
Research article

On IC_{Φ_c} -subgroups of finite groups

Huajie Zheng, Yong Xu* and **Songtao Guo**

School of Mathematics and Statistics, Henan University of Science and Technology,
Luoyang 471023, China

* Correspondence: Email: xuy_2011@163.com.

Abstract: In group theory, the study of how the properties of specific subgroups affect group structure is a research field that remains highly active. For a finite group G and its subgroup S , if $S \cap [S, G] \leq \Phi(S)S_{cG}$ for some CAP-subgroup $S_{cG} \leq S$ of G , we define S as an IC_{Φ_c} -subgroup of G . This paper investigates how IC_{Φ_c} -subgroups impact finite group structure, yielding novel theorems that generalize prior work and enrich the theory of group structure. Specifically, we establish the following main theorems: (1) Let $P \trianglelefteq G$ be a p -group of order p^n . Suppose there exists an integer k with $1 \leq k < n$ such that: (i) all subgroups of P of order p^k are IC_{Φ_c} -subgroups of G ; (ii) if $p^k = 2$, then all subgroups of order 4 are also IC_{Φ_c} -subgroups of G . Then $P \leq Z_{\mathfrak{U}}(G)$. (2) Given a solvably saturated formation $\mathfrak{F} \supseteq \mathfrak{U}$, let $N \trianglelefteq G$ with $G/N \in \mathfrak{F}$. Suppose for each non-cyclic $P \in Syl_p(F^*(N))$, where p is an arbitrary prime in $\pi(F^*(N))$, the conditions of (1) hold. Then $G \in \mathfrak{F}$.

Keywords: finite group; IC_{Φ_c} -subgroup; CAP-subgroup; generalized Fitting subgroup; saturated formation

Mathematics Subject Classification: 20D10, 20D15

1. Introduction

For the entire paper, G consistently represents a finite group. p denotes a prime factor that divides the order of G . $K \trianglelefteq G$ (resp. $T \triangleleft G$) indicates that $K \trianglelefteq G$ and no nontrivial normal subgroup of G is properly contained in K (resp. $T \trianglelefteq G$ and no proper subgroup of G strictly contains T). Let $\mathcal{S}(G)$, $\mathcal{S}_p(G)$ and $\mathcal{S}_p^k(G)$ respectively denote the set of all subgroups of G , its p -subgroups, and its subgroups of order p^k for a fixed integer k , that is, $\mathcal{S}(G) = \{S \mid S \leq G\}$, $\mathcal{S}_p(G) = \{S \leq G \mid S \text{ is a } p\text{-group}\}$ and $\mathcal{S}_p^k(G) = \{S \leq G \mid |S| = p^k\}$. Other notations are standard and can be referenced in [1, 2].

Investigating the embedding properties of subgroups has been one of the most effective approaches to illustrate the structure of G . Among embedding properties, the cover-avoidance property is an important one. Let $S \in \mathcal{S}(G)$ and M/N be a chief factor of G . We say that S covers M/N if $SM = SN$

and S avoids M/N if $S \cap M = S \cap N$. If S either covers or avoids every chief factor of G , then we say that S has the cover-avoidance property in G , and call S a *CAP*-subgroup of G . If there exists a chief series Γ_A of G such that S either covers or avoids every chief factor of Γ_A , then S is called a *SCAP*-subgroup of G . The study of the cover-avoidance property has yielded many results (see [3–5]). Furthermore, significant results have also been obtained through the study of its generalizations (see [6, 7]). In 2021, *IC*-property was defined in [8]. This property considers that $S \cap [S, G]$ satisfies certain conditions, where $S \in \mathcal{S}(G)$. With *IC*-property, many new concepts were introduced, and many results have been obtained using these concepts to characterize the structure of G . For instance, the $IC\bar{s}$ -subgroup, which is defined by combining the *IC*-property with the s -semipermutability, was studied in [9, 10]. In [8], the authors introduced the $IC\Phi$ -subgroup. Let $S \in \mathcal{S}(G)$. If $S \cap [S, G] \leq \Phi(S)$, S is defined as an $IC\Phi$ -subgroup of G . They obtained novel p -nilpotency and supersolvability criteria for finite groups which later were extended by Kaspczyk in [11]. Combining the *IC*-property with the cover-avoidance property, in [12], the authors introduced the concepts of an *ICC*-subgroup and an *ICSC*-subgroup. Let $S \in \mathcal{S}(G)$. If $S \cap [S, G] \leq S_{cG}$ (resp. S_{scG}) for some *CAP*-subgroup $S_{cG} \leq S$ (resp. *SCAP*-subgroup $S_{scG} \leq S$) of G , S is defined as an *ICC*-subgroup (resp. *ICSC*-subgroup) of G . Clearly, a *CAP*-subgroup (resp. *SCAP*-subgroup) of G must be an *ICC*-subgroup (resp. *ICSC*-subgroup) of G . However, the reverse is generally not true. By using the two concepts above, several novel results on finite group structure have been derived, which extend some previous findings related to the cover-avoidance property. Continuing from the previous research, we present the following concepts.

Definition 1.1. Let $S \in \mathcal{S}(G)$. If $S \cap [S, G] \leq \Phi(S)S_{cG}$ for some *CAP*-subgroup $S_{cG} \leq S$ of G , S is defined as an $IC_{\Phi c}$ -subgroup of G .

Definition 1.2. Let $S \in \mathcal{S}(G)$. If $S \cap [S, G] \leq \Phi(S)S_{scG}$ for some *SCAP*-subgroup $S_{scG} \leq S$ of G , S is defined as an $IC_{\Phi sc}$ -subgroup of G .

For the sake of concise expression, we further define the notations for several sets. Let $\mathcal{ICC}(G)$, $\mathcal{ICSC}(G)$, $\mathcal{IC}_{\Phi c}(G)$, and $\mathcal{IC}_{\Phi sc}(G)$ denote the set of all *ICC*-subgroups of G , its *ICSC*-subgroups, its $IC_{\Phi c}$ -subgroups, and its $IC_{\Phi sc}$ -subgroups, respectively.

Obviously, by the definitions, if $S \in \mathcal{IC}_{\Phi c}(G)$, then $S \in \mathcal{IC}_{\Phi sc}(G)$, and if $S \in \mathcal{ICC}(G)$, then $S \in \mathcal{IC}_{\Phi c}(G)$. However, the converses are typically not valid. We can see these from the examples given below.

Example 1.1. Let $G = A_5 \times S_3$, where A_5 is the alternating group of degree 5 and S_3 is the symmetric group of degree 3. Let a be an element of A_5 of order 3 and b be an element of S_3 of order 3 (clearly, $\langle b \rangle \trianglelefteq S_3$). Take $S = \langle ab \rangle$. It is easy for us to verify that for the chief series $1 \trianglelefteq A_5 \trianglelefteq A_5\langle b \rangle \trianglelefteq G$, S covers $A_5\langle b \rangle/A_5$ and avoids the rest. Hence S is a *SCAP*-subgroup. However, S is not a *CAP*-subgroup as S neither covers nor avoids the chief factor G/S_3 . Obviously, $\Phi(S) = 1$. Since $[ab, xy] = [a, x][b, y]$ for any $xy \in G$ ($x \in A_5$, $y \in S_3$), $[\langle a \rangle, A_5] = A_5$ and $[\langle b \rangle, S_3] = A_3$, we have $[S, G] = A_5 \times A_3$. Furthermore, $S \cap [S, G] = S$. Hence $S \in \mathcal{IC}_{\Phi sc}(G)$, but $S \notin \mathcal{IC}_{\Phi c}(G)$.

Example 1.2. Let $G = S_5$ and $S = \langle (1234) \rangle$. Clearly, $A_5 \trianglelefteq G$. It is straightforward to verify that S and $\Phi(S) = \langle (13)(24) \rangle$ fail to cover and avoid $A_5/1$. Hence $S_{cG} = 1$ and S is not a *CAP*-subgroup of G . Note that $[S, G] = A_5$ and $S \cap A_5 = \Phi(S)$. Hence $S \notin \mathcal{ICC}(G)$, but $S \in \mathcal{IC}_{\Phi c}(G)$.

Naturally, we consider what results will be obtained in the structural theory of groups if the subgroup system is expanded from $\mathcal{ICC}(G)$ to $\mathcal{IC}_{\Phi c}(G)$. The structural properties of G are characterized in this paper under the assumption that the elements in $S_p^k(G)$ for some fixed integer k belongs to $\mathcal{IC}_{\Phi c}(G)$. Our main results extend the work of [4, 12].

2. Preliminary results

Lemma 2.1. ([13, Lemma 1.2]) *Let $H \leq G$ and $1 < \cdots < N < \cdots < M < \cdots < G$ be a normal series. If H covers (avoids) M/N , then H covers (avoids) any quotient factor between M and N of any refinement of the normal series.*

For future needs, we next present the properties of the two newly defined subgroups.

Lemma 2.2. *Given $S \in \mathcal{IC}_{\Phi c}(G)$ and $K \trianglelefteq G$. We have the following:*

- (1) *If $K \leq S$, then $S/K \in \mathcal{IC}_{\Phi c}(G/K)$.*
- (2) *If $S \in S_p(G)$ and $(|K|, p) = 1$, then $SK/K \in \mathcal{IC}_{\Phi c}(G/K)$.*
- (3) *If $N \trianglelefteq G$ and $S \leq N$, then $S \in \mathcal{IC}_{\Phi c}(N)$.*

Proof. By hypothesis, $S \cap [S, G] \leq \Phi(S)S_{cG}$.

- (1) Since $S/K \cap [S/K, G/K] = (S \cap [S, G])K/K$ and $\Phi(S)S_{cG}K/K = \Phi(S)K/K \cdot S_{cG}K/K \leq \Phi(S/K) \cdot S_{cG}K/K = \Phi(S/K) \cdot (S/K)_{c(G/K)}$, we have $S/K \cap [S/K, S/K] \leq \Phi(S/K) \cdot (S/K)_{c(G/K)}$. Therefore, assertion (1) holds.
- (2) Similar to the proof process of (1), we can deduce that (2) holds.
- (3) Since $N \trianglelefteq G$, by Lemma 2.1, we have $S_{cG} = S_{cN}$, and $S \cap [S, N] \leq S \cap [S, G] \leq \Phi(S)S_{cG}$. Hence, (3) holds.

□

Lemma 2.3. *Given $S \in \mathcal{IC}_{\Phi sc}(G)$ and $K \trianglelefteq G$. We have the following:*

- (1) *If $L \in S(G)$ and $S \leq L$, then $S \in \mathcal{IC}_{\Phi sc}(L)$.*
- (2) *If $S \in S_p(G)$ and $(|K|, p) = 1$, then $SK/K \in \mathcal{IC}_{\Phi sc}(G/K)$.*

Proof. By hypothesis, $S \cap [S, G] \leq \Phi(S)S_{scG}$.

- (1) Note that $[S, L] \leq [S, G]$. Then $S \cap [S, L] \leq \Phi(S)S_{scG}$. Note that $S\text{CAP}$ -subgroups possess the property: if $H \leq K \leq G$ and H is a $S\text{CAP}$ -subgroup of G , then H is a $S\text{CAP}$ -subgroup of K . This property implies $S_{scG} = S_{scL}$. Therefore, assertion (1) holds.
- (2) Through routine calculations following the same approach as in Lemma 2.2(1)'s proof, we can easily prove (2).

□

Lemma 2.4. ([2, IV, Theorem 6.10]) *For local formations \mathfrak{F} , $G^{\mathfrak{F}}$ centralizes $Z_{\mathfrak{F}}(G)$.*

Lemma 2.5. ([14, Chapter X, Corollary 13.7]) *For a quasinilpotent group G , the Fitting subgroup $F(G)$ coincides with the hypercenter $Z_{\infty}(G)$.*

Lemma 2.6. ([2, IX, Remark 2.7]) *Given the conditions $F(G) = 1$ and $G = F^*(G)$, it follows that G must equal $\text{Soc}(G)$.*

In order to state it simply, we use the following notations. Let $P \in \mathcal{S}_p(G)$ and $|P| = p^n$. P is said to satisfy Δ_1 (resp. Δ_2, Δ_3) if

Δ_1 : for any $P_1 \triangleleft P, P_1 \in \mathcal{IC}_{\Phi c}(G)$.

Δ_2 : all subgroups of order p of P , and if $P \in \mathcal{S}_2(G)$ is non-abelian, cyclic subgroups of order 4 as well, belong to $\mathcal{IC}_{\Phi sc}(G)$.

Δ_3 : an integer k with $1 \leq k < n$ exists for which $\mathcal{S}_p^k(P) \subseteq \mathcal{IC}_{\Phi c}(G)$, and if $p^k = 2$, assume moreover that $\mathcal{S}_2^2(P) \subseteq \mathcal{IC}_{\Phi c}(G)$.

3. Main results

To prove Theorem 3.1, one of the important conclusions of this paper, first, we establish two lemmas.

Lemma 3.1. *Let $P \in \mathcal{S}_p(G)$ and $P \trianglelefteq G$. If Δ_1 or Δ_2 is satisfied by P , then $P \in \mathcal{S}(\text{Z}_{\mathfrak{U}}(G))$.*

Proof. (1) If P satisfies Δ_1 .

Assume $\Phi(P) \neq 1$. By Lemma 2.2(1), the quotient group $P/\Phi(P)$ satisfies Δ_1 . Applying induction on $|P|$, we deduce that $P/\Phi(P)$ is an element of $\mathcal{S}(\text{Z}_{\mathfrak{U}}(G/\Phi(P)))$. Hence $P \in \mathcal{S}(\text{Z}_{\mathfrak{U}}(G))$ by [12, Lemma 2.9].

Assume $\Phi(P) = 1$. Then for any $P_1 \triangleleft P, P_1 \in \mathcal{ICC}(G)$. Hence, by [12, Theorem 3.1], $P \in \mathcal{S}(\text{Z}_{\mathfrak{U}}(G))$.

(2) If P satisfies Δ_2 .

For any $N \trianglelefteq G$ with $N < P$, it is evident that Δ_2 is satisfied by N . Then, by induction, $N \in \mathcal{S}(\text{Z}_{\mathfrak{U}}(G))$. Let $T \trianglelefteq G$ such that $P/T \trianglelefteq G/T$. Then $T \in \mathcal{S}(\text{Z}_{\mathfrak{U}}(G))$. If T is not unique, then we can obtain $P \in \mathcal{S}(\text{Z}_{\mathfrak{U}}(G))$. Therefore, we may as well assume that T is unique below. When $\Omega(C) < P$, we have $\Omega(C) \in \mathcal{S}(\text{Z}_{\mathfrak{U}}(G))$. [12, Lemma 2.9] then gives $P \in \mathcal{S}(\text{Z}_{\mathfrak{U}}(G))$. If $\Omega(C) = P$, then the order of elements in P is p or 4. Let y be an element of P but not an element of T . Then $Y = \langle y \rangle \in \mathcal{IC}_{\Phi sc}(G)$. Note that T is unique and $Y^G = P$.

If $[Y, G] = P$, then $Y = Y \cap P \leq \Phi(Y)Y_{scG}$. It follows that $Y = Y_{scG}$. Note that Y cannot avoid P/T . Hence Y must cover P/T , that is, $P = TY$. Then P/T is cyclic and so $P/T \in \mathcal{S}(\text{Z}_{\mathfrak{U}}(G/T))$. Hence $P \in \mathcal{S}(\text{Z}_{\mathfrak{U}}(G))$ since $T \in \mathcal{S}(\text{Z}_{\mathfrak{U}}(G))$.

If $[Y, G] < P$, then $[Y, G] \in \mathcal{S}(\text{Z}_{\mathfrak{U}}(G))$. Since $Y[Y, G] = P$, we have $P/[Y, G]$ is cyclic and so $P/[Y, G] \in \mathcal{S}(\text{Z}_{\mathfrak{U}}(G/[Y, G]))$. Hence $P \in \mathcal{S}(\text{Z}_{\mathfrak{U}}(G))$. \square

Since $\mathcal{IC}_{\Phi c}(G) \subseteq \mathcal{IC}_{\Phi sc}(G)$, replacing $\mathcal{IC}_{\Phi sc}(G)$ by $\mathcal{IC}_{\Phi c}(G)$ in the statement of Δ_2 preserves the validity of Lemma 3.1's conclusion.

Lemma 3.2. *Let $P \in \mathcal{S}_2(G)$. Suppose $K \trianglelefteq G$ exists with $|K| = 2$ and $K \leq P$, and for any $S \in \mathcal{S}_2^2(P)$, $S \in \mathcal{IC}_{\Phi c}(G)$. Then for any $A \leq P$ with $|A| = 2$, $A \in \mathcal{IC}_{\Phi c}(G)$.*

Proof. Clearly, $K \in \mathcal{IC}_{\Phi c}(G)$. Thus, we can assume that $A \neq K$. Then $B = AK$ is elementary abelian of order 4. Hence $B \cap [B, G] \leq \Phi(B)B_{cG}$. If $A \cap [A, G] = 1$, obviously, $A \in \mathcal{IC}_{\Phi c}(G)$. If $A \cap [A, G] = A$, then $A \leq [A, G]$, and so $A \leq B \cap [B, G] \leq \Phi(B)B_{cG} = B_{cG} \leq B$. Note that $|A| = 2$ and $|B| = 4$. Hence, we have either $A = B_{cG}$ or $B = B_{cG}$. If $A = B_{cG}$, then $A \in \mathcal{IC}_{\Phi c}(G)$.

Now assume that $B = B_{cG}$. Let both V and F be normal in G with $V \trianglelefteq F$ and $F/V \cdot \trianglelefteq G/V$. Then B either covers or avoids F/V . If B avoids F/V , then $B \cap F = B \cap V$. It follows that $A \cap F = A \cap V$. Hence A avoids F/V .

If B covers F/V , then $BF = BV$. First, we prove that $|F/V| = 2$. Suppose that is not the case. Clearly, $F/V \leq BV/V$. Note that $|B| = 4$ and $|F/V| > 2$, so $F/V = BV/V$. If $K \leq V$, then $|F/V| = |AKV/V| = |AV/V| \leq 2$, a contradiction. Hence $K \cap V = 1$, $KV/V \trianglelefteq G/V$ with $|KV/V| = 2$ and $KV/V < F/V$, this contradicts $F/V \cdot \trianglelefteq G/V$. Thus, $|F/V| = 2$. If $A \leq V$, then A avoids F/V . If $A \not\leq V$, then either $A \cap F = 1$ or $AV = F$, that is, A either avoids or covers F/V . Hence $A \in \mathcal{IC}_{\Phi c}(G)$; this completes the proof. \square

Let $P \trianglelefteq G$ and $|P| = p^n$. Lemma 3.1 above shows that when $k = n - 1$ and $\mathcal{S}_p^k(P) \subseteq \mathcal{IC}_{\Phi c}(G)$ or when $k = 1$ and $\mathcal{S}_p^k(P) \subseteq \mathcal{IC}_{\Phi sc}(G)$ (if $p = 2$, and moreover the cyclic subgroups in $\mathcal{S}_2^2(P)$ belong to $\mathcal{IC}_{\Phi sc}(G)$), we have $P \in \mathcal{S}(Z_{\mathfrak{U}}(G))$. This lemma only considers the cases of maximal and minimal subgroups of P . Next, we generalize this conclusion to a more general case.

Theorem 3.1. *Let $P \in \mathcal{S}_p(G)$ and $P \trianglelefteq G$. Suppose that P satisfies Δ_3 . Then $P \in \mathcal{S}(Z_{\mathfrak{U}}(G))$.*

Proof. Take (G, P) as a minimal counterexample. Let $K \cdot \trianglelefteq G$ and $K \leq P$. Then

(1) $1 < k < n - 1$.

It follows directly from Lemma 3.1.

(2) Let $L < P$ and $L \trianglelefteq G$. If $|L| > p^k$, then $L \in \mathcal{S}(Z_{\mathfrak{U}}(G))$.

Clearly, (G, L) satisfies the hypothesis of the theorem. Hence, the conclusion is obvious.

(3) $K < P$.

Suppose that is not the case, that is, K is equal to P . Let $S < P$ and $S \in \mathcal{S}_p^k(G)$. By hypothesis, $S \in \mathcal{IC}_{\Phi c}(G)$. Note that $K \cdot \trianglelefteq G$ and $1 < S < P = K$, clearly, $[S, G] \neq 1$. Since $S[S, G] = S^G \leq P = K$, we have $[S, G] = P$. Hence $S = S \cap [S, G] \leq \Phi(S)S_{cG}$, implying $S = \Phi(S)S_{cG} = S_{cG}$. As K is a minimal normal subgroup in G , necessarily $S = 1$, which contradicts $S \in \mathcal{S}_p^k(G)$.

(4) $|K| < p^k$.

If $|K| > p^k$, then $K \in \mathcal{S}(Z_{\mathfrak{U}}(G))$ by (2) and (3). From this, it can be deduced that $p^k < |K| = p$, which contradicts (1).

If $|K| = p^k$, then, by (1), both $|K|$ and $|P : K|$ are greater than p . From (2), we immediately conclude that $P/K \cdot \trianglelefteq G/K$. Let $A/K < P/K$ and $|A/K| = p$. Obviously, $A < P$ and $A \not\trianglelefteq G$. Because K is non-cyclic, there must exist $S \triangleleft A$ such that $A = KS$. Then, both K and S belong to $\mathcal{S}_p^k(G)$. By hypothesis, $S \cap [S, G] \leq \Phi(S)S_{cG}$. If $K \cap S = 1$, then $|A| = |KS| = |K||S|$. It follows that $p^k = |S| = |A|/|K| = p$, that is, $k = 1$, which contradicts to (1). Hence, we have $K \cap S \neq 1$. If $[K \cap S, G] = 1$, then $K \cap S \trianglelefteq G$. Since $K \cdot \trianglelefteq G$ and $K \cap S \neq 1$, we have $K \leq S$ and so $A = KS = S$, which is impossible since $S \triangleleft A$. So, we have $[K \cap S, G] \neq 1$. Thus, $1 < [K \cap S, G] \leq [K, G] \leq K$. From the above inclusion relations, since $K \cdot \trianglelefteq G$, it follows that $K = [K, G] = [K \cap S, G] \leq [S, G] \leq P$. Therefore, by $P/K \cdot \trianglelefteq G/K$, we have $[S, G] = K$ or $[S, G] = P$. Assume that $[S, G] = K$. Then $A = KS = [S, G]S = S^G \trianglelefteq G$, a contradiction. Hence $[S, G] = P$, then $S = S \cap [S, G] \leq \Phi(S)S_{cG}$, and so $S = \Phi(S)S_{cG} = S_{cG}$. Thus, S avoids or covers $K/1$. Neither will happen, a contradiction.

(5) $P/K \in \mathcal{S}(Z_{\mathfrak{U}}(G/K))$.

By (4), $|K| < p^k$, that is, $|K| \leq p^{k-1}$. Suppose $p \neq 2$ or $p = 2$ with $|K| < 2^{k-1}$. Since $\mathcal{S}_p^k(P) \subseteq \mathcal{IC}_{\Phi c}(G)$, by Lemma 2.2(1), for any $S/K \in \mathcal{S}(P/K)$ with $|S/K| = \frac{p^k}{|K|} := p^l$ (when $p \neq 2$, $p \leq p^l <$

$|P/K|$; when $p = 2$, $p < p^l < |P/K|$, we have $S/K \in \mathcal{IC}_{\Phi c}(G/K)$, that is, $\mathcal{S}_p^l(P/K) \subseteq \mathcal{IC}_{\Phi c}(G/K)$. Consequently, $(G/K, P/K)$ fulfills the assumed conditions. Hence $P/K \in \mathcal{S}(Z_{\mathfrak{U}}(G/K))$. Now assume $p = 2$ and $|K| = 2^{k-1}$. In this case, since $\frac{P^k}{|K|} = 2$, we have $\mathcal{S}_2^1(P/K) \subseteq \mathcal{IC}_{\Phi c}(G/K)$. Let $U/K \in \mathcal{S}_2^2(P/K)$ be an arbitrary cyclic subgroup of order 4. We show $U/K \in \mathcal{IC}_{\Phi c}(G/K)$.

Assume for contradiction $|K| = 2$. Then $2^k = 2^2$. By hypothesis, $\mathcal{S}_2^2(P) \subseteq \mathcal{IC}_{\Phi c}(G)$. By Lemmas 3.1 and 3.2, $P \in \mathcal{S}(Z_{\mathfrak{U}}(G))$, a contradiction. Thus, $|K| > 2$.

Assume $K \leq \Phi(U)$. Then U must be cyclic, and so K must be cyclic, leading to a contradiction.

Hence $K \not\leq \Phi(U)$. Then, there exists $U_1 \triangleleft U$ such that $U = KU_1$. Obviously, $|U_1| = 2^k$. By hypothesis, $U_1 \cap [U_1, G] \leq \Phi(U_1)(U_1)_{cG}$. From $|K| > 2$ and $K \cdot \trianglelefteq G$, it is straightforward to infer that neither $K \cap U_1$ nor $[K \cap U_1, G]$ is equal to 1, then $1 < [K \cap U_1, G] \leq [K, G] \leq K$. By $K \cdot \trianglelefteq G$ again, it can be concluded that $K = [K, G] = [K \cap U_1, G] \leq [U_1, G]$. So $U \cap [U, G] = KU_1 \cap [KU_1, G] = KU_1 \cap [U_1, G]^K [K, G] = KU_1 \cap [U_1, G] = K(U_1 \cap [U_1, G]) \leq K\Phi(U_1)(U_1)_{cG} \leq \Phi(U)K(U_1)_{cG}$, and $K(U_1)_{cG} = U_{cG}$. Hence $U \in \mathcal{IC}_{\Phi c}(G)$, and so $U/K \in \mathcal{IC}_{\Phi c}(G/K)$. This implies that the cyclic subgroups in $\mathcal{S}_2^2(P)$ belong to $\mathcal{IC}_{\Phi c}(G)$. By Lemma 3.1, $P/K \in \mathcal{S}(Z_{\mathfrak{U}}(G/K))$.

(6) The final contradiction.

By (4) and (5), there exists $W \trianglelefteq G$ such that $K < W < P$ and $|W| > p^k$. Then $W \in \mathcal{S}(Z_{\mathfrak{U}}(G))$ by (2). Thus $|K| = p$, and thus $P \in \mathcal{S}(Z_{\mathfrak{U}}(G))$ since $P/K \in \mathcal{S}(Z_{\mathfrak{U}}(G/K))$, the final contradiction. \square

The following two theorems investigate the influence of elements in $\mathcal{IC}_{\Phi sc}(G)$ and $\mathcal{IC}_{\Phi c}(G)$ on the p -supersolvability of G and the solvability of $F^*(G)$.

Theorem 3.2. *Let $E \trianglelefteq G$ and $P \in \text{Syl}_p(E)$. Suppose that P satisfies Δ_2 . Then $E \in \mathcal{S}(Z_{p\mathfrak{U}}(G))$.*

Proof. Take (G, E) as a minimal counterexample.

(1) $O_{p'}(E) = 1$.

By Lemma 2.3(2), this is obvious.

(2) $E = G$ and $O_{p'}(G) = 1$.

If $E < G$, then (E, E) satisfies the hypothesis by Lemma 2.3(1). Hence E is p -supersolvable. By (1) and [15, Theorem 2.1.6], $P \trianglelefteq E$ and so $P \trianglelefteq G$. Then, by Lemma 3.1, $P \in \mathcal{S}(Z_{\mathfrak{U}}(G))$, and so $E \in \mathcal{S}(Z_{p\mathfrak{U}}(G))$, a contradiction. Hence $E = G$ and $O_{p'}(G) = 1$.

(3) Let $N \trianglelefteq G$ and $N < G$. Then $N \in \mathcal{S}(Z_{p\mathfrak{U}}(G))$. In other words, $Z_{p\mathfrak{U}}(G)$ is the unique maximal normal subgroup of G .

Since $N \cap P \in \text{Syl}_p(N)$ and $N \cap P$ satisfies Δ_2 , we have $N \in \mathcal{S}(Z_{p\mathfrak{U}}(G))$.

(4) $O_p(G) \in \mathcal{S}(Z_{\mathfrak{U}}(G))$ and $O_p(G) \in \text{Syl}_p(Z_{p\mathfrak{U}}(G))$.

Obviously, $O_p(G)$ satisfies Δ_2 , by Lemma 3.1, $O_p(G) \in \mathcal{S}(Z_{\mathfrak{U}}(G))$. Note that $\mathcal{S}(Z_{\mathfrak{U}}(G)) \subseteq \mathcal{S}(Z_{p\mathfrak{U}}(G))$. Then $O_p(G) \in \mathcal{S}(Z_{p\mathfrak{U}}(G))$. Since $O_{p'}(Z_{p\mathfrak{U}}(G)) \leq O_{p'}(G) = 1$ and $Z_{p\mathfrak{U}}(G)$ is p -supersolvable, we have $O_p(G) \in \text{Syl}_p(Z_{p\mathfrak{U}}(G))$ by [15, Theorem 2.1.6].

(5) $O_p(G)$, $Z(G)$, and $Z_{\mathfrak{U}}(G)$ are equal to each other.

Assume that $G^{\mathfrak{U}} < G$. Then, by (3), we have $G^{\mathfrak{U}} \in \mathcal{S}(Z_{p\mathfrak{U}}(G))$. This implies that G is p -supersolvable, leading to a contradiction. Hence $G^{\mathfrak{U}} = G$. Then, by Lemma 2.4, $Z(G)$ contains $Z_{\mathfrak{U}}(G)$. Since $O_{p'}(Z(G)) \leq O_{p'}(G)$ is equal to 1, we have $Z(G)$ contained in $O_p(G)$. Note that $O_p(G) \in \mathcal{S}(Z_{\mathfrak{U}}(G))$. Hence $O_p(G)$, $Z(G)$, and $Z_{\mathfrak{U}}(G)$ are equal to each other.

(6) The final contradiction.

By [1, IV, Theorem 5.5] and (3), it follows that there is an element $y \in P$ with order p or 4, and $y \notin Z(G)$. Clearly, $Y = \langle y \rangle \in \mathcal{IC}_{\Phi sc}(G)$. Assume that $Y_{scG} = Y$. Then, by (3), Y covers or avoids G/T , where $T := Z_{p\mathfrak{U}}(G)$. If Y covers G/T , then $G = YT$. Hence G/T is cyclic. From this, we may deduce that $G \in \mathcal{S}(Z_{p\mathfrak{U}}(G))$, a contradiction. If Y avoids G/T , then $Y \leq T$. Hence $Y \leq O_p(G) = Z(G)$ by (4) and (5), this contradicts $y \notin Z(G)$. Thus, we have $Y_{scG} \leq \Phi(Y)$. Furthermore, $Y \cap [Y, G] \leq \Phi(Y)$. From this inclusion relation, it is immediate that $[Y, G] < G$. By (3), we have $[Y, G] \leq T$. Then $Y^G T = Y[Y, G]T = YT = G$. Similarly, a contradiction is derived again, completing the proof. \square

When we set $E = G$ in the above theorem, the following conclusion can immediately be obtained.

Corollary 3.1. *Let $P \in \text{Syl}_p(G)$. Then G is p -supersolvable whenever P satisfies Δ_2 .*

Theorem 3.3. *Let $p = \min \pi(F^*(G))$ and $P \in \text{Syl}_p(F^*(G))$. Then $F^*(G)$ is solvable whenever P satisfies Δ_3 .*

Proof. Take G as a minimal counterexample. Let $K \trianglelefteq G$ and $K \leq F(G)$. Obviously, $p = 2$.

(1) $F^*(G) = G$.

By $F^*(F^*(G)) = F^*(G)$ and Lemma 2.2(3), this is obvious.

(2) G/K is not solvable. $K \in \mathcal{S}_2(G)$ is elementary abelian, and $|K| = 2^k$.

From $K \leq F(G)$, we know K is solvable. Then G/K is not solvable, as otherwise G would be solvable.

Since $K \trianglelefteq G$ and $K \leq F(G)$, a prime number r exists for which K belongs to $\mathcal{S}_r(G)$ and is elementary abelian. By (1), $F^*(G/K) = G/K$. If $r > 2$, then $PK/K \in \text{Syl}_p(G/K)$. Note that $p = 2$; we consequently find PK/K satisfies Δ_3 by Lemma 2.2(2). Hence G/K is solvable, which contradicts the above. Hence $r = 2$. Let us prove that $|K| = 2^k$.

If $|K| > 2^k$, then, by Theorem 3.1, $K \in \mathcal{S}(Z_{\mathfrak{U}}(G))$. Hence, by the minimality of K , $|K| = 2$ and $k = 0$, a contradiction.

If $|K| < 2^k$, then, by Lemma 2.2(1), when $|K| < 2^{k-1}$, P/K satisfies Δ_3 , so G/K is solvable, a contradiction. When $|K| = 2^{k-1}$. Following the argument for Theorem 3.1(5), we deduce that G/K satisfies Corollary 3.1's hypothesis and is solvable, a contradiction.

Hence $|K| = 2^k$.

(3) $F(G) = 1$.

Otherwise, according to (2), we obtain $|K| = 2^k$. Further, Lemma 2.5 implies that $F(G) \in \mathcal{S}(Z_{\mathfrak{U}}(G))$, so $|K| = 2$. This yields $k = 1$. Using hypothesis and Corollary 3.1, we can confirm that G is 2-supersolvable. If $O_{p'}(G) \neq 1$, then, from the proof in the second paragraph of (2), $G/O_{p'}(G)$ is solvable. Note that $p = 2$, it follows that G is solvable, a contradiction. Hence $O_{p'}(G) = 1$. Then, by [15, Theorem 2.1.6], we establish that $P \trianglelefteq G$. As a consequence, G is proven to be solvable, leading to a contradiction.

(4) Deriving the ultimate contradiction.

By (1), (3), and Lemma 2.6, $G = \text{Soc}(G)$. Then, in G , all chief factors are non-abelian and simple. Let $S \leq P$ with order 2^k . Then $S \in \mathcal{IC}_{\Phi c}(G)$. Since a 2-subgroup of G cannot cover a chief factor of G that is non-abelian and simple, we have $S_{cG} = 1$ and S satisfies $S \cap [S, G] \leq \Phi(S)$. Hence, using [11, Theorem 1.3], G is 2-nilpotent. The solvability of G follows, thereby yielding the last contradiction. \square

Formation, which is involved in many articles, studies the structure of groups from a broader perspective (see [12, Theorem 3.8] and [4, Main Theorem]). With regard to IC_{Φ_c} -subgroups, from the perspective of formations, we have the following conclusion.

Theorem 3.4. *Given a solvably saturated formation $\mathfrak{F} \supseteq \mathfrak{U}$, let $N \trianglelefteq G$ with $G/N \in \mathfrak{F}$. Then $G \in \mathfrak{F}$ whenever each non-cyclic $P \in Syl_p(F^*(N))$ satisfies Δ_3 , where p is an arbitrary prime number belonging to $\pi(F^*(N))$.*

Proof. Let $r = \min \pi(F^*(N))$ and $R \in Syl_r(F^*(N))$. First, consider when R is cyclic; then $F^*(N)$ is r -nilpotent, from which we get that $F^*(N)$ is solvable. Alternatively, if R is not cyclic, as a consequence of Lemma 2.2(3) and Theorem 3.3, we conclude that $F^*(N)$ is solvable. Therefore, $F^*(N) = F(N)$.

Let $Q \in Syl_q(F(N))$. Then $Q \trianglelefteq G$. If Q is not cyclic, then $Q \in \mathcal{S}(Z_{\mathfrak{U}}(G))$ by Theorem 3.1. If Q is cyclic, obviously, $Q \in \mathcal{S}(Z_{\mathfrak{U}}(G))$. Hence $F(N) \in \mathcal{S}(Z_{\mathfrak{U}}(G))$. Note that $G/N \in \mathfrak{F}$. By combining [12, Lemma 2.6] with [12, Lemma 2.7], we obtain $G \in \mathfrak{F}$. \square

In particular, when \mathfrak{F} is taken as the class of nilpotent groups or the class of supersolvable groups, the conclusion stated in the aforementioned theorem is obviously valid.

4. Conclusions

Note that CAP-subgroups and ICC-subgroups of G belong to $IC_{\Phi_c}(G)$, and if \mathfrak{F} represents a saturated formation, it necessarily follows that it is solvably saturated. Therefore, by Theorems 3.1 and 3.4, we can obtain [4, Main Theorem] and [12, Theorems 3.5 and 3.8]. Hence, our conclusions expand the existing results and contribute new findings to the theory of group structure. In future work, certain elements of $IC_{\Phi_c}(G)$ may be employed to investigate the local versions of Theorem 3.4 (for example, p -nilpotency), a strategy that potentially offers new insights into the group structure by connecting local properties to global behavior.

Author contributions

Huajie Zheng: Writing-original draft; Yong Xu: Conceptualization, supervision, writing-review & editing; Songtao Guo: Writing-review & editing. All authors have read and approved the final version of the manuscript for publication.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11601225), the Foundation for University Key Teacher by the Ministry of Education of Henan (No. 2020GGJS079), and the Natural Science Foundation of Henan Province (Grant No. 242300421385).

Conflict of interest

The authors declare that there are no conflicts of interest.

References

1. B. Huppert, *Endliche gruppen I*, Berlin: Springer-Verlag, 1967. <https://doi.org/10.1007/978-3-642-64981-3>
2. K. Doerk, T. Hawkes, *Finite soluble groups*, New York: De Gruyter, 1992. <https://doi.org/10.1515/9783110870138>
3. X. Guo, K. P. Shum, Cover-avoidance properties and the structure of finite groups, *J. Pure Appl. Algebra*, **181** (2003), 297–308. [https://doi.org/10.1016/S0022-4049\(02\)00327-4](https://doi.org/10.1016/S0022-4049(02)00327-4)
4. Y. Li, On cover-avoiding subgroups of Sylow subgroups of finite groups, *Rend. Sem. Mat. Univ. Padova*, **123** (2010), 249–258.
5. N. Su, Y. Wang, Y. Li, A characterization of hypercyclically embedded subgroups using cover-avoidance property, *J. Group Theory*, **16** (2013), 263–274. <https://doi.org/10.1515/jgt-2012-0041>
6. Z. Gao, J. Li, L. Miao, On $CAP_{S_p^*}$ -subgroups of finite groups, *Commun. Algebra*, **49** (2021), 1120–1127. <https://doi.org/10.1080/00927872.2020.1828443>
7. Z. Gao, S. Qiao, H. Shi, L. Miao, On p -CAP-subgroups of finite groups, *Front. Math. China*, **15** (2020), 915–921. <https://doi.org/10.1007/s11464-020-0866-5>
8. Y. Gao, X. Li, The influence of $IC\Phi$ -subgroups on the structure of finite groups, *Acta Math. Hungar.*, **163** (2021), 29–36. <https://doi.org/10.1007/s10474-020-01122-6>
9. H. Zheng, Y. Xu, On $IC\bar{s}$ -subgroups of finite groups, *Ital. J. Pure Appl. Math.*, **52** (2024), 47–58.
10. H. Zheng, Y. Xu, S. Guo, The influence of $IC\bar{s}$ -subgroups on the structure of finite groups, *Ital. J. Pure Appl. Math.*, **53** (2025), 73–81.
11. J. Kaspczyk, On p -nilpotence and $IC\Phi$ -subgroups of finite groups, *Acta Math. Hungar.*, **165** (2021), 355–359. <https://doi.org/10.1007/s10474-021-01179-x>
12. Y. Gao, X. Li, The IC -property of primary subgroups, *Indian J. Pure Appl. Math.*, **54** (2023), 110–116. <https://doi.org/10.1007/s13226-022-00235-8>
13. Y. Li, L. Miao, Y. Wang, On semi cover-avoiding maximal subgroups of Sylow subgroups of finite groups, *Commun. Algebra*, **37** (2009), 1160–1169. <https://doi.org/10.1080/00927870802465837>
14. B. Huppert, N. Blackburn, *Finite groups III*, Berlin: Springer-Verlag, 1982. <https://doi.org/10.1007/978-3-642-67997-1>
15. A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, *Products of finite groups*, New York: De Gruyter, 2010. <https://doi.org/10.1515/9783110220612>

AIMS Press

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>)