In group theory, the study of how the properties of specific subgroups affect group structure is a research field that remains highly active. For a finite group $ G $ and its subgroup $ S $, if $ S \cap [S, G]\leq \Phi (S)S_{cG} $ for some $ CAP $-subgroup $ S_{cG}\leq S $ of $ G $, we define $ S $ as an $ IC_{\Phi c} $-subgroup of $ G $. This paper investigates how $ IC_{\Phi c} $-subgroups impact finite group structure, yielding novel theorems that generalize prior work and enrich the theory of group structure. Specifically, we establish the following main theorems: (1) Let $ P\unlhd G $ be a $ p $-group of order $ p^{n} $. Suppose there exists an integer $ k $ with $ 1\leq k < n $ such that: (i) all subgroups of $ P $ of order $ p^k $ are $ IC_{\Phi c} $-subgroups of $ G $; (ii) if $ p^k = 2 $, then all subgroups of order $ 4 $ are also $ IC_{\Phi c} $-subgroups of $ G $. Then $ P\leq Z_{\mathfrak{U}}(G) $. (2) Given a solvably saturated formation $ \mathfrak{F} \supseteq \mathfrak{U} $, let $ N \unlhd G $ with $ G/N \in \mathfrak{F} $. Suppose for each non-cyclic $ P\in Syl_p(F^{*}(N)) $, where $ p $ is an arbitrary prime in $ \pi (F^{*}(N)) $, the conditions of (1) hold. Then $ G \in \mathfrak{F} $.
Citation: Huajie Zheng, Yong Xu, Songtao Guo. On $ IC_{\Phi c} $-subgroups of finite groups[J]. AIMS Mathematics, 2025, 10(10): 23337-23345. doi: 10.3934/math.20251035
In group theory, the study of how the properties of specific subgroups affect group structure is a research field that remains highly active. For a finite group $ G $ and its subgroup $ S $, if $ S \cap [S, G]\leq \Phi (S)S_{cG} $ for some $ CAP $-subgroup $ S_{cG}\leq S $ of $ G $, we define $ S $ as an $ IC_{\Phi c} $-subgroup of $ G $. This paper investigates how $ IC_{\Phi c} $-subgroups impact finite group structure, yielding novel theorems that generalize prior work and enrich the theory of group structure. Specifically, we establish the following main theorems: (1) Let $ P\unlhd G $ be a $ p $-group of order $ p^{n} $. Suppose there exists an integer $ k $ with $ 1\leq k < n $ such that: (i) all subgroups of $ P $ of order $ p^k $ are $ IC_{\Phi c} $-subgroups of $ G $; (ii) if $ p^k = 2 $, then all subgroups of order $ 4 $ are also $ IC_{\Phi c} $-subgroups of $ G $. Then $ P\leq Z_{\mathfrak{U}}(G) $. (2) Given a solvably saturated formation $ \mathfrak{F} \supseteq \mathfrak{U} $, let $ N \unlhd G $ with $ G/N \in \mathfrak{F} $. Suppose for each non-cyclic $ P\in Syl_p(F^{*}(N)) $, where $ p $ is an arbitrary prime in $ \pi (F^{*}(N)) $, the conditions of (1) hold. Then $ G \in \mathfrak{F} $.
| [1] | B. Huppert, Endliche gruppen I, Berlin: Springer-Verlag, 1967. https://doi.org/10.1007/978-3-642-64981-3 |
| [2] | K. Doerk, T. Hawkes, Finite soluble groups, New York: De Gruyter, 1992. https://doi.org/10.1515/9783110870138 |
| [3] |
X. Guo, K. P. Shum, Cover-avoidance properties and the structure of finite groups, J. Pure Appl. Algebra, 181 (2003), 297–308. https://doi.org/10.1016/S0022-4049(02)00327-4 doi: 10.1016/S0022-4049(02)00327-4
|
| [4] | Y. Li, On cover-avoiding subgroups of Sylow subgroups of finite groups, Rend. Sem. Mat. Univ. Padova, 123 (2010), 249–258. |
| [5] |
N. Su, Y. Wang, Y. Li, A characterization of hypercyclically embedded subgroups using cover-avoidance property, J. Group Theory, 16 (2013), 263–274. https://doi.org/10.1515/jgt-2012-0041 doi: 10.1515/jgt-2012-0041
|
| [6] |
Z. Gao, J. Li, L. Miao, On $CAP_{S_{p}^{\ast }}$-subgroups of finite groups, Commun. Algebra, 49 (2021), 1120–1127. https://doi.org/10.1080/00927872.2020.1828443 doi: 10.1080/00927872.2020.1828443
|
| [7] |
Z. Gao, S. Qiao, H. Shi, L. Miao, On $p$-CAP-subgroups of finite groups, Front. Math. China, 15 (2020), 915–921. https://doi.org/10.1007/s11464-020-0866-5 doi: 10.1007/s11464-020-0866-5
|
| [8] |
Y. Gao, X. Li, The influence of $IC\Phi$-subgroups on the structure of finite groups, Acta Math. Hungar., 163 (2021), 29–36. https://doi.org/10.1007/s10474-020-01122-6 doi: 10.1007/s10474-020-01122-6
|
| [9] | H. Zheng, Y. Xu, On $IC\overline{s}$-subgroups of finite groups, Ital. J. Pure Appl. Math., 52 (2024), 47–58. |
| [10] | H. Zheng, Y. Xu, S. Guo, The influence of $IC\overline{s}$-subgroups on the structure of finite groups, Ital. J. Pure Appl. Math., 53 (2025), 73–81. |
| [11] |
J. Kaspczyk, On $p$-nilpotence and $IC\Phi$-subgroups of finite groups, Acta Math. Hungar., 165 (2021), 355–359. https://doi.org/10.1007/s10474-021-01179-x doi: 10.1007/s10474-021-01179-x
|
| [12] |
Y. Gao, X. Li, The $IC$-property of primary subgroups, Indian J. Pure Appl. Math., 54 (2023), 110–116. https://doi.org/10.1007/s13226-022-00235-8 doi: 10.1007/s13226-022-00235-8
|
| [13] |
Y. Li, L. Miao, Y. Wang, On semi cover-avoiding maximal subgroups of Sylow subgroups of finite groups, Commun. Algebra, 37 (2009), 1160–1169. https://doi.org/10.1080/00927870802465837 doi: 10.1080/00927870802465837
|
| [14] | B. Huppert, N. Blackburn, Finite groups III, Berlin: Springer-Verlag, 1982. https://doi.org/10.1007/978-3-642-67997-1 |
| [15] | A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Producs of finite groups, New York: De Gruyter, 2010. https://doi.org/10.1515/9783110220612 |