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Abstract: In group theory, the study of how the properties of specific subgroups affect group structure
is a research field that remains highly active. For a finite group G and its subgroup S , if S ∩ [S ,G] ≤
Φ(S )S cG for some CAP-subgroup S cG ≤ S of G, we define S as an ICΦc-subgroup of G. This paper
investigates how ICΦc-subgroups impact finite group structure, yielding novel theorems that generalize
prior work and enrich the theory of group structure. Specifically, we establish the following main
theorems: (1) Let P E G be a p-group of order pn. Suppose there exists an integer k with 1 ≤ k < n
such that: (i) all subgroups of P of order pk are ICΦc-subgroups of G; (ii) if pk = 2, then all subgroups
of order 4 are also ICΦc-subgroups of G. Then P ≤ ZU(G). (2) Given a solvably saturated formation
F ⊇ U, let N EG with G/N ∈ F. Suppose for each non-cyclic P ∈ S ylp(F∗(N)), where p is an arbitrary
prime in π(F∗(N)), the conditions of (1) hold. Then G ∈ F.
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1. Introduction

For the entire paper, G consistently represents a finite group. p denotes a prime factor that divides
the order of G. K · EG (resp. T l G) indicates that K E G and no nontrivial normal subgroup of G
is properly contained in K (resp. T ≤ G and no proper subgroup of G strictly contains T ). Let S(G),
Sp(G) and Sk

p(G) respectively denote the set of all subgroups of G, its p-subgroups, and its subgroups
of order pk for a fixed integer k, that is, S(G) = {S | S ≤ G}, Sp(G) = {S ≤ G | S is a p-group} and
Sk

p(G) = {S ≤ G | |S | = pk}. Other notations are standard and can be referenced in [1, 2].
Investigating the embedding properties of subgroups has been one of the most effective approaches

to illustrate the structure of G. Among embedding properties, the cover-avoidance property is an
important one. Let S ∈ S(G) and M/N be a chief factor of G. We say that S covers M/N if S M = S N
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and S avoids M/N if S∩M = S∩N. If S either covers or avoids every chief factor of G, then we say that
S has the cover-avoidance property in G, and call S a CAP-subgroup of G. If there exists a chief series
ΓA of G such that S either covers or avoids every chief factor of ΓA, then S is called a S CAP-subgroup
of G. The study of the cover-avoidance property has yielded many results (see [3–5]). Furthermore,
significant results have also been obtained through the study of its generalizations (see [6,7]). In 2021,
IC-property was defined in [8]. This property considers that S ∩ [S ,G] satisfies certain conditions,
where S ∈ S(G). With IC-property, many new concepts were introduced, and many results have been
obtained using these concepts to characterize the structure of G. For instance, the ICs-subgroup, which
is defined by combining the IC-property with the s-semipermutability, was studied in [9, 10]. In [8],
the authors introduced the ICΦ-subgroup. Let S ∈ S(G). If S ∩ [S ,G] ≤ Φ(S ), S is defined as an
ICΦ-subgroup of G. They obtained novel p-nilpotency and supersolvability criteria for finite groups
which later were extended by Kaspczyk in [11]. Combining the IC-property with the cover-avoidance
property, in [12], the authors introduced the concepts of an ICC-subgroup and an ICS C-subgroup.
Let S ∈ S(G). If S ∩ [S ,G] ≤ S cG (resp. S scG) for some CAP-subgroup S cG ≤ S (resp. S CAP-
subgroup S scG ≤ S ) of G, S is defined as an ICC-subgroup (resp. ICS C-subgroup) of G. Clearly,
a CAP-subgroup (resp. S CAP-subgroup) of G must be an ICC-subgroup (resp. ICS C-subgroup)
of G. However, the reverse is generally not true. By using the two concepts above, several novel
results on finite group structure have been derived, which extend some previous findings related to the
cover-avoidance property. Continuing from the previous research, we present the following concepts.

Definition 1.1. Let S ∈ S(G). If S ∩ [S ,G] ≤ Φ(S )S cG for some CAP-subgroup S cG ≤ S of G, S is
defined as an ICΦc-subgroup of G.

Definition 1.2. Let S ∈ S(G). If S ∩ [S ,G] ≤ Φ(S )S scG for some S CAP-subgroup S scG ≤ S of G, S is
defined as an ICΦsc-subgroup of G.

For the sake of concise expression, we further define the notations for several sets. Let ICC(G),
ICSC(G), ICΦc(G), and ICΦsc(G) denote the set of all ICC-subgroups of G, its ICS C-subgroups, its
ICΦc-subgroups, and its ICΦsc-subgroups, respectively.

Obviously, by the definitions, if S ∈ ICΦc(G), then S ∈ ICΦsc(G), and if S ∈ ICC(G), then
S ∈ ICΦc(G). However, the converses are typically not valid. We can see these from the examples
given below.

Example 1.1. Let G = A5 × S 3, where A5 is the alternating group of degree 5 and S 3 is the symmetric
group of degree 3. Let a be an element of A5 of order 3 and b be an element of S 3 of order 3 (clearly,
〈b〉E S 3). Take S = 〈ab〉. It is easy for us to verify that for the chief series 1E A5 E A5〈b〉EG, S covers
A5〈b〉/A5 and avoids the rest. Hence S is a S CAP-subgroup. However, S is not a CAP-subgroup as S
neither covers nor avoids the chief factor G/S 3. Obviously, Φ(S ) = 1. Since [ab, xy] = [a, x][b, y] for
any xy ∈ G (x ∈ A5, y ∈ S 3), [〈a〉, A5] = A5 and [〈b〉, S 3] = A3, we have [S ,G] = A5×A3. Furthermore,
S ∩ [S ,G] = S . Hence S ∈ ICΦsc(G), but S < ICΦc(G).

Example 1.2. Let G = S 5 and S = 〈(1234)〉. Clearly, A5 ·EG. It is straightforward to verify that S
and Φ(S ) = 〈(13)(24)〉 fail to cover and avoid A5/1. Hence S cG = 1 and S is not a CAP-subgroup of
G. Note that [S ,G] = A5 and S ∩ A5 = Φ(S ). Hence S < ICC(G), but S ∈ ICΦc(G).
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Naturally, we consider what results will be obtained in the structural theory of groups if
the subgroup system is expanded from ICC(G) to ICΦc(G). The structural properties of G are
characterized in this paper under the assumption that the elements in Sk

p(G) for some fixed integer
k belongs to ICΦc(G). Our main results extend the work of [4, 12].

2. Preliminary results

Lemma 2.1. ( [13, Lemma 1.2]) Let H ≤ G and 1 < · · · < N < · · · < M < · · · < G be a normal
series. If H covers (avoids) M/N, then H covers (avoids) any quotient factor between M and N of any
refinement of the normal series.

For future needs, we next present the properties of the two newly defined subgroups.

Lemma 2.2. Given S ∈ ICΦc(G) and K EG. We have the following:

(1) If K ≤ S , then S/K ∈ ICΦc(G/K).
(2) If S ∈ Sp(G) and (|K|, p) = 1 , then S K/K ∈ ICΦc(G/K).
(3) If N EG and S ≤ N, then S ∈ ICΦc(N).

Proof. By hypothesis, S ∩ [S ,G] ≤ Φ(S )S cG.

(1) Since S/K∩[S/K,G/K] = (S ∩[S ,G])K/K and Φ(S )S cGK/K = Φ(S )K/K ·S cGK/K ≤ Φ(S/K) ·
S cGK/K = Φ(S/K) · (S/K)c(G/K), we have S/K ∩ [S/K, S/K] ≤ Φ(S/K) · (S/K)c(G/K). Therefore,
assertion (1) holds.

(2) Similar to the proof process of (1), we can deduce that (2) holds.
(3) Since NEG, by Lemma 2.1, we have S cG = S cN , and S ∩ [S ,N] ≤ S ∩ [S ,G] ≤ Φ(S )S cG. Hence,

(3) holds.

�

Lemma 2.3. Given S ∈ ICΦsc(G) and K EG. We have the following:

(1) If L ∈ S(G) and S ≤ L, then S ∈ ICΦsc(L).
(2) If S ∈ Sp(G) and (|K|, p) = 1, then S K/K ∈ ICΦsc(G/K).

Proof. By hypothesis, S ∩ [S ,G] ≤ Φ(S )S scG.

(1) Note that [S , L] ≤ [S ,G]. Then S ∩ [S , L] ≤ Φ(S )S scG. Note that S CAP-subgroups possess the
property: if H ≤ K ≤ G and H is a S CAP-subgroup of G, then H is a S CAP-subgroup of K.
This property implies S scG = S scL. Therefore, assertion (1) holds.

(2) Through routine calculations following the same approach as in Lemma 2.2(1)’s proof, we can
easily prove (2).

�

Lemma 2.4. ( [2, IV, Theorem 6.10]) For local formations F, GF centralizes ZF(G).

Lemma 2.5. ( [14, Chapter X, Corollary 13.7]) For a quasinilpotent group G, the Fitting subgroup
F(G) coincides with the hypercenter Z∞(G).
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Lemma 2.6. ( [2, IX, Remark 2.7]) Given the conditions F(G) = 1 and G = F∗(G), it follows that G
must equal Soc(G).

In order to state it simply, we use the following notations. Let P ∈ Sp(G) and |P| = pn. P is said to
satisfy 41 (resp. 42, 43) if
41: for any P1 l P, P1 ∈ ICΦc(G).
42: all subgroups of order p of P, and if P ∈ S2(G) is non-abelian, cyclic subgroups of order 4 as

well, belong to ICΦsc(G).
43: an integer k with 1 ≤ k < n exists for which Sk

p(P) ⊆ ICΦc(G), and if pk = 2, assume moreover
that S2

2(P) ⊆ ICΦc(G).

3. Main results

To prove Theorem 3.1, one of the important conclusions of this paper, first, we establish two
lemmas.

Lemma 3.1. Let P ∈ Sp(G) and P EG. If 41 or 42 is satisfied by P, then P ∈ S(ZU(G)).

Proof. (1) If P satisfies 41.
Assume Φ(P) , 1. By Lemma 2.2(1), the quotient group P/Φ(P) satisfies 41. Applying induction

on |P|, we deduce that P/Φ(P) is an element of S(ZU(G/Φ(P))). Hence P ∈ S(ZU(G)) by [12,
Lemma 2.9].

Assume Φ(P) = 1. Then for any P1lP, P1 ∈ ICC(G). Hence, by [12, Theorem 3.1], P ∈ S(ZU(G)).
(2) If P satisfies 42.
For any N E G with N < P, it is evident that 42 is satisfied by N. Then, by induction, N ∈

S(ZU(G)). Let T EG such that P/T ·EG/T . Then T ∈ S(ZU(G)). If T is not unique, then we can obtain
P ∈ S(ZU(G)). Therefore, we may as well assume that T is unique below. When Ω(C) < P, we have
Ω(C) ∈ S(ZU(G)). [12, Lemma 2.9] then gives P ∈ S(ZU(G)). If Ω(C) = P, then the order of elements
in P is p or 4. Let y be an element of P but not an element of T . Then Y = 〈y〉 ∈ ICΦsc(G). Note that
T is unique and YG = P.

If [Y,G] = P, then Y = Y ∩ P ≤ Φ(Y)YscG. It follows that Y = YscG. Note that Y cannot avoid
P/T . Hence Y must cover P/T , that is, P = TY . Then P/T is cyclic and so P/T ∈ S(ZU(G/T )). Hence
P ∈ S(ZU(G)) since T ∈ S(ZU(G)).

If [Y,G] < P, then [Y,G] ∈ S(ZU(G)). Since Y[Y,G] = P, we have P/[Y,G] is cyclic and so
P/[Y,G] ∈ S(ZU(G/[Y,G])). Hence P ∈ S(ZU(G)). �

Since ICΦc(G) ⊆ ICΦsc(G), replacing ICΦsc(G) by ICΦc(G) in the statement of 42 preserves the
validity of Lemma 3.1’s conclusion.

Lemma 3.2. Let P ∈ S2(G). Suppose K ·EG exists with |K| = 2 and K ≤ P, and for any S ∈ S2
2(P),

S ∈ ICΦc(G). Then for any A ≤ P with |A| = 2, A ∈ ICΦc(G).

Proof. Clearly, K ∈ ICΦc(G). Thus, we can assume that A , K. Then B = AK is elementary abelian
of order 4. Hence B∩ [B,G] ≤ Φ(B)BcG. If A∩ [A,G] = 1, obviously, A ∈ ICΦc(G). If A∩ [A,G] = A,
then A ≤ [A,G], and so A ≤ B ∩ [B,G] ≤ Φ(B)BcG = BcG ≤ B. Note that |A| = 2 and |B| = 4. Hence,
we have either A = BcG or B = BcG. If A = BcG, then A ∈ ICΦc(G).
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Now assume that B = BcG. Let both V and F be normal in G with V E F and F/V ·EG/V . Then
B either covers or avoids F/V . If B avoids F/V , then B ∩ F = B ∩ V . It follows that A ∩ F = A ∩ V .
Hence A avoids F/V .

If B covers F/V , then BF = BV . First, we prove that |F/V | = 2. Suppose that is not the case.
Clearly, F/V ≤ BV/V . Note that |B| = 4 and |F/V | > 2, so F/V = BV/V . If K ≤ V , then |F/V | =

|AKV/V | = |AV/V | ≤ 2, a contradiction. Hence K ∩ V = 1, KV/V E G/V with |KV/V | = 2 and
KV/V < F/V , this contradicts F/V · EG/V . Thus, |F/V | = 2. If A ≤ V , then A avoids F/V . If A � V ,
then either A ∩ F = 1 or AV = F, that is, A either avoids or covers F/V . Hence A ∈ ICΦc(G); this
completes the proof. �

Let P E G and |P| = pn. Lemma 3.1 above shows that when k = n − 1 and Sk
p(P) ⊆ ICΦc(G) or

when k = 1 and Sk
p(P) ⊆ ICΦsc(G) (if p = 2, and moreover the cyclic subgroups in S2

2(P) belong
to ICΦsc(G)), we have P ∈ S(ZU(G)). This lemma only considers the cases of maximal and minimal
subgroups of P. Next, we generalize this conclusion to a more general case.

Theorem 3.1. Let P ∈ Sp(G) and P EG. Suppose that P satisfies 43. Then P ∈ S(ZU(G)).

Proof. Take (G, P) as a minimal counterexample. Let K ·EG and K ≤ P. Then
(1) 1 < k < n − 1.
It follows directly from Lemma 3.1.
(2) Let L < P and L EG. If |L| > pk, then L ∈ S(ZU(G)).
Clearly, (G, L) satisfies the hypothesis of the theorem. Hence, the conclusion is obvious.
(3) K < P.
Suppose that is not the case, that is, K is equal to P. Let S < P and S ∈ Sk

p(G). By hypothesis,
S ∈ ICΦc(G). Note that K ·EG and 1 < S < P = K, clearly, [S ,G] , 1. Since S [S ,G] = S G ≤ P = K,
we have [S ,G] = P. Hence S = S ∩ [S ,G] ≤ Φ(S )S cG, implying S = Φ(S )S cG = S cG. As K is a
minimal normal subgroup in G, necessarily S = 1, which contradicts S ∈ Sk

p(G).
(4) |K| < pk.
If |K| > pk, then K ∈ S(ZU(G)) by (2) and (3). From this, it can be deduced that pk < |K| = p,

which contradicts (1).
If |K| = pk, then, by (1), both |K| and |P : K| are greater than p. From (2), we immediately conclude

that P/K ·EG/K. Let A/K < P/K and |A/K| = p. Obviously, A < P and A 5 G. Because K is non-
cyclic, there must exist S l A such that A = KS . Then, both K and S belong to Sk

p(G). By hypothesis,
S ∩ [S ,G] ≤ Φ(S )S cG. If K ∩ S = 1, then |A| = |KS | = |K||S |”. It follows that pk = |S | = |A|/|K| = p,
that is, k = 1, which contradicts to (1). Hence, we have K ∩ S , 1. If [K ∩ S ,G] = 1, then K ∩ S EG.
Since K ·EG and K ∩ S , 1, we have K ≤ S and so A = KS = S , which is impossible since S l A.
So, we have [K ∩ S ,G] , 1. Thus, 1 < [K ∩ S ,G] ≤ [K,G] ≤ K. From the above inclusion relations,
since K ·EG, it follows that K = [K,G] = [K ∩ S ,G] ≤ [S ,G] ≤ P. Therefore, by P/K ·EG/K, we
have [S ,G] = K or [S ,G] = P. Assume that [S ,G] = K. Then A = KS = [S ,G]S = S G E G, a
contradiction. Hence [S ,G] = P, then S = S ∩ [S ,G] ≤ Φ(S )S cG, and so S = Φ(S )S cG = S cG. Thus,
S avoids or covers K/1. Neither will happen, a contradiction.

(5) P/K ∈ S(ZU(G/K)).
By (4), |K| < pk, that is, |K| ≤ pk−1. Suppose p , 2 or p = 2 with |K| < 2k−1. Since Sk

p(P) ⊆

ICΦc(G), by Lemma 2.2(1), for any S/K ∈ S(P/K) with |S/K| =
pk

|K| := pl (when p , 2, p ≤ pl <
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|P/K|; when p = 2, p < pl < |P/K|), we have S/K ∈ ICΦc(G/K), that is, Sl
p(P/K) ⊆ ICΦc(G/K).

Consequently, (G/K, P/K) fulfills the assumed conditions. Hence P/K ∈ S(ZU(G/K)). Now assume
p = 2 and |K| = 2k−1. In this case, since pk

|K| = 2, we have S1
2(P/K) ⊆ ICΦc(G/K). Let U/K ∈ S2

2(P/K)
be an arbitrary cyclic subgroup of order 4. We show U/K ∈ ICΦc(G/K).

Assume for contradiction |K| = 2. Then 2k = 22. By hypothesis, S2
2(P) ⊆ ICΦc(G). By Lemmas 3.1

and 3.2, P ∈ S(ZU(G)), a contradiction. Thus, |K| > 2.
Assume K ≤ Φ(U). Then U must be cyclic, and so K must be cyclic, leading to a contradiction.
Hence K � Φ(U). Then, there exists U1 l U such that U = KU1. Obviously, |U1| = 2k. By

hypothesis, U1 ∩ [U1,G] ≤ Φ(U1)(U1)cG. From |K| > 2 and K ·EG, it is straightforward to infer that
neither K ∩ U1 nor [K ∩ U1,G] is equal to 1, then 1 < [K ∩ U1,G] ≤ [K,G] ≤ K. By K ·EG again,
it can be concluded that K = [K,G] = [K ∩ U1,G] ≤ [U1,G]. So U ∩ [U,G] = KU1 ∩ [KU1,G] =

KU1 ∩ [U1,G]K[K,G] = KU1 ∩ [U1,G] = K(U1 ∩ [U1,G]) ≤ KΦ(U1)(U1)cG ≤ Φ(U)K(U1)cG, and
K(U1)cG = UcG. Hence U ∈ ICΦc(G), and so U/K ∈ ICΦc(G/K). This implies that the cyclic
subgroups in S2

2(P) belong to ICΦc(G). By Lemma 3.1, P/K ∈ S(ZU(G/K)).
(6) The final contradiction.
By (4) and (5), there exists W EG such that K < W < P and |W | > pk. Then W ∈ S(ZU(G)) by (2).

Thus |K| = p, and thus P ∈ S(ZU(G)) since P/K ∈ S(ZU(G/K)), the final contradiction. �

The following two theorems investigate the influence of elements in ICΦsc(G) and ICΦc(G) on the
p-supersolvability of G and the solvability of F∗(G).

Theorem 3.2. Let E EG and P ∈ S ylp(E). Suppose that P satisfies 42. Then E ∈ S(ZpU(G)).

Proof. Take (G, E) as a minimal counterexample.
(1) Op′(E) = 1.
By Lemma 2.3(2), this is obvious.
(2) E = G and Op′(G) = 1.
If E < G, then (E, E) satisfies the hypothesis by Lemma 2.3(1). Hence E is p-supersolvable.

By (1) and [15, Theorem 2.1.6], P E E and so P E G. Then, by Lemma 3.1, P ∈ S(ZU(G)), and so
E ∈ S(ZpU(G)), a contradiction. Hence E = G and Op′(G) = 1.

(3) Let N E G and N < G. Then N ∈ S(ZpU(G)). In other words, ZpU(G) is the unique maximal
normal subgroup of G.

Since N ∩ P ∈ S ylp(N) and N ∩ P satisfies 42, we have N ∈ S(ZpU(G)).
(4) Op(G) ∈ S(ZU(G)) and Op(G) ∈ S ylp(ZpU(G)).
Obviously, Op(G) satisfies 42, by Lemma 3.1, Op(G) ∈ S(ZU(G)). Note that S(ZU(G)) ⊆

S(ZpU(G)). Then Op(G) ∈ S(ZpU(G)). Since Op′(ZpU(G)) ≤ Op′(G) = 1 and ZpU(G) is p-supersolvable,
we have Op(G) ∈ S ylp(ZpU(G)) by [15, Theorem 2.1.6].

(5) Op(G), Z(G), and ZU(G) are equal to each other.
Assume that GU < G. Then, by (3), we have GU ∈ S(ZpU(G)). This implies that G is p-

supersolvable, leading to a contradiction. Hence GU = G. Then, by Lemma 2.4, Z(G) contains
ZU(G). Since Op′(Z(G)) ≤ Op′(G) is equal to 1, we have Z(G) contained in Op(G). Note that
Op(G) ∈ S(ZU(G)). Hence Op(G), Z(G), and ZU(G) are equal to each other.

(6) The final contradiction.
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By [1, IV, Theorem 5.5] and (3), it follows that there is an element y ∈ P with order p or 4, and
y < Z(G). Clearly, Y = 〈y〉 ∈ ICΦsc(G). Assume that YscG = Y . Then, by (3), Y covers or avoids G/T ,
where T := ZpU(G). If Y covers G/T , then G = YT . Hence G/T is cyclic. From this, we may deduce
that G ∈ S(ZpU(G)), a contradiction. If Y avoids G/T , then Y ≤ T . Hence Y ≤ Op(G) = Z(G) by
(4) and (5), this contradicts y < Z(G). Thus, we have YscG ≤ Φ(Y). Furthermore, Y ∩ [Y,G] ≤ Φ(Y).
From this inclusion relation, it is immediate that [Y,G] < G. By (3), we have [Y,G] ≤ T . Then
YGT = Y[Y,G]T = YT = G. Similarly, a contradiction is derived again, completing the proof. �

When we set E = G in the above theorem, the following conclusion can immediately be obtained.

Corollary 3.1. Let P ∈ S ylp(G). Then G is p-supersolvable whenever P satisfies 42.

Theorem 3.3. Let p = min π(F∗(G)) and P ∈ S ylp(F∗(G)). Then F∗(G) is solvable whenever P
satisfies 43.

Proof. Take G as a minimal counterexample. Let K ·EG and K ≤ F(G). Obviously, p = 2.
(1) F∗(G) = G.
By F∗(F∗(G)) = F∗(G) and Lemma 2.2(3), this is obvious.
(2) G/K is not solvable. K ∈ S2(G) is elementary abelian, and |K| = 2k.
From K ≤ F(G), we know K is solvable. Then G/K is not solvable, as otherwise G would be

solvable.
Since K ·EG and K ≤ F(G), a prime number r exists for which K belongs toSr(G) and is elementary

abelian. By (1), F∗(G/K) = G/K. If r > 2, then PK/K ∈ S ylp(G/K). Note that p = 2; we consequently
find PK/K satisfies 43 by Lemma 2.2(2). Hence G/K is solvable, which contradicts the above. Hence
r = 2. Let us prove that |K| = 2k.

If |K| > 2k, then, by Theorem 3.1, K ∈ S(ZU(G)). Hence, by the minimality of K, |K| = 2 and
k = 0, a contradiction.

If |K| < 2k, then, by Lemma 2.2(1), when |K| < 2k−1, P/K satisfies 43, so G/K is solvable, a
contradiction. When |K| = 2k−1. Following the argument for Theorem 3.1(5), we deduce that G/K
satisfies Corollary 3.1’s hypothesis and is solvable, a contradiction.

Hence |K| = 2k.
(3) F(G) = 1.
Otherwise, according to (2), we obtain |K| = 2k. Further, Lemma 2.5 implies that F(G) ∈ S(ZU(G)),

so |K| = 2. This yields k = 1. Using hypothesis and Corollary 3.1, we can confirm that G is 2-
supersolvable. If Op′(G) , 1, then, from the proof in the second paragraph of (2), G/Op′(G) is solvable.
Note that p = 2, it follows that G is solvable, a contradiction. Hence Op′(G) = 1. Then, by [15,
Theorem 2.1.6], we establish that P E G. As a consequence, G is proven to be solvable, leading to a
contradiction.

(4) Deriving the ultimate contradiction.
By (1), (3), and Lemma 2.6, G = S oc(G). Then, in G, all chief factors are non-abelian and simple.

Let S ≤ P with order 2k. Then S ∈ ICΦc(G). Since a 2-subgroup of G cannot cover a chief factor
of G that is non-abelian and simple, we have S cG = 1 and S satisfies S ∩ [S ,G] ≤ Φ(S ). Hence,
using [11, Theorem 1.3], G is 2-nilpotent. The solvability of G follows, thereby yielding the last
contradiction. �
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Formation, which is involved in many articles, studies the structure of groups from a broader
perspective (see [12, Theorem 3.8] and [4, Main Theorem]). With regard to ICΦc-subgroups, from
the perspective of formations, we have the following conclusion.

Theorem 3.4. Given a solvably saturated formation F ⊇ U, let N E G with G/N ∈ F. Then G ∈
F whenever each non-cyclic P ∈ S ylp(F∗(N)) satisfies 43, where p is an arbitrary prime number
belonging to π(F∗(N)).

Proof. Let r = min π(F∗(N)) and R ∈ S ylr(F∗(N)). First, consider when R is cyclic; then F∗(N) is r-
nilpotent, from which we get that F∗(N) is solvable. Alternatively, if R is not cyclic, as a consequence
of Lemma 2.2(3) and Theorem 3.3, we conclude that F∗(N) is solvable. Therefore, F∗(N) = F(N).

Let Q ∈ S ylq(F(N)). Then Q EG. If Q is not cyclic, then Q ∈ S(ZU(G)) by Theorem 3.1. If Q is
cyclic, obviously, Q ∈ S(ZU(G)). Hence F(N) ∈ S(ZU(G)). Note that G/N ∈ F. By combining [12,
Lemma 2.6] with [12, Lemma 2.7], we obtain G ∈ F. �

In particular, when F is taken as the class of nilpotent groups or the class of supersolvable groups,
the conclusion stated in the aforementioned theorem is obviously valid.

4. Conclusions

Note that CAP-subgroups and ICC-subgroups of G belong to ICΦc(G), and if F represents a
saturated formation, it necessarily follows that it is solvably saturated. Therefore, by Theorems 3.1
and 3.4, we can obtain [4, Main Theorem] and [12, Theorems 3.5 and 3.8]. Hence, our conclusions
expand the existing results and contribute new findings to the theory of group structure. In future
work, certain elements of ICΦc(G) may be employed to investigate the local versions of Theorem 3.4
(for example, p-nilpotency), a strategy that potentially offers new insights into the group structure by
connecting local properties to global behavior.
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