, S. Lekoko, T. Diphofu, A derivative-free RMIL conjugate gradient projection method for convex constrained nonlinear monotone equations with applications in compressive sensing, Appl. Numer. Math., 165 (2021), 431–441. https://doi.org/10.1016/j.apnum.2021.03.005 doi: 10.1016/j.apnum.2021.03.005
    [3] X.-B. Jin, X.-Y. Zhang, K. Huang, G.-G. Geng, Stochastic conjugate gradient algorithm with variance reduction, IEEE Trans. Neur. Net. Learn. Syst., 30 (2019), 1360–1369. https://doi.org/10.1109/TNNLS.2018.2868835 doi: 10.1109/TNNLS.2018.2868835
    [4] A. B. Abubakar, A. H. Ibrahim, Y. Feng, Derivative-free projection CG-based algorithm with restart strategy for solving convex-constrained nonlinear monotone equations and its application to logistic regression, J. Comput. Appl. Math., 471 (2026), 116676. https://doi.org/10.1016/j.cam.2025.116676 doi: 10.1016/j.cam.2025.116676
    [5] P. Liu, L. Li, H. Shao, M. Liu, J. Fan, An inertial-type CG projection method with restart for pseudo-monotone costs with application to traffic assignment, Netw. Spat. Econ., 25 (2025), 147–172. https://doi.org/10.1007/s11067-024-09653-z doi: 10.1007/s11067-024-09653-z
    [6] G. Zhou, K. Toh, Superlinear convergence of a Newton-type algorithm for monotone equations, J. Optim. Theory Appl., 125 (2005), 205–221. https://doi.org/10.1007/s10957-004-1721-7 doi: 10.1007/s10957-004-1721-7
    [7] B. Polyak, A. Tremba, New versions of Newton method: step-size choice, convergence domain and under-determined equations, Optim. Method. Softw., 35 (2020), 1272–1303. https://doi.org/10.1080/10556788.2019.1669154 doi: 10.1080/10556788.2019.1669154
    [8] Z. Chen, W. Cheng, X. Li, A global convergent quasi-Newton method for systems of monotone equations, J. Appl. Math. Comput., 44 (2014), 455–465. https://doi.org/10.1007/s12190-013-0702-0 doi: 10.1007/s12190-013-0702-0
    [9] C. A. Arias, C. Gómez, Inexact free derivative quasi-Newton method for large-scale nonlinear system of equations, Numer. Algor., 94 (2023), 1103–1123. https://doi.org/10.1007/s11075-023-01529-6 doi: 10.1007/s11075-023-01529-6
    [10] J. Yin, J. Jian, G. Ma, A modified inexact Levenberg-Marquardt method with the descent property for solving nonlinear equations, Comput. Optim. Appl., 87 (2024), 289–322. https://doi.org/10.1007/s10589-023-00513-z doi: 10.1007/s10589-023-00513-z
    [11] S. B. Salihu, A. S. Halilu, M. Abdullahi, K. Ahmed, P. Mehta, S. Murtala, An improved spectral conjugate gradient projection method for monotone nonlinear equations with application, J. Appl. Math. Comput., 70 (2024), 3879–3915. https://doi.org/10.1007/s12190-024-02121-4 doi: 10.1007/s12190-024-02121-4
    [12] M. Y. Waziri, K. Ahmed, A. S. Halilu, A modified PRP-type conjugate gradient projection algorithm for solving large-scale monotone nonlinear equations with convex constraint, J. Comput. Appl. Math., 407 (2022), 114035. https://doi.org/10.1016/j.cam.2021.114035 doi: 10.1016/j.cam.2021.114035
    [13] J. Yin, J. Jian, X. Jiang, M. Liu, L. Wang, A hybrid three-term conjugate gradient projection method for constrained nonlinear monotone equations with applications, Numer. Algor., 88 (2021), 389–418. https://doi.org/10.1007/s11075-020-01043-z doi: 10.1007/s11075-020-01043-z
    [14] D. Li, S. Wang, Y. Li, J. Wu, A convergence analysis of hybrid gradient projection algorithm for constrained nonlinear equations with applications in compressed sensing, Numer. Algor., 95 (2024), 1325–1345. https://doi.org/10.1007/s11075-023-01610-0 doi: 10.1007/s11075-023-01610-0
    [15] D. Li, S. Wang, Y. Li, J. Wu, A modified SGP method with two alternative spectral parameters for constrained nonlinear equations with a compressive sensing application, J. Comput. Appl. Math., 463 (2025), 116503. https://doi.org/10.1016/j.cam.2025.116503 doi: 10.1016/j.cam.2025.116503
    [16] P. Liu, H. Shao, Z. Yuan, X. Wu, T. Zheng, A family of three-term conjugate gradient projection methods with a restart procedure and their relaxed-inertial extensions for the constrained nonlinear pseudo-monotone equations with applications, Numer. Algor., 94 (2023), 1055–1083. https://doi.org/10.1007/s11075-023-01527-8 doi: 10.1007/s11075-023-01527-8
    [17] W. Liu, J. Jian, J. Yin, An inertial spectral conjugate gradient projection method for constrained nonlinear pseudo-monotone equations, Numer. Algor., 97 (2024), 985–1015. https://doi.org/10.1007/s11075-023-01736-1 doi: 10.1007/s11075-023-01736-1
    [18] H. Zheng, J. Li, P. Liu, X. Rong, An inertial Fletcher-Reeves-type conjugate gradient projection-based method and its spectral extension for constrained nonlinear equations, J. Appl. Math. Comput., 70 (2024), 2427–2452. https://doi.org/10.1007/s12190-024-02062-y doi: 10.1007/s12190-024-02062-y
    [19] P. Liu, H. Shao, Z. Yuan, J. Zhou, A family of inertial-based derivative-free projection methods with a correction step for constrained nonlinear equations and their applications, Numer. Linear Algebra Appl., 31 (2024), e2533. https://doi.org/10.1002/nla.2533 doi: 10.1002/nla.2533
    [20] N. Zhang, J. K. Liu, L. Q. Zhang, Z. L. Lu, A fast inertial self-adaptive projection based algorithm for solving large-scale nonlinear monotone equations, J. Comput. Appl. Math., 426 (2023), 115087. https://doi.org/10.1016/j.cam.2023.115087 doi: 10.1016/j.cam.2023.115087
    [21] A. H. Ibrahim, S. Al-Homidan, Two-step inertial derivative-free projection method for solving nonlinear equations with application, J. Comput. Appl. Math., 451 (2024), 116071. https://doi.org/10.1016/j.cam.2024.116071 doi: 10.1016/j.cam.2024.116071
    [22] J. L. Nazareth, Conjugate-gradient methods, In: Encyclopedia of optimization, Boston: Springer, 2008,466–470. https://doi.org/10.1007/978-0-387-74759-0_85
    [23] Z. Wei, H. Huang, Y. Tao, A modified Hestenes-Stiefel conjugate gradient method and its convergence, J. Math. Res. Expos., 30 (2010), 297–308.
    [24] Y. Zhang, H. Zheng, C. Zhang, Global convergence of a modified PRP conjugate gradient method, Procedia Engineering, 31 (2012), 986–995. https://doi.org/10.1016/j.proeng.2012.01.1131 doi: 10.1016/j.proeng.2012.01.1131
    [25] D. Li, J. Wu, Y. Li, S. Wang, A modified spectral gradient projection-based algorithm for large-scale constrained nonlinear equations with applications in compressive sensing, J. Comput. Appl. Math., 424 (2023), 115006. https://doi.org/10.1016/j.cam.2022.115006 doi: 10.1016/j.cam.2022.115006
    [26] A. B. Muhammad, C. Tammer, A. M. Awwal, R. Elster, Z. Ma, Inertial-type projetion methods for sovling convex constrained monotone nonlinear equations with applications to robotic motion control, J. Nonlinear Var. Anal., 5 (2021), 831–849. https://doi.org/10.23952/jnva.5.2021.5.13 doi: 10.23952/jnva.5.2021.5.13
    [27] X. Jiang, Z. Huang, An accelerated relaxed-inertial strategy based CGP algorithm with restart technique for constrained nonlinear pseudo-monotone equations to image de-blurring problems, J. Comput. Appl. Math., 447 (2024), 115887. https://doi.org/10.1016/j.cam.2024.115887 doi: 10.1016/j.cam.2024.115887
    [28] E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201–213. https://doi.org/10.1007/s101070100263 doi: 10.1007/s101070100263
    [29] R. H. Chan, C. W. Ho, M. Nikolova, Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization, IEEE Trans. Image Process., 14 (2005), 1479–1485. https://doi.org/10.1109/TIP.2005.852196 doi: 10.1109/TIP.2005.852196
    [30] J. F. Cai, R. H. Chan, C. Di Fiore, Minimization of a detail-preserving regularization functional for impulse noise removal, J. Math. Imaging Vis., 29 (2007), 79–91. https://doi.org/10.1007/s10851-007-0027-4 doi: 10.1007/s10851-007-0027-4
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(213) PDF downloads(11) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog