

https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(10): 23360–23379.

DOI:10.3934/math.20251037 Received: 26 August 2025 Revised: 24 September 2025 Accepted: 10 October 2025

Published: 15 October 2025

Research article

An inertial hybrid CGP-based algorithm with restart strategy for constrained nonlinear equations and impulse noise image restoration

Yan Xia and Dandan Li*

School of Artificial Intelligence, Guangzhou Huashang College, Guangzhou 511300, China

* Correspondence: Email: liddjq@gdhsc.edu.cn.

Abstract: The conjugate gradient method is widely recognized as one of the most efficient approaches for solving large-scale optimization problems. In this paper, we have propose a novel hybrid conjugate gradient projection (CGP)-based algorithm that integrates an improved conjugate coefficient derived from the Hestenes-Stiefel (HS) and Polak-Ribière-Polak (PRP) formulas. The proposed algorithm exhibits several key characteristics: (i) The hybrid coefficient with a single parameter was employed to construct a search direction that ensures both the sufficient descent condition and trust-region feature, enhanced via a restart strategy; (ii) we incorporated an inertial-relaxed scheme alongside a projection technique in a hybrid CGP-based framework for further improving performance; (iii) we established the global convergence of the proposed algorithm under relaxed assumptions, providing a solid theoretical foundation; and (iv) extensive numerical experiments demonstrated the superior numerical performance of the proposed algorithm compared to existing algorithms on large-scale constrained nonlinear equations and impulse noise image restoration problems.

Keywords: nonlinear equations; conjugate gradient projection method; inertial-related scheme; theoretical analysis; impulse noise image restoration Mathematics Subject Classification: 65K05, 90C56

1. Introduction

The goal of this paper is to find solutions of constrained nonlinear monotone equations (CNME), which can be formulated as follows:

$$G(x) = 0, \quad x \in \mathcal{D},\tag{1.1}$$

where $G: \mathbb{R}^n \to \mathbb{R}^n$ is continuous, and $\mathcal{D} \subseteq \mathbb{R}^n$ is a non-empty and closed convex set. Specifically, the CNME (1.1) reduces to unconstrained nonlinear monotone equations when \mathcal{D} is set to \mathbb{R}^n .

Nonlinear monotone equations have received significant attention in various engineering applications, such as compressive sensing [1,2], machine learning [3], logistic regression [4], and traffic assignment [5]. Generally speaking, iterative methods for solving nonlinear monotone equations can be categorized into two primary types: derivative-based methods and derivative-free methods. Derivative-based methods include Newton-type methods [6, 7], quasi-Newton methods [8, 9], and Levenberg-Marquardt methods [10]. These methods are known for their rapid convergence. However, they are often difficult to apply to large-scale nonlinear equations due to the need to compute and store the Jacobian matrix or its approximation at each iteration. In contrast, derivative-free methods have proven to be well-suited for large-scale nonlinear equations, as they do not rely on derivatives, making them more efficient for such problems.

The CGP method, a derivative-free approach, is widely recognized as an efficient technique for solving large-scale nonlinear equations. This efficiency stems from its simplicity and low memory requirements. For instance, Salihu et al. [11] proposed an enhanced spectral CGP-based method for solving monotone nonlinear equations, particularly in signal processing applications. In another example, Waziri et al. [12] combined the adaptive PRP scheme with the projection technique, presenting a numerically efficient PRP-type method for systems of monotone nonlinear equations where the solution is confined to a closed convex set. Based on the three-term conjugate gradient method and hybrid techniques, Yin et al. [13] introduced a hybrid three-term CGP method, incorporating an adaptive line search for solving large-scale nonlinear monotone equations with convex constraints. Additional relevant methods can be found in works such as [14–16]. However, these approaches do not consider the integration of the inertial-relaxed scheme, which replaces the current point with an inertial point that includes both the current and previous points. This scheme is designed to accelerate the method and improve its performance. Some recent works have employed this scheme to enhance the numerical performance of the CGP method. For example, Liu et al. [17] developed a spectral CGP-based method with an inertial factor for solving nonlinear equations, while Zheng et al. [18] improved the Fletcher-Reeves (FR) conjugate parameter with a shrinkage multiplier, leading to a derivative-free two-term search direction and its extended spectral version. Further inertialrelaxed CGP-based methods can be found in [19–21].

In this paper, we focus on enhancing the double-parameter-based conjugate gradient methods introduced in [22] by utilizing a hybridization approach and a restart strategy. To achieve this, we propose an inertial hybrid CGP-based algorithm for solving the CNME (1.1) and apply it to impulse noise image restoration problems. The key contributions of this paper are outlined as follows:

- ♦ A hybrid conjugate coefficient with a single parameter is designed based on a double-parameter conjugate coefficient. This new conjugate coefficient is then used to construct a novel search direction that satisfies the sufficient descent property and trust region feature by integrating the restart strategy.
- ♦ By combining the projection technique with an inertial scheme, we propose an inertial hybrid CGP-based algorithm for solving constrained nonlinear equations and addressing impulse noise image restoration. The global convergence of the proposed algorithm is proved under weaker assumptions, which only require the monotonicity of the nonlinear equations.
- ♦ The proposed algorithm is applied to large-scale constrained nonlinear equations and impulse noise image restoration problems. Experimental results demonstrate its efficiency and competitiveness compared to existing methods.

2. Motivation and algorithm

In this section, we propose an inertial hybrid CGP-based (IHCGPB) algorithm, which is designed by introducing a new hybrid conjugate coefficient and incorporating a restart strategy to accelerate the descent of its search direction.

To begin with, we review conjugate gradient methods, which are widely used to solve unconstrained optimization problems of the form $\min\{f(x) \mid x \in \mathbb{R}^n\}$. These methods iterate along the update formula $x_{k+1} = x_k + t_k d_k$, where t_k denotes the step-length, and d_k is the search direction determined by the conjugate coefficient β_k . Some well-known conjugate coefficients include the FR, PRP, HS, and Dai-Yuan (DY), which are defined as follows:

$$\beta_k^{FR} = \frac{||g_k||^2}{||g_{k-1}||^2}, \quad \beta_k^{PRP} = \frac{g_k^T v_{k-1}}{||g_{k-1}||^2}, \quad \beta_k^{HS} = \frac{g_k^T v_{k-1}}{d_{k-1}^T v_{k-1}}, \quad \beta_k^{DY} = \frac{||g_k||^2}{d_{k-1}^T v_{k-1}},$$

where $g_k := \nabla f(x_k)$, $v_{k-1} = g_k - g_{k-1}$, and $\|\cdot\|$ denotes the Euclidean norm. According to these methods, Nazareth [22] proposed a hybrid formulation of a double-parameter-based conjugate coefficient, defined by

$$\beta_k = \frac{\lambda_k ||g_k||^2 + (1 - \lambda_k) g_k^T v_{k-1}}{\eta_k ||g_{k-1}||^2 + (1 - \eta_k) d_{k-1}^T v_{k-1}},$$
(2.1)

where $0 \le \lambda_k, \eta_k \le 1$. To ensure the sufficient descent condition, Wei et al. [23] slightly modified the HS method, yielding a new conjugate coefficient formula:

$$\beta_k = \frac{g_k^T \left(g_k - \frac{g_k^T g_{k-1}}{\|g_{k-1}\|^2} g_{k-1} \right)}{d_{k-1}^T v_{k-1}}.$$
(2.2)

Similarly, Zhang et al. [24] proposed a modified PRP conjugate gradient method, which introduced a new formula for the conjugate coefficient:

$$\beta_k = \frac{g_k^T \left(g_k - \frac{g_k^T g_{k-1}}{\|g_{k-1}\|^2} g_{k-1}\right)}{\|g_{k-1}\|^2}.$$
 (2.3)

Motivated by the construction of the hybrid conjugate coefficient defined in (2.1), and inspired by the improvements made to the HS and PRP conjugate coefficients defined in (2.2) and (2.3), we propose a new double-parameter-based conjugate coefficient. This coefficient is designed to enhance the theoretical and numerical performance. Specifically, it is expressed as:

$$\beta_k = \frac{\lambda_k \left[g_k^T \left(g_k - \frac{g_k^T g_{k-1}}{\|g_{k-1}\|^2} g_{k-1} \right) \right] + (1 - \lambda_k) \|g_k\|^2}{\eta_k \|g_{k-1}\|^2 + (1 - \eta_k) d_{k-1}^T v_{k-1}},$$
(2.4)

which allows the method to incorporate information from each of the four methods at every iteration. However, the selection of the double parameters (i.e., λ_k and η_k) is not trivial. By setting $\eta_k = \frac{1}{2}$, we can simplify (2.4) into a single-parameter-based conjugate coefficient as follows:

$$\beta_k = \frac{2\left(\|g_k\|^2 - \lambda_k \frac{(g_k^T g_{k-1})^2}{\|g_{k-1}\|^2}\right)}{\|g_{k-1}\|^2 + d_{k-1}^T v_{k-1}},\tag{2.5}$$

which serves as a more tractable alternative. To ensure the global convergence under weaker assumptions, we further refine this expression to:

$$\beta_{k} = \frac{2\left(\|g_{k}\|^{2} - \lambda_{k} \frac{\left(g_{k}^{T} g_{k-1}\right)^{2}}{\|g_{k-1}\|^{2}}\right)}{\max\left\{\|g_{k-1}\|^{2} + d_{k-1}^{T} v_{k-1}, \mu_{1} \|g_{k-1}\|^{2}, \mu_{2} \|g_{k} \| \|d_{k-1}\|\right\}},$$
(2.6)

where $\mu_1 \ge 2$ and $\mu_2 > 0$. Based on the above discussion, we propose an inertial hybrid CGP-based algorithm with a restart strategy to solve the CNME (1.1) by extending this conjugate coefficient (2.6). The inertial scheme of such an algorithm is used to evaluate the inertial step-length through the following formula:

$$\tau_k = \begin{cases} \min\left\{\tau, \frac{1}{k^2 ||x_k - x_{k-1}||^2}\right\}, & \text{if } x_k \neq x_{k-1}, \\ \tau, & \text{otherwise,} \end{cases}$$
 (2.7)

where $\tau \in (0, 1)$ and $0 \le \tau_k \le \tau < 1$. From this, the following inequality holds:

$$|\tau_k||x_k - x_{k-1}||^2 \le \frac{1}{k^2}, \quad \forall k \ge 1,$$
 (2.8)

which implies that:

$$\sum_{k=1}^{+\infty} \tau_k ||x_k - x_{k-1}||^2 \le \sum_{k=1}^{+\infty} \frac{1}{k^2} < +\infty.$$
 (2.9)

Using this inertial step-length, we evaluate the inertial point by $y_k = x_k + \tau_k(x_k - x_{k-1})$. Consequently, the search direction is defined as:

$$d_{k} = \begin{cases} -G(y_{k}), & k = 0, \\ -G(y_{k}) + \beta_{k}^{IHCGP} d_{k-1}, & \text{if flag and } k \ge 1, \\ -G(y_{k}) + \zeta \frac{G(y_{k})^{T} d_{k-1}}{\|d_{k-1}\|^{2}} d_{k-1}, & \text{otherwise,} \end{cases}$$
(2.10)

where

flag :=
$$-v_1 ||G(y_{k-1})||^2 \le G(y_k)^T d_{k-1} \le v_2 ||G(y_{k-1})||^2 \in \{\text{True}, \text{False}\},\$$

$$\beta_k^{IHCGP} = \frac{2\left(||G(y_k)||^2 - \lambda_k \frac{\left(G(y_k)^T G(y_{k-1})\right)^2}{||G(y_{k-1})||^2}\right)}{\max\left\{||G(y_{k-1})||^2 + d_{k-1}^T \tilde{v}_{k-1}, \mu_1 ||G(y_{k-1})||^2, \mu_2 ||G(y_k)||||d_{k-1}||\right\}},$$
(2.11)

and
$$|\zeta| < 1$$
, $\tilde{v}_{k-1} = G(y_k) - G(y_{k-1})$, $0 < v_1, v_2 < 1$.

Based on the search direction in (2.10) and the conjugate coefficient in (2.11), we describe the proposed algorithm as follows:

Algorithm 1 IHCGPB algorithm

Step 0. Initial points $x_0 \in \mathbb{R}^n$; Parameters $\epsilon \in (0, 1), \mu_1 \ge 2, \mu_2 > 0, \tau \in (0, 1), \varsigma > 0, \rho \in (0, 1), \sigma > 0, \kappa_2 > \kappa_1 > 0, 0 < \nu_1, \nu_2 < 1, 0 < \lambda_k < 1, \text{ and } \gamma \in (0, 2); \text{ Set } k := 0 \text{ and } x_{-1} := x_0.$

Step 1. Evaluate $||G(x_k)||$. If $||G(x_k)|| \le \epsilon$, then stop.

Step 2. Evaluate the inertial step-length by (2.7) to generate $y_k = x_k + \tau_k(x_k - x_{k-1})$. If $||G(y_k)|| \le \epsilon$, then stop.

Step 3. Evaluate the search direction d_k by (2.10) and (2.11).

Step 4. Set $z_k = y_k + t_k d_k$, where the step-length $t_k = \varsigma \rho^{i_k}$ and i_k is the smallest non-negative integer i that satisfies

$$-G(y_k + \varsigma \rho^i d_k)^T d_k \ge \sigma \varsigma \rho^i M_k(i) ||d_k||^2, \tag{2.12}$$

where $M_k(i) = \min \{ \kappa_2, \max \{ ||G(y_k + \varsigma \rho^i d_k)||, \kappa_1 \} \}$. If $||G(z_k)|| \le \epsilon$, then stop.

Step 5. Evaluate the next point x_{k+1} by

$$x_{k+1} = \mathcal{P}_{\mathcal{D}}\left[y_k - \gamma \vartheta_k G(z_k)\right], \quad \vartheta_k = \frac{G(z_k)^T (y_k - z_k)}{\|G(z_k)\|^2}.$$
 (2.13)

Remark 1. The adaptive line search approach in (2.12) is well-defined, and its complete proof can be found in Lemma 3.2 of [25]. This implies that there exists a positive integer i_k such that (2.12) holds. Otherwise, we assume that there exists an index $k_0 \ge 0$ such that (2.12) is not satisfied for any i, i.e.,

$$-G(y_{k_0} + \varsigma \rho^i d_{k_0})^T d_{k_0} < \sigma \varsigma \rho^i M_{k_0}(i) ||d_{k_0}||^2.$$

We take limits in this inequality as $i \to +\infty$, which indicates that $G(y_{k_0})^T d_{k_0} \ge 0$ is satisfied from the continuity of G and $\rho \in (0, 1)$. However, this result contradicts the sufficient descent property discussed in Section 3. Therefore, the adaptive line search approach is well-defined.

Remark 2. From Step 5 of the IHCGPB algorithm, for the closed convex set $\mathcal{D} \subseteq \mathbb{R}^n$, the projection operator $\mathcal{P}_{\mathcal{D}}[\cdot]$ is defined as:

$$\mathcal{P}_{\mathcal{D}}[x] = \arg\min\{||y - x|| \mid y \in \mathcal{D}\}.$$

This projection operator satisfies the non-expensive property:

$$\|\mathcal{P}_{\mathcal{D}}[x] - \mathcal{P}_{\mathcal{D}}[y]\| \le \|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$
(2.14)

3. Theoretical analysis of the proposed algorithm

In this section, we present the theoretical analysis of the IHCGPB algorithm. To facilitate this analysis, we introduce the following general assumptions:

Assumption A1: The CNME (1.1) has a non-empty solution set \mathcal{D}_* .

Assumption A2: The function G(x) is monotone over the set \mathbb{R}^n , i.e.,

$$(G(x) - G(y))^T (x - y) \ge 0, \quad \forall x, y \in \mathbb{R}^n.$$

These assumptions are fundamental in establishing the convergence behavior of the IHCGPB algorithm, as they ensure that the iterative process converges to a solution within the feasible region of the CNME (1.1).

The following lemma shows that the search direction generated by the algorithm satisfies the sufficient descent property.

Lemma 1. For all $k \ge 0$, the search direction generated from (2.10) and (2.11) satisfies the sufficient descent property, i.e.,

$$G(y_k)^T d_k \le -N ||G(y_k)||^2,$$
 (3.1)

where $N = \min\{1 - \frac{2\nu}{\mu_1}, 1 - \zeta\}$ and $\nu = \max\{\nu_1, \nu_2\}$.

Proof. For k = 0, it is easy to observe that $G(y_0)^T d_0 = -||G(y_0)||^2$. For $k \ge 0$, we proceed by considering the following two cases:

(i) If $-v_1 ||G(y_{k-1})||^2 \le G(y_k)^T d_{k-1} \le v_2 ||G(y_{k-1})||^2$, then the relation $|G(y_k)^T d_{k-1}| \le v ||G(y_{k-1})||^2$ holds, with $v = \max\{v_1, v_2\}$. Combining this with (2.10) and (2.11), we derive the following inequality:

$$G(y_{k})^{T}d_{k} = -\|G(y_{k})\|^{2} + \beta_{k}^{IHCGP}G(y_{k})^{T}d_{k-1}$$

$$\leq -\|G(y_{k})\|^{2} + \beta_{k}^{IHCGP}|G(y_{k})^{T}d_{k-1}|$$

$$\leq -\|G(y_{k})\|^{2} + \frac{2\|G(y_{k})\|^{2}}{\mu_{1}\|G(y_{k-1})\|^{2}}\nu\|G(y_{k-1})\|^{2}$$

$$= -\left(1 - \frac{2\nu}{\mu_{1}}\right)\|G(y_{k})\|^{2}.$$

(ii) If $G(y_k)^T d_{k-1} < -\nu_1 ||G(y_{k-1})||^2$ or $G(y_k)^T d_{k-1} > \nu_2 ||G(y_{k-1})||^2$, then the following relation holds:

$$G(y_k)^T d_k \le -\|G(y_k)\|^2 + \zeta \frac{\|G(y_k)\| \|d_{k-1}\|}{\|d_{k-1}\|^2} \|G(y_k)\| \|d_{k-1}\| = -(1-\zeta) \|G(y_k)\|^2.$$

By combining the results from these two cases, we conclude that $G(y_k)^T d_k \le N ||G(y_k)||^2$ with $N = \min\{1 - \frac{2\nu}{\mu_1}, 1 - \zeta\}$. Thus, the proof is complete.

Lemma 2. Suppose that Assumptions A1 and A2 hold. Then, the following relations hold:

$$a_{-1} = a_0, \quad a_{k+1} - a_k \le \tau_k (a_k - a_{k-1}) + b_k - \gamma (2 - \gamma) \frac{t_k^4 \sigma^2 \kappa_1^2 ||d_k||^4}{||G(z_k)||^2},$$

where $a_k = ||x_k - x_*||^2$ and $b_k = 2\tau_k ||x_k - x_{k-1}||^2$.

Proof. It is easy to see that $a_{-1} = a_0$ holds due to $x_{-1} = x_0$ and the definition of a_k . We begin by applying the adaptive line search in (2.12) and using the definition of z_k . This leads to the following:

$$G(z_k)^T (y_k - z_k) = -t_k G(z_k)^T d_k \ge t_k^2 \sigma M_k(i_k) ||d_k||^2 \ge t_k^2 \sigma \kappa_1 ||d_k||^2 > 0,$$
(3.2)

which, together with Assumption A2, yields:

$$G(z_{k})^{T}(y_{k} - x_{*}) = G(z_{k})^{T}(y_{k} - z_{k}) + G(z_{k})^{T}(z_{k} - x_{*})$$

$$= G(z_{k})^{T}(y_{k} - z_{k}) + (G(z_{k}) - G(x_{*}))^{T}(z_{k} - x_{*})$$

$$\geq G(z_{k})^{T}(y_{k} - z_{k}).$$
(3.3)

Using the projection operator $\mathcal{P}_{\mathcal{D}}[\cdot]$ and the non-expansive property in (2.14), we obtain:

$$||x_{k+1} - x_*||^2 = ||\mathcal{P}_{\mathcal{D}}[y_k - \gamma \vartheta_k G(z_k)] - \mathcal{P}_{\mathcal{D}}[x_*]||^2$$

$$\leq ||y_k - \gamma \vartheta_k G(z_k) - x_*||^2$$

$$= ||y_k - x_*||^2 - 2\gamma \vartheta_k G(z_k)^T (y_k - x_*) + \gamma^2 \vartheta_k^2 ||G(z_k)||^2.$$

Using the above inequality and (3.3), we obtain:

$$||x_{k+1} - x_*||^2 \le ||y_k - x_*||^2 - 2\gamma \vartheta_k G(z_k)^T (y_k - z_k) + \gamma^2 \vartheta_k^2 ||G(z_k)||^2$$

which, together with the definition of ϑ_k and (3.2), yields:

$$||x_{k+1} - x_*||^2 \le ||y_k - x_*||^2 - \gamma (2 - \gamma) \frac{\left(G(z_k)^T (y_k - z_k)\right)^2}{||G(z_k)||^2}$$

$$\le ||y_k - x_*||^2 - \gamma (2 - \gamma) \frac{t_k^4 \sigma^2 \kappa_1^2 ||d_k||^4}{||G(z_k)||^2}.$$
(3.4)

Next, we analyze the term $||y_k - x_*||^2$. Using the definition of y_k , we get:

$$||y_{k} - x_{*}||^{2} = ||x_{k} + \tau_{k}(x_{k} - x_{k-1}) - x_{*}||^{2}$$

$$= ||x_{k} - x_{*}||^{2} + \tau_{k}(x_{k} - x_{k-1})^{T}(x_{k} - x_{*}) + \tau_{k}^{2}||x_{k} - x_{k-1}||^{2}$$

$$= ||x_{k} - x_{*}||^{2} + \tau_{k}(||x_{k} - x_{*}||^{2} - ||x_{k-1} - x_{*}||^{2}) + (\tau_{k}^{2} + \tau_{k})||x_{k} - x_{k-1}||^{2}.$$

Considering the range of τ_k (i.e., $0 \le \tau_k \le 1$), we obtain:

$$||y_k - x_*||^2 \le ||x_k - x_*||^2 + \tau_k \left(||x_k - x_*||^2 - ||x_{k-1} - x_*||^2 \right) + 2\tau_k ||x_k - x_{k-1}||^2.$$
(3.5)

Combining (3.4) with (3.5), we conclude that the proof is complete.

Lemma 3. Suppose that Assumptions A1 and A2 hold. Under these conditions, it follows that the limit $\lim_{k\to +\infty} ||x_k - x_*||$ exists with $x_* \in \mathcal{D}_*$.

Proof. From Lemma 2, together with the fact that $\gamma \in (0,2)$, we have the relation $a_{k+1} - a_k \le \tau_k(a_k - a_{k-1}) + b_k$. Applying this inequality, we obtain:

$$c_{k+1} \le \tau_k c_k + b_k \le \tau_k h(c_k) + b_k,$$

where $c_k := a_k - a_{k-1}$ and $h(\cdot) = \max\{\cdot, 0\}$. Using this inequality, and knowing that $\tau \in (0, 1)$ and $c_0 = 0$, we further derive:

$$h(c_{k+1}) \le \tau_k h(c_k) + b_k \le \tau^{k+1} h(c_0) + \sum_{i=0}^k \tau^i b_{k-i} = \sum_{i=0}^k \tau^i b_{k-i}.$$

Summing both sides of this inequality from 0 to ∞ , we obtain:

$$\sum_{k=0}^{+\infty} h(c_{k+1}) \le \sum_{k=0}^{+\infty} \left(\sum_{i=0}^{k} \tau^{i} b_{k-i} \right) \le \sum_{k=0}^{+\infty} \left(\sum_{i=0}^{k} \tau^{i} b_{k} \right) \le \sum_{k=0}^{+\infty} \left(\sum_{i=0}^{+\infty} \tau^{i} b_{k} \right).$$

This leads, in combination with (2.9), to:

$$\sum_{k=0}^{+\infty} h(c_{k+1}) \le \left(\sum_{i=0}^{+\infty} \tau^i\right) \left(\sum_{k=0}^{+\infty} b_k\right) = \frac{1}{1-\tau} \sum_{k=0}^{+\infty} b_k < +\infty, \tag{3.6}$$

which implies that the sequence $\left\{\sum_{i=0}^k h(c_i)\right\}$ is bounded above. Let $e_k := a_k - \sum_{i=0}^k h(c_i)$, and we have from $a_k \ge 0$ that $\{e_k\}$ is bounded below. Moreover, we can further derive:

$$e_{k+1} = a_{k+1} - h(c_{k+1}) - \sum_{i=0}^{k} h(c_i)$$

$$\leq a_{k+1} - c_{k+1} - \sum_{i=0}^{k} h(c_i)$$

$$= a_k - \sum_{i=0}^{k} h(c_i)$$

$$= e_k.$$
(3.7)

This infers that the sequence $\{e_k\}$ is non-increasing. Thus, the limit $\lim_{k\to+\infty} e_k$ exists, and from 3.7, we obtain:

$$\lim_{k\to+\infty} a_k = \lim_{k\to+\infty} \left(e_k + \sum_{i=0}^k h(c_i) \right) = \lim_{k\to+\infty} e_k + \sum_{i=0}^\infty h(c_i) < +\infty.$$

Hence, we conclude that the limit $\lim_{k\to+\infty} ||x_k - x_*||$ exists.

Lemma 4. Suppose that Assumptions A1 and A2 hold. Under these conditions, it follows that the sequences $\{x_k\}$ and $\{y_k\}$ are both bounded.

Proof. From Lemma 3, we know that the sequence $\{x_k\}$ is bounded. Furthermore, from (2.9), we deduce that $\lim_{k\to+\infty} \tau_k ||x_k - x_{k-1}||^2 = 0$. Now, considering the definition of y_k and the fact that $0 \le \tau_k \le \tau < 1$, we can derive the following:

$$||y_k - x_k||^2 = \tau_k^2 ||x_k - x_{k-1}||^2 \le \tau_k ||x_k - x_{k-1}||^2$$

which leads to the conclusion:

$$\lim_{k \to +\infty} ||y_k - x_k|| = 0. \tag{3.8}$$

Thus, the sequence $\{y_k\}$ is also bounded.

Lemma 5. For all $k \ge 0$, the search direction generated from (2.10) and (2.11) satisfies the trust region feature, i.e.,

$$N||G(y_k)|| \le ||d_k|| \le M||G(y_k)||, \tag{3.9}$$

where $M = \min\{1 + \frac{4}{\mu_2}, 1 + \zeta\}.$

Proof. We begin by considering the conjugate coefficient β_k^{IHCGP} , which, along with $0 < \lambda_k < 1$, can be simplified as:

$$\left| \beta_k^{IHCGP} \right| \le \frac{2 \left(\|G(y_k)\|^2 + \|G(y_k)\|^2 \right)}{\mu_2 \|G(y_k)\| \|d_{k-1}\|} = \frac{4}{\mu_2} \frac{\|G(y_K)\|}{\|d_{k-1}\|}. \tag{3.10}$$

AIMS Mathematics

We now proceed with the proof, considering two cases:

(i) If $-v_1 ||G(y_{k-1})||^2 \le G(y_k)^T d_{k-1} \le v_2 ||G(y_{k-1})||^2$, then, combining this with (2.10) and (3.10), we deduce the following inequality:

$$||d_{k}|| = ||-G(y_{k}) + \beta_{k}^{IHCGP} d_{k-1}||$$

$$\leq ||G(y_{k})|| + |\beta_{k}^{IHCGP}|||d_{k-1}||$$

$$\leq ||G(y_{k})|| + \frac{4}{\mu_{2}} \frac{||G(y_{k})||}{||d_{k-1}||} ||d_{k-1}||$$

$$\leq (1 + \frac{4}{\mu_{2}}) ||G(y_{k})||.$$

(ii) If $G(y_k)^T d_{k-1} < -\nu_1 ||G(y_{k-1})||^2$ or $G(y_k)^T d_{k-1} > \nu_2 ||G(y_{k-1})||^2$, then, using (2.10), we obtain:

$$||d_k|| \le ||G(y_k)|| + \zeta \frac{||G(y_k)|| ||d_{k-1}||}{||d_{k-1}||^2} ||d_{k-1}|| \le (1+\zeta) ||G(y_k)||.$$

Thus, combining the results from these two cases, we conclude that:

$$||d_k|| \le M||G(y_k)||, \quad M = \min\left\{1 + \frac{4}{\mu_2}, 1 + \zeta\right\}.$$

Finally, applying the Cauchy-Schwarz inequality, we obtain from Lemma 1:

$$-||G(y_k)||||d_k|| \le G(y_k)^T d_k \le -N||G(y_k)||^2,$$

which implies that $||d_k|| \ge N||G(y_k)||$. Thus, the proof is complete.

Lemma 6. Suppose that Assumptions A1 and A2 hold. Under these conditions, it follows that the limit $\lim_{k\to +\infty} t_k ||d_k|| = 0$, where the sequence $\{d_k\}$ is generated by the IHCGPB algorithm.

Proof. From Lemma 4 and the continuity of $G(\cdot)$, without loss of generality, we know that there exists a constant ϕ_1 such that the following relations hold:

$$||y_k|| \le \phi_1, \quad ||G(y_k)|| \le \phi_1, \quad \forall k \ge 0.$$
 (3.11)

This, along with Lemma 5, implies that $||d_k|| \le M||G(y_k)|| \le M\phi_1$, meaning the sequence $\{d_k\}$ is bounded. Next, considering the definition of $z_k = y_k + t_k d_k$, $t_k \in (0, \varsigma]$, and Lemma 4, we deduce that the sequence z_k is also bounded. Similarly, by the continuity of $G(\cdot)$, there exists a constant ϕ_2 such that the following relation holds:

$$||G(z_k)|| \le \phi_2, \quad \forall k \ge 0. \tag{3.12}$$

Now, using Lemma 2 and the fact that $\tau_k \leq \tau$, we obtain the following inequality:

$$\gamma(2-\gamma)\frac{t_k^4\sigma^2\kappa_1^2||d_k||^4}{||G(z_k)||^2} \le a_k - a_{k+1} + \tau_k(a_k - a_{k-1}) + b_k \le a_k - a_{k+1} + \tau h(c_k) + b_k.$$

Summing both sides of this inequality, and using (3.6) and (2.9), we obtain:

$$\gamma(2-\gamma)\sigma^2\kappa_1^2\sum_{k=0}^{+\infty}\frac{t_k^4||d_k||^4}{||G(z_k)||^2}\leq a_0+\sum_{k=0}^{+\infty}\tau h(c_k)+\sum_{k=0}^{+\infty}b_k<+\infty,$$

AIMS Mathematics

which implies that

$$\lim_{k \to \infty} \frac{t_k^4 ||d_k||^4}{||G(z_k)||^2} = 0.$$

This result, together with (3.12), leads to the conclusion that $\lim_{k\to+\infty} t_k ||d_k|| = 0$. Thus, the proof is complete.

Theorem 1. Suppose that Assumptions A1 and A2 hold. Under these conditions, it follows that the sequences $\{x_k\}$, $\{y_k\}$, and $\{z_k\}$ converge to a solution of the CNME (1.1).

Proof. We begin by proving that $\lim_{k\to+\infty}\inf \|G(y_k)\| = 0$. Assume that there exists a constant ϕ_3 such that the following relation holds:

$$||G(y_k)|| \le \phi_3, \quad \forall k \ge 0.$$

This result, combined with Lemma 5, implies that

$$||d_k|| \ge N||G(y_k)|| \ge N\phi_3.$$
 (3.13)

Thus, applying Lemma 6, we obtain $\lim_{k\to\infty} t_k = 0$. Without loss of generality, from the boundedness of $\{y_k\}$ and $\{d_k\}$, we define the following limits:

$$\lim_{i\to+\infty}y_{k_i}=\ddot{y},\quad \lim_{i\to+\infty}d_{k_i}=\ddot{d}.$$

Substituting $k := k_i$ into (3.1), we have $G(y_{k_i})^T d_{k_i} \le -N||G(y_{k_i})||^2$. Taking the limit in this inequality, and utilizing the continuity of $G(\cdot)$, we deduce:

$$G(\ddot{y})^T \ddot{d} \le -N||G(\ddot{y})||^2 < 0.$$
 (3.14)

Furthermore, the step-length $\rho^{-1}t_k$ does not satisfy the adaptive line search in (2.12), i.e.,

$$-G(y_k + \rho^{-1}t_k d_k)^T d_k < \sigma \rho^{-1}t_k M_k(i_k) ||d_k||^2 \le \sigma \rho^{-1}t_k \kappa_2 ||d_k||^2.$$

Substituting $k := k_i$ into the above inequality, we have $G(y_{k_i} + \rho^{-1}t_{k_i}d_{k_i})^Td_{k_i} > -\sigma\rho^{-1}t_{k_i}\kappa_2||d_{k_i}||^2$. Taking the limit in this inequality, and utilizing the continuity of $G(\cdot)$ and $\lim_{k\to\infty}t_k=0$, we deduce:

$$G(\ddot{\mathbf{y}})^T \ddot{d} \geq 0$$
,

which contradicts (3.14). Thus, we conclude that $\lim_{k \to +\infty} \inf ||G(y_k)|| = 0$.

Next, from (3.11) and $\lim_{k \to +\infty} \inf ||G(y_k)|| = 0$, we defined the following limits:

$$\lim_{i \to +\infty} y_{k_i} = \ddot{y}, \quad \lim_{i \to +\infty} ||G(y_{k_i})|| = ||G(\ddot{y})|| = 0.$$
(3.15)

Note that from (3.8) and (3.15), it follows that $\lim_{i \to +\infty} x_{k_i} = \ddot{y}$. Since $x_{k_i} \in \mathcal{D}$ and \mathcal{D} is a closed set, we conclude that $\ddot{y} \in \mathcal{D}$. Additionally, (3.15) shows that $\ddot{y} \in \mathcal{D}_*$. Using Lemma 3 for $x_* := \ddot{y}$ and $\lim_{k \to \infty} x_{k_i} = \ddot{y}$, we obtain:

$$\lim_{k \to +\infty} ||x_k - \ddot{y}|| = \lim_{i \to +\infty} ||x_{k_i} - \ddot{y}|| = 0,$$

which implies that the sequence $\{x_k\}$ converges to $\ddot{y} \in \mathcal{D}_*$. Moreover, using the definition of z_k and Lemma 6, we conclude that $\lim_{k\to +\infty} ||z_k - y_k|| = 0$. Combining this with (3.8), we conclude that both sequences $\{y_k\}$ and $\{z_k\}$ converge to \ddot{y} . Thus, the proof is complete.

4. Numerical experiments

We conduct numerical experiments aimed at solving large-scale constrained nonlinear monotone equations as well as impulse noise image restoration problems. To evaluate the performance and competitiveness of the IHCGPB algorithm, we compare it with two existing methods: the CGAIS algorithm [26] and the JHCGPM algorithm [27]. The parameter settings for the IHCGPB algorithm are as follows:

$$\epsilon = 10^{-6}, \ \mu_1 = 2, \ \mu_2 = 4, \ \tau = 0.015, \ \varsigma = 1, \ \rho = 0.55, \ \sigma = 0.0001, \ \kappa_1 = 0.001, \ \kappa_2 = 0.8, \ \upsilon_1 = 0.9, \ \upsilon_2 = 0.4, \ \gamma = 1.55, \lambda_k = |G(y_k)^T d_{k-1}| / ||G(y_k)|| \ ||d_{k-1}||.$$

The parameter settings for the CGAIS and JHCGPM algorithms are adopted directly from their respective original references. All three algorithms were executed on a Lenovo PC, which is equipped with a 2.10 GHz CPU, 16 GB RAM, and the Windows 11 operating system.

4.1. Constrained nonlinear monotone equations

In the following, we consider a series of test problems where the function $G(x) = (G_1(x), G_2(x), \dots, G_n(x))^T$ is defined for $x = (x_1, x_2, \dots, x_n)$. These test problems are designed to assess the performance of the IHCGPB algorithm in solving large-scale constrained nonlinear monotone equations. For each of these problem, we select the initial points as follows: $x_1 = \left(\frac{1}{2}, \frac{1}{2^2}, \dots, \frac{1}{2^n}\right)$, $x_2 = \left(0, \frac{1}{n}, \dots, \frac{n-1}{n}\right)$, $x_3 = \left(1, \frac{1}{2}, \dots, \frac{1}{n}\right)$, $x_4 = \left(\frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\right)$, $x_5 = \left(\frac{n-1}{n}, \frac{n-2}{n}, \dots, \frac{n-n}{n}\right)$, $x_6 = (1, 1, \dots, 1)$, $x_7 = \left(\frac{1}{3}, \frac{1}{3^2}, \dots, \frac{1}{3^n}\right)$, $x_8 = randn(n, 1)$. The dimension of each test problem is selected from the set {10000, 50000, 100000, 150000, 200000}. The specific problem formulations are outlined as follows: **Problem 1.** The equations are given by:

$$G_1(x) = e^{x_1} - 1,$$

 $G_i(x) = e^{x_i} + x_i - 1,$ for $i = 2, 3, ..., n,$

and the domain remains $\mathcal{D} = \mathbb{R}^n$.

Problem 2. The equation is given by:

$$G_i(x) = e^{x_i} - 1$$
, for $i = 1, 2, ..., n$,

and the domain remains $\mathcal{D} = \mathbb{R}^n_+$.

Problem 3. The equations are given by:

$$G_1(x) = 2x_1 + 0.5h^2(x_1 + h)^3 x_2,$$

$$G_i(x) = 2x_i - x_{i-1} + x_{i+1} + 0.5h^2(x_i + ih)^3, \text{ for } i = 2, 3, ..., n-1,$$

$$G_n(x) = 2x_n - x_{n-1} + 0.5h^2(x_n + nh)^3,$$

and the domain remains $\mathcal{D} = \mathbb{R}^n_+$, $h = \frac{1}{n+1}$.

Problem 4. The equations are given by:

$$G_1(x) = x_1 - e^{\cos(\frac{x_1 + x_2}{2})},$$

$$G_i(x) = x_i - e^{\cos(\frac{x_{i-1} + x_i + x_{i+1}}{i})}, \text{ for } i = 2, 3, \dots, n-1,$$

 $G_n(x) = x_n - e^{\cos(\frac{x_{n-1} + x_n}{n})},$

and the domain remains $\mathcal{D} = \mathbb{R}^n_+$.

Problem 5. The equations are given by:

$$G_i(x) = \sqrt{8x_i} - 1$$
, for $i = 1, 2, ..., n$,

and the domain remains $\mathcal{D} = \mathbb{R}^n_+$.

Problem 6. The equations are given by:

$$G_1(x) = x_1 + \sin(x_1) - 1,$$

 $G_i(x) = -x_{i-1} + 2x_i + \sin(x_i) - 1,$ for $i = 2, 3, ..., n - 1,$
 $G_n(x) = x_n + \sin(x_n) - 1,$

and the domain remains $\mathcal{D} = \{x \in \mathbb{R}^n : x \ge -3\}.$

Problem 7. The equations are given by:

$$G_i(x) = \ln(|x_i| + 1) - \frac{x_i}{n}$$
, for $i = 1, 2, ..., n$,

and the domain remains $\mathcal{D} = \mathbb{R}^n_+$.

Problem 8. The system is given by:

$$G_i(x) = x_i - \sin(|x_i - 1|), \text{ for } i = 1, 2, \dots, n,$$

and the domain remains $\mathcal{D} = \mathbb{R}^n$.

The comparison results can be found at https://www.cnblogs.com/reports/p/18795260, where the term "IP" refers to the initial points, the term "Dim" refers to the dimension of the test problems, the term "RTim" refers to the running time in seconds, the term "NFun" refers to the number of function evaluations, the term "NIte" refers to the number of iterations, and the term " G_* " refers to the value of $||G(x_k)||$ when the code terminates. To effectively present the performance of the three algorithms, we utilize the performance profiles introduced by Dolan and Moré [28], which are defined as follows:

$$\rho(\tau) := \frac{1}{|T_P|} \left| \left\{ t_p \in T_P \mid \log_2\left(\frac{t_{p,q}}{\min\left\{t_{p,q} \mid q \in Q\right\}}\right) \le \tau \right\} \right|,$$

where T_P is the test problem set, $|T_P|$ is the number of problems in the set T_P , Q is the set of optimization solvers, and $t_{p,q}$ is the number of iterations (or the number of function evaluations or running time in seconds) for $t_p \in T_P$ and $q \in Q$. These profiles provide a clear visual illustration of the numerical results. Specifically, Figures 1–3 display the performance of the algorithms in terms of NIte, NFun, and RTim. From these figures, it is evident that the IHCGPB algorithm outperforms both the CGAIS and JHCGPM algorithms. In general, the higher the curve of $\rho(\tau)$, the better the numerical performance of the corresponding method.

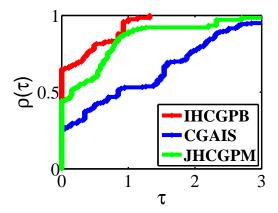


Figure 1. Performance profiles on NIte.

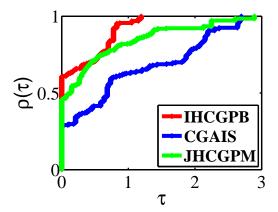


Figure 2. Performance profiles on NFun.

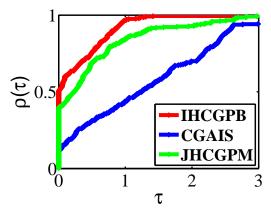


Figure 3. Performance profiles on RTim.

4.2. Application to impulse noise image restoration

The goal of impulse noise image restoration is to remove impulse noise (i.e., salt-and-pepper noise), which arises from faulty pixels in camera sensors or transmission errors through noisy channels. In works such as [29,30], a two-phase scheme is proposed for detecting and removing impulse noise. The first stage of the scheme involves using an adaptive median filter to identify noisy pixels, denoted by I. Once the noisy pixels are detected, the second stage focuses on removing these noisy pixels by solving a smooth optimization problem. Specifically, the problem is formulated as:

$$\min f(x) := \sum_{(i,j) \in I} 2\chi_{i,j}^1 + \chi_{i,j}^2,$$

where

$$\chi_{i,j}^{1} = \sum_{(m,n) \in \mathcal{J}_{i,j} \setminus I} \psi_{\alpha} \left(x_{i,j} - y_{m,n} \right), \quad \chi_{i,j}^{2} = \sum_{(m,n) \in \mathcal{J}_{i,j} \cap I} \psi_{\alpha} \left(x_{i,j} - x_{m,n} \right).$$

Here, $\mathcal{J}_{i,j}$ denotes the set of four neighbors at the pixel (i, j), and $y_{m,m}$ represents the pixel value of the image at position (m, n). The function $\psi_{\alpha}(\cdot)$ serves as an edge-preserving potential function. In particular, we adopt the Huber function as $\psi_{\alpha}(\cdot)$, which is defined as:

$$\psi_{\alpha}(o) = \begin{cases} \frac{o^2}{2\alpha}, & \text{if } |o| \le \alpha, \\ |o| - \frac{\alpha}{2}, & \text{otherwise.} \end{cases}$$

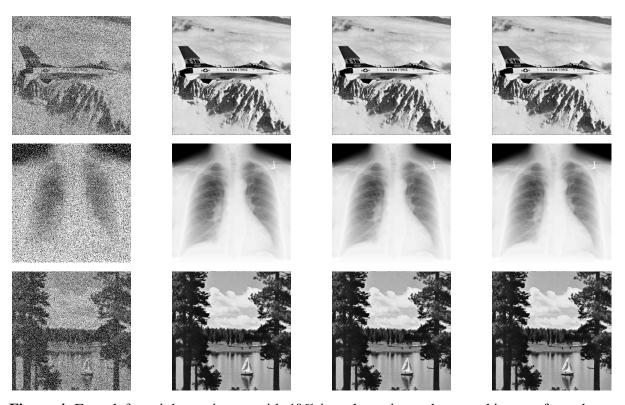
The Huber function is convex and first-order Lipschitz continuous, which ensures that the gradient $G(x) := \nabla f(x)$ is monotone. This property plays a crucial role in solving the optimization problem efficiently, as it guarantees the existence of a well-behaved solution.

In this experiment, we consider 24 grayscale test images, which are available at http://www.hlevkin.com. Each image is contaminated by 40% and 60% impulse noise, simulating an impulse noise image. For a fair comparison, the experiment is repeated 15 times with different noise samples, and the result are averaged. The experimental results are summarized in Table 1, where \overline{NIte} and \overline{RTim} denote the average number of iterations and average running time, respectively. To visually demonstrate the comparative results, we present a summary of the winners with respective to \overline{NIte} and \overline{RTim} in Table 2. The table indicates that the IHCGPB algorithm outperforms the other two algorithms in 79.17% (89.58%) of the cases for \overline{NIte} (\overline{RTim}), while the other two algorithms win in 6.25% (2.08%) and 14.58% (8.33%) of the cases, respectively. Additionally, Figures 4 and 5 illustrate the restored images affected by 40% and 60% impulse noise, further highlighting the effectiveness of the proposed algorithm in image denoising.

Table 1. The numerical results for restoring impulse noise images.

Imaga	Immulaa	IHCGPB	CGAIS	JHCGPM
Image	Impulse	$\overline{NIte}/\overline{RTim}$	$\overline{NIte}/\overline{RTim}$	$\overline{NIte}/\overline{RTim}$
airplane(512×512)	40%	6.000/2.039	37.300/12.874	35.400/10.882
	60%	23.100/7.550	45.000/20.495	47.000/16.863
airplaneU2(1024×1024)	40%	14.000/16.232	16.400/30.794	13.600/18.639
	60%	11.000/14.432	26.300/48.026	24.700/33.267

Continued on the next page


Impulse Impulse NTIE/RTim NTIE/RTi		Impulse	IHCGPB	CGAIS	JHCGPM
bridge(512×512) 60% 18.000/22.032 29.400/53.224 25.600/36.406 bridge(512×512) 40% 11.100/3.127 31.700/11.842 48.400/13.431 cameraman(256×256) 60% 9.800/4.096 39.100/11.824 48.700/13.431 carpet(1024×1024) 60% 6.200/0.348 57.800/5.007 67.000/4.478 carpet(1024×1024) 60% 37.400/38.786 39.500/63.037 65.900/90.172 clown(512×512) 60% 7.000/2.404 38.300/13.687 27.300/8.419 couple(512×512) 60% 7.000/2.427 32.400/12.082 39.300/12.371 couple(512×512) 60% 6.000/3.031 35.600/17.670 31.800/12.439 crowd(512×512) 60% 6.000/3.003 38.700/18.712 35.300/13.842 finger(256×256) 60% 26.200/1.279 43.700/3.504 9.100/0.481 girlface(512×512) 60% 17.700/4.667 36.500/13.851 18.800/5.749 houses(512×512) 40% 11.000/3.025 45.500/15.660 67.500/20.086 kiel(512×512) 40%			$\overline{NIte}/\overline{RTim}$	$\overline{NIte}/\overline{RTim}$	$\overline{NIte}/\overline{RTim}$
bridge(512×512)	h	40%	6.000/8.097	18.500/34.984	18.600/24.832
bridge(\$12x512) 60% 9.800/4.096 39.100/18.824 39.700/15.622 cameraman(256×256) 40% 8.300/0.419 51.500/3.821 35.000/2.306 carpet(1024×1024) 60% 6.200/0.348 57.800/5.007 67.000/4.478 clown(512×512) 40% 28.600/27.781 28.000/42.793 17.400/24.354 clown(512×512) 40% 7.000/2.404 38.300/13.687 27.300/8.419 couple(512×512) 60% 12.000/4.685 40.500/20.458 37.600/14.450 couple(512×512) 60% 6.000/3.031 35.600/17.670 31.800/12.439 crowd(512×512) 40% 7.000/2.176 26.300/9.636 22.200/7.373 finger(256×256) 60% 6.000/3.003 38.700/18.712 35.300/13.842 finger(256×256) 40% 28.800/1.339 24.900/2.009 8.500/0.427 girlface(512×512) 40% 17.700/4.667 36.500/13.851 18.800/5.749 houses(512×512) 40% 106.800/22.607 45.600/15.660 67.500/20.086 kiel(512×512) 60% 1.	brickwall(1024×1024)	60%	18.000/22.032	29.400/53.224	25.600/36.406
cameraman(256×256) 60% 8.300/A.0419 51.500/3.821 39.700/15.0236 cameraman(256×256) 60% 6.200/0.348 57.800/5.007 67.000/4.478 carpet(1024×1024) 40% 28.600/27.781 28.000/42.793 17.400/24.354 clown(512×512) 60% 7.000/2.404 38.300/13.687 27.300/8.419 couple(512×512) 60% 7.000/2.404 38.300/13.687 27.300/8.419 couple(512×512) 60% 6.000/3.031 35.600/17.670 31.800/12.439 crowd(512×512) 60% 6.000/3.031 35.600/17.670 31.800/12.439 crowd(512×512) 60% 6.000/3.033 38.700/18.712 35.300/13.842 finger(256×256) 60% 26.200/1.279 43.700/3.504 9.100/0.481 girlface(512×512) 40% 17.700/4.667 36.500/13.851 18.800/5.749 houses(512×512) 40% 106.800/22.607 45.600/15.660 67.500/20.086 kiel(512×512) 60% 8.000/3.604 65.700/31.913 51.400/19.311 lighthouse(512×512) 60%	bridge(512×512)	40%	11.100/3.127	31.700/11.842	48.400/13.431
cameraman(256×256) 60% 6.200/0.348 57.800/5.007 67.000/4.478 carpet(1024×1024) 40% 28.600/27.781 28.000/42.793 17.400/24.354 clown(512×512) 60% 37.400/38.786 39.500/63.037 65.900/90.172 clown(512×512) 60% 7.000/2.404 38.300/13.687 27.300/8.419 couple(512×512) 60% 6.000/3.031 35.600/17.670 31.800/12.439 crowd(512×512) 60% 6.000/3.003 38.700/18.712 35.300/13.842 finger(256×256) 40% 7.000/2.176 26.300/9.636 22.200/7.373 girlface(512×512) 60% 6.000/3.003 38.700/18.712 35.300/13.842 finger(256×256) 40% 28.800/1.339 24.900/2.009 8.500/0.427 girlface(512×512) 60% 17.700/4.667 36.500/13.851 18.800/5.749 houses(512×512) 40% 106.800/22.607 45.600/15.660 67.500/20.086 kiel(512×512) 40% 11.000/3.025 45.500/15.667 31.200/10.167 kiel(512×512) 40% <t< td=""><td>60%</td><td>9.800/4.096</td><td>39.100/18.824</td><td>39.700/15.622</td></t<>		60%	9.800/4.096	39.100/18.824	39.700/15.622
carpet(1024×1024)	(05(),05()	40%	8.300/0.419	51.500/3.821	35.000/2.306
carpet(1024×1024) 60% 37.400/38.786 39.500/63.037 65.900/90.172 clown(512×512) 40% 7.000/2.404 38.300/13.687 27.300/8.419 couple(512×512) 60% 12.000/4.685 40.500/20.458 37.600/14.450 couple(512×512) 60% 6.000/3.031 35.600/17.670 31.800/12.439 crowd(512×512) 60% 6.000/3.003 38.700/18.712 35.300/13.842 finger(256×256) 60% 6.000/3.003 38.700/18.712 35.300/13.842 girlface(512×512) 60% 17.700/4.667 36.500/13.851 18.800/5.749 houses(512×512) 40% 17.700/4.667 36.500/13.851 18.800/5.749 kiel(512×512) 40% 106.800/22.607 45.600/15.660 67.500/20.086 kiel(512×512) 60% 8.000/3.640 65.700/31.913 31.200/10.167 kiel(512×512) 60% 8.000/3.640 65.700/31.913 31.400/19.31 lighthouse(512×512) 60% 11.900/3.285 41.000/13.657 22.400/7.894 lungs(425×425) 40% <t< td=""><td>cameraman(256×256)</td><td>60%</td><td>6.200/0.348</td><td>57.800/5.007</td><td>67.000/4.478</td></t<>	cameraman(256×256)	60%	6.200/0.348	57.800/5.007	67.000/4.478
clown(512×512)	(1004) (1004)	40%	28.600/27.781	28.000/42.793	17.400/24.354
clown(512×512) 60% 12.000/4.685 40.500/20.458 37.600/14.450 couple(512×512) 40% 7.100/2.427 32.400/12.082 39.300/12.371 crowd(512×512) 60% 6.000/3.031 35.600/17.670 31.800/12.439 crowd(512×512) 40% 7.000/2.176 26.300/9.636 22.200/7.373 finger(256×256) 60% 6.000/3.003 38.700/18.712 35.300/13.842 girlface(512×512) 40% 28.800/1.339 24.900/2.009 8.500/0.427 girlface(512×512) 60% 17.700/4.667 36.500/13.851 18.800/5.749 houses(512×512) 40% 106.800/22.607 45.600/15.660 67.500/20.086 kiel(512×512) 40% 11.000/35.025 45.500/15.567 31.200/10.167 kiel(512×512) 40% 11.900/3.285 41.000/13.657 22.400/7.894 lighthouse(512×512) 40% 11.900/3.285 41.000/13.657 22.400/7.894 lighthouse(512×512) 40% 12.700/2.593 18.700/5.411 14.600/3.214 lungs(425×425) 60%	carpet(1024×1024)	60%	37.400/38.786	39.500/63.037	65.900/90.172
couple(512×512) 60% 12.000/4.685 40.500/20.438 37.600/14.450 40% 7.100/2.427 32.400/12.082 39.300/12.371 35.600/17.670 31.800/12.439 40% 7.000/2.176 26.300/9.636 22.200/7.373 35.600/18.712 35.300/13.842 40% 28.800/1.339 24.900/2.009 8.500/0.427 40% 17.700/4.667 36.500/13.851 18.800/5.749 40% 17.700/4.667 36.500/13.851 18.800/5.749 40% 106.800/2.607 45.600/15.660 67.500/20.086 40% 132.400/35.606 62.400/28.365 47.700/17.925 40% 11.000/3.025 45.500/15.660 67.500/20.086 40% 8.000/3.640 65.700/31.913 51.400/19.311 19.00/3.285 41.000/13.657 22.400/7.894 40% 11.900/3.285 41.000/13.657 22.400/7.894 40% 12.700/2.593 18.700/5.411 14.600/3.214 40% 19.000/21.379 30.300/52.272 19.700/27.011 40% 17.000/20.465 38.700/6.013 24.700/3.600 40% 17.000/20.465 38.700/6.013 24.700/3.3600 40% 40% 19.000/21.379 30.300/52.272 19.700/27.011 40% 6.000/2.314 28.800/11.179 12.500/4.191 40% 6.000/2.314 28.800/11.179 12.500/4.191 40% 6.000/2.314 28.800/11.179 12.500/4.191 40% 6.000/2.314 28.800/11.179 12.500/4.191 40% 6.000/2.314 28.800/11.593 34.800/11.655 40% 6.000/2.962 52.300/24.292 30.700/11.943 40% 7.000/2.426 31.200/11.593 34.800/11.655 40% 6.000/2.962 52.300/24.292 30.700/11.943 40% 20.800/5.355 19.500/8.163 20.800/6.763 40% 20.800/5.355 19.500/8.163 20.800/6.763 40% 22.500/5.883 21.100/8.899 19.500/6.305 40% 22.500/5.883 21.100/8.899 19.500/6.305 40% 22.500/5.883 21.100/8.899 19.500/6.305 40% 22.500/5.883 21.100/8.899 19.500/6.305 40% 22.500/5.883 21.100/8.899 19.500/6.305 40% 22.500/5.883 21.100/8.899 19.500/6.305 40% 22.500/5.883 21.100/8.899 19.500/6.305 40% 22.500/5.883 21.100/8.899 19.500/6.305 40% 22.500/5.883 21.100/8.899 19.500/6.305 40% 22.500/5.566 22.600/8.941 17.500/5.758 40% 20.900/5.566 22.600/8.941 17.500/5.758 40% 20.900/5.566 22.600/8.941 17.500/5.758 40% 20.900/5.566 22.600/8.941 17.500/5.758 40% 20.900/5.566 22.600/8.941 17.500/5.758 40% 20.900/5.566 22.600/8.941 17.500/5.758 40% 20.900/5.566 22.600/8.941 17.500/5.758 40% 20.900/5.566 22.600/8.941 17.500/5.758 40% 20.900/5.566 22.600/8.941 17.500/5.758 40% 20.900/5	-1(512),(512)	40%	7.000/2.404	38.300/13.687	27.300/8.419
couple(512×512) 60% 6.000/3.031 35.600/17.670 31.800/12.439 crowd(512×512) 40% 7.000/2.176 26.300/9.636 22.200/7.373 finger(256×256) 60% 6.000/3.003 38.700/18.712 35.300/13.842 girlface(512×512) 40% 28.800/1.339 24.900/2.009 8.500/0.427 girlface(512×512) 40% 17.700/4.667 36.500/13.851 18.800/5.749 houses(512×512) 60% 14.400/5.894 24.900/12.519 22.600/9.499 kiel(512×512) 60% 132.400/35.606 62.400/28.365 47.700/17.925 kiel(512×512) 60% 8.000/3.640 65.700/31.913 51.400/19.311 lighthouse(512×512) 60% 8.000/3.640 65.700/31.913 51.400/19.311 lighthouse(512×512) 60% 7.800/3.601 49.900/24.292 54.000/20.492 lungs(425×425) 40% 12.700/2.593 18.700/5.411 14.600/3.214 man(1024×1024) 60% 10.300/2.616 20.800/6.144 20.100/4.507 man(4024×1024) 60%	clown(512×512)	60%	12.000/4.685	40.500/20.458	37.600/14.450
crowd(512×512)	1-(510,4510)	40%	7.100/2.427	32.400/12.082	39.300/12.371
crowd(512×512) 60% 6.000/3.003 38.700/18.712 35.300/13.842 finger(256×256) 40% 28.800/1.339 24.900/2.009 8.500/0.427 girlface(512×512) 40% 17.700/4.667 36.500/13.851 18.800/5.749 houses(512×512) 40% 17.700/4.667 36.500/13.851 18.800/5.749 kiel(512×512) 40% 106.800/22.607 45.600/15.660 67.500/20.086 kiel(512×512) 40% 11.000/3.025 45.500/15.567 31.200/10.167 kiel(512×512) 40% 11.900/3.285 41.000/13.657 22.400/7.894 lighthouse(512×512) 40% 11.900/3.285 41.000/13.657 22.400/7.894 lungs(425×425) 60% 7.800/3.601 49.900/24.292 54.000/20.492 lungs(425×425) 60% 10.300/2.616 20.800/6.144 20.100/4.507 man(1024×1024) 40% 19.000/21.379 30.300/52.272 19.700/27.011 pepper(512×512) 40% 6.000/2.314 28.800/11.179 12.500/4.191 pepper(512×512) 60% 6.0	couple(512×512)	60%	6.000/3.031	35.600/17.670	31.800/12.439
finger(256×256)	1(510, (510)	40%	7.000/2.176	26.300/9.636	22.200/7.373
finger(256×256) 60% 26.200/1.279 43.700/3.504 9.100/0.481 40% 17.700/4.667 36.500/13.851 18.800/5.749 60% 14.400/5.894 24.900/12.519 22.600/9.499 houses(512×512) 40% 106.800/22.607 45.600/15.660 67.500/20.086 60% 132.400/35.606 62.400/28.365 47.700/17.925 kiel(512×512) 40% 11.000/3.025 45.500/15.567 31.200/10.167 60% 8.000/3.640 65.700/31.913 51.400/19.311 lighthouse(512×512) 40% 11.900/3.285 41.000/13.657 22.400/7.894 60% 7.800/3.601 49.900/24.292 54.000/20.492 lungs(425×425) 40% 12.700/2.593 18.700/5.411 14.600/3.214 60% 10.300/2.616 20.800/6.144 20.100/4.507 man(1024×1024) 60% 17.000/20.465 38.700/66.013 24.700/33.600 pepper(512×512) 40% 6.000/2.314 28.800/11.179 12.500/4.191 60% 17.000/2.426 31.200/11.593 34.800/11.655 34.000/2.962 52.300/24.292 30.700/11.943 tank(512×512) 40% 20.800/5.355 19.500/8.163 20.800/6.763 tank2(512×512) 40% 22.500/5.883 21.100/8.899 19.500/6.305 tank2(512×512) 40% 22.500/5.883 21.100/8.899 19.500/6.305 tank2(512×512) 40% 9.900/4.167 24.000/12.654 26.300/10.393 tank2(512×512) 40% 9.500/3.072 29.700/12.152 20.100/6.423 tiffany(512×512) 60% 17.000/6.333 39.600/19.433 25.300/10.035 tank(512×512) 40% 9.500/3.072 29.700/12.152 20.100/6.423 tank(512×512) 40% 20.900/5.566 22.600/8.941 17.500/5.758	crowd(512×512)	60%	6.000/3.003	38.700/18.712	35.300/13.842
girlface(512×512)	f	40%	28.800/1.339	24.900/2.009	8.500/0.427
houses(512×512) 60% 14.400/5.894 24.900/12.519 22.600/9.499 40% 106.800/22.607 45.600/15.660 67.500/20.086 60% 132.400/35.606 62.400/28.365 47.700/17.925 40% 11.000/3.025 45.500/15.567 31.200/10.167 60% 8.000/3.640 65.700/31.913 51.400/19.311 lighthouse(512×512) 60% 7.800/3.681 49.900/24.292 54.000/20.492 40% 12.700/2.593 18.700/5.411 14.600/3.214 60% 10.300/2.616 20.800/6.144 20.100/4.507 60% 17.000/20.465 38.700/66.013 24.700/33.600 pepper(512×512) 60% 6.000/2.314 28.800/11.179 12.500/4.191 60% 17.000/2.426 31.200/11.593 34.800/11.655 60% 6.000/2.962 52.300/24.292 30.700/11.943 40% 20.800/5.355 19.500/8.163 20.800/6.763 40% 22.500/5.883 21.100/8.899 19.500/6.305 tiffany(512×512) 60% 14.000/5.373 32.300/15.700 27.600/10.825 60% 17.000/6.333 39.600/19.433 25.300/10.035 truck(512×512) 40% 20.900/5.566 22.600/8.941 17.500/5.758	linger(230×230)	60%	26.200/1.279	43.700/3.504	9.100/0.481
houses(512×512)	air/fa a a (510) (510)	40%	17.700/4.667	36.500/13.851	18.800/5.749
houses(512×512) kiel(512×512) 60% 132.400/35.606 62.400/28.365 47.700/17.925 40% 11.000/3.025 45.500/15.567 31.200/10.167 60% 8.000/3.640 65.700/31.913 51.400/19.311 lighthouse(512×512) 60% 7.800/3.601 49.900/24.292 54.000/20.492 lungs(425×425) 60% 10.300/2.616 20.800/6.144 20.100/4.507 man(1024×1024) 40% 19.000/21.379 30.300/52.272 19.700/27.011 60% 17.000/20.465 38.700/66.013 24.700/33.600 pepper(512×512) 60% 60.000/2.314 28.800/11.179 12.500/4.191 60% 7.000/2.426 31.200/11.593 34.800/11.655 60% 6.000/2.962 52.300/24.292 30.700/11.943 tank(512×512) 40% 20.800/5.355 19.500/8.163 20.800/6.763 40% 20.800/5.373 32.300/15.700 27.600/10.825 tiffany(512×512) 40% 9.500/3.072 29.700/12.152 20.100/6.423 truck(512×512) 40% 20.900/5.566 22.600/8.941 17.500/5.758	giriface(512×512)	60%	14.400/5.894	24.900/12.519	22.600/9.499
kiel(512×512)	hanaa(510)(510)	40%	106.800/22.607	45.600/15.660	67.500/20.086
kiel(\$12×\$12) 60% 8.000/3.640 65.700/31.913 51.400/19.311 lighthouse(\$12×\$512) 40% 11.900/3.285 41.000/13.657 22.400/7.894 lungs(\$425×425) 40% 12.700/2.593 18.700/5.411 14.600/3.214 man(\$1024×1024) 40% 19.000/21.379 30.300/52.272 19.700/27.011 pepper(\$12×\$512) 40% 19.000/2.314 28.800/11.179 12.500/4.191 pepper(\$12×\$512) 40% 6.000/2.314 28.800/11.593 34.800/11.655 sailboat(\$12×\$512) 40% 7.000/2.426 31.200/11.593 34.800/11.655 tank(\$512×\$512) 60% 20.800/5.355 19.500/8.163 20.800/6.763 tank(\$512×\$512) 40% 20.800/5.355 19.500/8.163 20.800/6.763 tank2(\$512×\$512) 60% 9.900/4.167 24.000/12.654 26.300/10.393 tiffany(\$512×\$512) 60% 14.000/5.373 32.300/15.700 27.600/10.825 tiffany(\$512×\$512) 40% 9.500/3.072 29.700/12.152 20.100/6.423 truck(\$512×\$512) 40% <td>nouses(312×312)</td> <td>60%</td> <td>132.400/35.606</td> <td>62.400/28.365</td> <td>47.700/17.925</td>	nouses(312×312)	60%	132.400/35.606	62.400/28.365	47.700/17.925
lighthouse(512×512) lighthouse(512×512) lungs(425×425) man(1024×1024) pepper(512×512) sailboat(512×512) tank(512×512) d0% d0% d0% 11.900/3.285 d0% 12.700/2.593 d0% 12.700/2.411 d0% 12.700/2.379 d0.300/52.272 d0.700/2.465 d0% 20.800/2.314 d0% 20.800/2.314 d0% 20.800/2.314 d0% 20.800/2.314 d0% d0% d0% d0% d0% d0% d0% d0	1::a1(510\v510)	40%	11.000/3.025	45.500/15.567	31.200/10.167
lungs(425×425)	Klel(312×312)	60%	8.000/3.640	65.700/31.913	51.400/19.311
lungs(425×425)	lighthouse(512×512)	40%	11.900/3.285	41.000/13.657	22.400/7.894
lungs(425×425) 60% 10.300/2.616 20.800/6.144 20.100/4.507 man(1024×1024) 40% 19.000/21.379 30.300/52.272 19.700/27.011 pepper(512×512) 60% 17.000/20.465 38.700/66.013 24.700/33.600 pepper(512×512) 40% 6.000/2.314 28.800/11.179 12.500/4.191 sailboat(512×512) 40% 7.000/2.426 31.200/11.593 34.800/11.655 sailboat(512×512) 60% 6.000/2.962 52.300/24.292 30.700/11.943 tank(512×512) 40% 20.800/5.355 19.500/8.163 20.800/6.763 tank2(512×512) 40% 22.500/5.883 21.100/8.899 19.500/6.305 tiffany(512×512) 40% 9.500/3.072 29.700/12.152 20.100/6.423 truck(512×512) 40% 20.900/5.566 22.600/8.941 17.500/5.758	lighthouse(312x312)	60%	7.800/3.601	49.900/24.292	54.000/20.492
man(1024×1024) 40% 10.300/2.616 20.800/6.144 20.100/4.307 man(1024×1024) 40% 19.000/21.379 30.300/52.272 19.700/27.011 60% 17.000/20.465 38.700/66.013 24.700/33.600 40% 6.000/2.314 28.800/11.179 12.500/4.191 60% 20.000/7.182 48.300/22.125 34.300/13.320 sailboat(512×512) 40% 7.000/2.426 31.200/11.593 34.800/11.655 60% 6.000/2.962 52.300/24.292 30.700/11.943 tank(512×512) 40% 20.800/5.355 19.500/8.163 20.800/6.763 tank2(512×512) 40% 22.500/5.883 21.100/8.899 19.500/6.305 tiffany(512×512) 40% 9.500/3.072 29.700/12.152 20.100/6.423 truck(512×512) 40% 9.500/3.072 29.700/12.152 20.100/6.423 truck(512×512) 40% 20.900/5.566 22.600/8.941 17.500/5.758	lungs(425×425)	40%	12.700/2.593	18.700/5.411	14.600/3.214
man(1024×1024) 60% 17.000/20.465 38.700/66.013 24.700/33.600 pepper(512×512) 40% 6.000/2.314 28.800/11.179 12.500/4.191 sailboat(512×512) 40% 7.000/2.426 31.200/11.593 34.300/13.320 tank(512×512) 40% 7.000/2.426 31.200/11.593 34.800/11.655 tank(512×512) 40% 20.800/5.355 19.500/8.163 20.800/6.763 tank2(512×512) 40% 22.500/5.883 21.100/8.899 19.500/6.305 tiffany(512×512) 40% 9.500/3.072 29.700/12.152 20.100/6.423 tmck(512×512) 40% 9.500/3.072 29.700/12.152 20.100/6.423 tiffany(512×512) 40% 20.900/5.566 22.600/8.941 17.500/5.758	lungs(423×423)	60%	10.300/2.616	20.800/6.144	20.100/4.507
pepper(512×512) 40% 6.000/2.314 28.800/11.179 12.500/4.191 60% 20.000/7.182 48.300/22.125 34.300/13.320 40% 7.000/2.426 31.200/11.593 34.800/11.655 60% 6.000/2.962 52.300/24.292 30.700/11.943 40% 20.800/5.355 19.500/8.163 20.800/6.763 60% 9.900/4.167 24.000/12.654 26.300/10.393 tank2(512×512) 40% 22.500/5.883 21.100/8.899 19.500/6.305 60% 14.000/5.373 32.300/15.700 27.600/10.825 40% 9.500/3.072 29.700/12.152 20.100/6.423 40% 20.900/5.566 22.600/8.941 17.500/5.758	mon(1024×1024)	40%	19.000/21.379	30.300/52.272	19.700/27.011
pepper(\$12×\$12) 60% 20.000/7.182 48.300/22.125 34.300/13.320 sailboat(\$12×\$512) 40% 7.000/2.426 31.200/11.593 34.800/11.655 60% 6.000/2.962 52.300/24.292 30.700/11.943 tank(\$12×\$512) 40% 20.800/5.355 19.500/8.163 20.800/6.763 60% 9.900/4.167 24.000/12.654 26.300/10.393 tank2(\$512×\$512) 40% 22.500/5.883 21.100/8.899 19.500/6.305 tiffany(\$12×\$512) 40% 9.500/3.072 29.700/12.152 20.100/6.423 tmck(\$512×\$512) 40% 20.900/5.566 22.600/8.941 17.500/5.758	man(1024×1024)	60%	17.000/20.465	38.700/66.013	24.700/33.600
sailboat(512×512) 60% 20.000//.182 48.300/22.125 34.300/13.320 sailboat(512×512) 40% 7.000/2.426 31.200/11.593 34.800/11.655 60% 6.000/2.962 52.300/24.292 30.700/11.943 tank(512×512) 40% 20.800/5.355 19.500/8.163 20.800/6.763 tank2(512×512) 60% 9.900/4.167 24.000/12.654 26.300/10.393 tiffany(512×512) 40% 22.500/5.883 21.100/8.899 19.500/6.305 tiffany(512×512) 40% 9.500/3.072 29.700/12.152 20.100/6.423 truck(512×512) 40% 20.900/5.566 22.600/8.941 17.500/5.758	nannar(512×512)	40%	6.000/2.314	28.800/11.179	12.500/4.191
sailboat(\$12×\$12) 60% 6.000/2.962 52.300/24.292 30.700/11.943 tank(\$12×\$512) 40% 20.800/5.355 19.500/8.163 20.800/6.763 60% 9.900/4.167 24.000/12.654 26.300/10.393 tank2(\$12×\$512) 40% 22.500/5.883 21.100/8.899 19.500/6.305 60% 14.000/5.373 32.300/15.700 27.600/10.825 tiffany(\$12×\$512) 40% 9.500/3.072 29.700/12.152 20.100/6.423 60% 17.000/6.333 39.600/19.433 25.300/10.035 truck(\$12×\$512) 40% 20.900/5.566 22.600/8.941 17.500/5.758	pepper(312×312)	60%	20.000/7.182	48.300/22.125	34.300/13.320
tank(512×512) tank(512×512) tank(512×512) tank(512×512) tank(512×512) tank2(512×512)	cailboat(512×512)	40%	7.000/2.426	31.200/11.593	34.800/11.655
tank(\$12×\$12) 60% 9.900/4.167 24.000/12.654 26.300/10.393 40% 22.500/5.883 21.100/8.899 19.500/6.305 60% 14.000/5.373 32.300/15.700 27.600/10.825 40% 9.500/3.072 29.700/12.152 20.100/6.423 60% 17.000/6.333 39.600/19.433 25.300/10.035 40% 20.900/5.566 22.600/8.941 17.500/5.758	Sanooai(312×312)	60%	6.000/2.962	52.300/24.292	30.700/11.943
tank2(512×512) tiffany(512×512) tiffany(512×512) tiffany(512×512) tiffany(512×512) truck(512×512)	tank(512×512)	40%	20.800/5.355	19.500/8.163	20.800/6.763
tiffany(512×512) 60% 14.000/5.373 32.300/15.700 27.600/10.825 40% 9.500/3.072 29.700/12.152 20.100/6.423 60% 17.000/6.333 39.600/19.433 25.300/10.035 40% 20.900/5.566 22.600/8.941 17.500/5.758		60%	9.900/4.167	24.000/12.654	26.300/10.393
tiffany(512×512)	tank2(512×512)	40%	22.500/5.883	21.100/8.899	19.500/6.305
truck(512×512) 60% 17.000/6.333 39.600/19.433 25.300/10.035 40% 20.900/5.566 22.600/8.941 17.500/5.758		60%	14.000/5.373	32.300/15.700	27.600/10.825
60% 17.000/6.333 39.600/19.433 25.300/10.035 40% 20.900/5.566 22.600/8.941 17.500/5.758	tiffany(512×512)	40%	9.500/3.072	29.700/12.152	20.100/6.423
fruck(\$12\\$12)	unany(312×312)	60%	17.000/6.333	39.600/19.433	25.300/10.035
60% 14.000/5.470 29.600/14.293 25.100/9.965	truck(512×512)	40%	•	22.600/8.941	17.500/5.758
	uuck(312×312)	60%	14.000/5.470	29.600/14.293	25.100/9.965

Continued on the next page

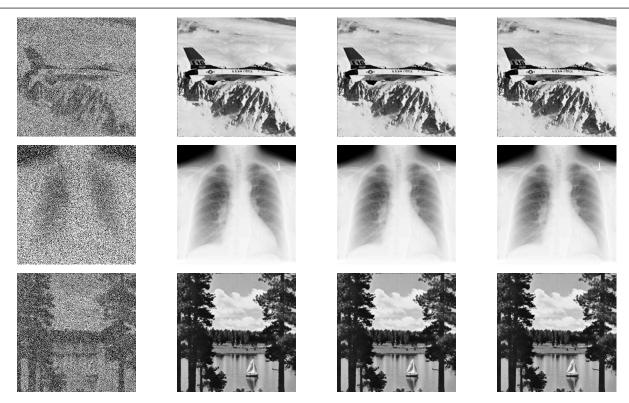

Imaga	Impulse	IHCGPB	CGAIS	JHCGPM
Image	impuise	$\overline{NIte}/\overline{RTim}$	$\overline{NIte}/\overline{RTim}$	$\overline{NIte}/\overline{RTim}$
trucks(512×512)	40%	6.600/2.376	19.800/8.502	25.200/8.312
	60%	13.800/5.278	29.600/13.770	30.800/11.196
zelda(512×512)	40%	21.200/5.549	21.000/8.237	21.800/6.975
	60%	6.000/3.348	29.100/13.455	25.800/9.719

Table 2. Winners with respect to \overline{NIte} and \overline{RTim} .

	IHCGPB	CGAIS	JHCGPM
	NW/Percentage(%)	NW/Percentage(%)	NW/Percentage(%)
NIte	38/79.17%	3/6.25%	7/14.58%
\overline{RTim}	43/89.58%	1/2.08%	4/8.33%

Figure 4. From left to right: an image with 40% impulse noise and restored images from the IHCGPB, CGAIS, and JHCGPM algorithms.

Figure 5. From left to right: an image with 60% impulse noise and restored images from the IHCGPB, CGAIS, and JHCGPM algorithms.

5. Conclusions

In this paper, we design a novel hybrid conjugate coefficient, which integrates the improved HS and PRP conjugate coefficients into a single parameter. This new coefficient is used to construct a search direction that satisfies both the sufficient descent property and the trust-region feature by introducing a restart strategy. Additionally, we develop an inertial hybrid CGP-based algorithm by combining an inertial-related scheme with a projection technique, designed to address large-scale constrained nonlinear equations and impulse noise image restoration problems. The theoretical analysis of the proposed algorithm is performed under weaker assumptions, and its convergence is rigorously proved. Numerical experiments on large-scale constrained nonlinear equations and impulse noise image restoration demonstrate the superior numerical efficiency of the proposed algorithm compared to existing alternatives. Future work will focus on further improving the algorithm's performance, especially in more complex settings, and exploring its applicability to other types of optimization problems.

Author contributions

Yan Xia: Conceptualization, Investigation, Writing-original draft, Funding acquisition; Dandan Li: Investigation, Writing-review and editing. All authors have read and approved the final version of the manuscript for publication.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research was funded by the Guangzhou Huashang College Daoshi Project (No. 2024HSDS28).

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- 1. G. Ma, J. Jin, J. Jian, J. Yin, D. Han, A modified inertial three-term conjugate gradient projection method for constrained nonlinear equations with applications in compressed sensing, *Numer. Algor.*, **92** (2023), 1621–1653. https://doi.org/10.1007/s11075-022-01356-1
- 2. M. Koorapetse, P. Kaelo, S. Lekoko, T. Diphofu, A derivative-free RMIL conjugate gradient projection method for convex constrained nonlinear monotone equations with applications in compressive sensing, *Appl. Numer. Math.*, **165** (2021), 431–441. https://doi.org/10.1016/j.apnum.2021.03.005
- 3. X.-B. Jin, X.-Y. Zhang, K. Huang, G.-G. Geng, Stochastic conjugate gradient algorithm with variance reduction, *IEEE Trans. Neur. Net. Learn. Syst.*, **30** (2019), 1360–1369. https://doi.org/10.1109/TNNLS.2018.2868835
- 4. A. B. Abubakar, A. H. Ibrahim, Y. Feng, Derivative-free projection CG-based algorithm with restart strategy for solving convex-constrained nonlinear monotone equations and its application to logistic regression, *J. Comput. Appl. Math.*, **471** (2026), 116676. https://doi.org/10.1016/j.cam.2025.116676
- 5. P. Liu, L. Li, H. Shao, M. Liu, J. Fan, An inertial-type CG projection method with restart for pseudo-monotone costs with application to traffic assignment, *Netw. Spat. Econ.*, **25** (2025), 147–172. https://doi.org/10.1007/s11067-024-09653-z
- 6. G. Zhou, K. Toh, Superlinear convergence of a Newton-type algorithm for monotone equations, *J. Optim. Theory Appl.*, **125** (2005), 205–221. https://doi.org/10.1007/s10957-004-1721-7
- 7. B. Polyak, A. Tremba, New versions of Newton method: step-size choice, convergence domain and under-determined equations, *Optim. Method. Softw.*, **35** (2020), 1272–1303. https://doi.org/10.1080/10556788.2019.1669154
- 8. Z. Chen, W. Cheng, X. Li, A global convergent quasi-Newton method for systems of monotone equations, *J. Appl. Math. Comput.*, **44** (2014), 455–465. https://doi.org/10.1007/s12190-013-0702-0
- C. A. Arias, C. Gómez, Inexact free derivative quasi-Newton method for large-scale nonlinear system of equations, *Numer. Algor.*, 94 (2023), 1103–1123. https://doi.org/10.1007/s11075-023-01529-6

- 10. J. Yin, J. Jian, G. Ma, A modified inexact Levenberg-Marquardt method with the descent property for solving nonlinear equations, *Comput. Optim. Appl.*, **87** (2024), 289–322. https://doi.org/10.1007/s10589-023-00513-z
- 11. S. B. Salihu, A. S. Halilu, M. Abdullahi, K. Ahmed, P. Mehta, S. Murtala, An improved spectral conjugate gradient projection method for monotone nonlinear equations with application, *J. Appl. Math. Comput.*, **70** (2024), 3879–3915. https://doi.org/10.1007/s12190-024-02121-4
- 12. M. Y. Waziri, K. Ahmed, A. S. Halilu, A modified PRP-type conjugate gradient projection algorithm for solving large-scale monotone nonlinear equations with convex constraint, *J. Comput. Appl. Math.*, **407** (2022), 114035. https://doi.org/10.1016/j.cam.2021.114035
- 13. J. Yin, J. Jian, X. Jiang, M. Liu, L. Wang, A hybrid three-term conjugate gradient projection method for constrained nonlinear monotone equations with applications, *Numer. Algor.*, **88** (2021), 389–418. https://doi.org/10.1007/s11075-020-01043-z
- 14. D. Li, S. Wang, Y. Li, J. Wu, A convergence analysis of hybrid gradient projection algorithm for constrained nonlinear equations with applications in compressed sensing, *Numer. Algor.*, **95** (2024), 1325–1345. https://doi.org/10.1007/s11075-023-01610-0
- 15. D. Li, S. Wang, Y. Li, J. Wu, A modified SGP method with two alternative spectral parameters for constrained nonlinear equations with a compressive sensing application, *J. Comput. Appl. Math.*, **463** (2025), 116503. https://doi.org/10.1016/j.cam.2025.116503
- 16. P. Liu, H. Shao, Z. Yuan, X. Wu, T. Zheng, A family of three-term conjugate gradient projection methods with a restart procedure and their relaxed-inertial extensions for the constrained nonlinear pseudo-monotone equations with applications, *Numer. Algor.*, **94** (2023), 1055–1083. https://doi.org/10.1007/s11075-023-01527-8
- 17. W. Liu, J. Jian, J. Yin, An inertial spectral conjugate gradient projection method for constrained nonlinear pseudo-monotone equations, *Numer. Algor.*, **97** (2024), 985–1015. https://doi.org/10.1007/s11075-023-01736-1
- 18. H. Zheng, J. Li, P. Liu, X. Rong, An inertial Fletcher-Reeves-type conjugate gradient projection-based method and its spectral extension for constrained nonlinear equations, *J. Appl. Math. Comput.*, **70** (2024), 2427–2452. https://doi.org/10.1007/s12190-024-02062-y
- 19. P. Liu, H. Shao, Z. Yuan, J. Zhou, A family of inertial-based derivative-free projection methods with a correction step for constrained nonlinear equations and their applications, *Numer. Linear Algebra Appl.*, **31** (2024), e2533. https://doi.org/10.1002/nla.2533
- 20. N. Zhang, J. K. Liu, L. Q. Zhang, Z. L. Lu, A fast inertial self-adaptive projection based algorithm for solving large-scale nonlinear monotone equations, *J. Comput. Appl. Math.*, **426** (2023), 115087. https://doi.org/10.1016/j.cam.2023.115087
- 21. A. H. Ibrahim, S. Al-Homidan, Two-step inertial derivative-free projection method for solving nonlinear equations with application, *J. Comput. Appl. Math.*, **451** (2024), 116071. https://doi.org/10.1016/j.cam.2024.116071
- 22. J. L. Nazareth, Conjugate-gradient methods, In: *Encyclopedia of optimization*, Boston: Springer, 2008, 466–470. https://doi.org/10.1007/978-0-387-74759-0_85

- 23. Z. Wei, H. Huang, Y. Tao, A modified Hestenes-Stiefel conjugate gradient method and its convergence, *J. Math. Res. Expos.*, **30** (2010), 297–308.
- 24. Y. Zhang, H. Zheng, C. Zhang, Global convergence of a modified PRP conjugate gradient method, *Procedia Engineering*, **31** (2012), 986–995. https://doi.org/10.1016/j.proeng.2012.01.1131
- 25. D. Li, J. Wu, Y. Li, S. Wang, A modified spectral gradient projection-based algorithm for large-scale constrained nonlinear equations with applications in compressive sensing, *J. Comput. Appl. Math.*, **424** (2023), 115006. https://doi.org/10.1016/j.cam.2022.115006
- 26. A. B. Muhammad, C. Tammer, A. M. Awwal, R. Elster, Z. Ma, Inertial-type projetion methods for sovling convex constrained monotone nonlinear equations with applications to robotic motion control, *J. Nonlinear Var. Anal.*, **5** (2021), 831–849. https://doi.org/10.23952/jnva.5.2021.5.13
- 27. X. Jiang, Z. Huang, An accelerated relaxed-inertial strategy based CGP algorithm with restart technique for constrained nonlinear pseudo-monotone equations to image de-blurring problems, *J. Comput. Appl. Math.*, **447** (2024), 115887. https://doi.org/10.1016/j.cam.2024.115887
- 28. E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance profiles, *Math. Program.*, **91** (2002), 201–213. https://doi.org/10.1007/s101070100263
- 29. R. H. Chan, C. W. Ho, M. Nikolova, Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization, *IEEE Trans. Image Process.*, **14** (2005), 1479–1485. https://doi.org/10.1109/TIP.2005.852196
- 30. J. F. Cai, R. H. Chan, C. Di Fiore, Minimization of a detail-preserving regularization functional for impulse noise removal, *J. Math. Imaging Vis.*, **29** (2007), 79–91. https://doi.org/10.1007/s10851-007-0027-4

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)