Research article Topical Sections

A novel multi-granularity variable precision neutrosophic rough set and group decision-making application with three strategies

  • Published: 13 October 2025
  • MSC : 03E72, 90B50, 94D05

  • This paper proposes a novel neutrosophic rough set model to solve group decision-making problems. First, we proposed a novel multi-granularity variable-precision neutrosophic rough set model, which included three basic models: optimistic, pessimistic, and compromise. Second, the properties of the upper and lower approximations of the multi-granularity variable-precision neutrosophic rough set were investigated by means of the residual implications of triangular norms, and their favorable algebraic properties were proved. Finally, the effectiveness, stability, and sensitivity of the three proposed models were verified through a multi-attribute group decision-making example in a single universe, and the experimental results showed that this method could accurately rank the targets. In summary, our method provided multiple strategies and fault tolerance.

    Citation: Hongyuan Zheng, Chunxin Bo, Lingqiang Li, Lu Wang, Wenjie Jiang. A novel multi-granularity variable precision neutrosophic rough set and group decision-making application with three strategies[J]. AIMS Mathematics, 2025, 10(10): 23187-23219. doi: 10.3934/math.20251029

    Related Papers:

  • This paper proposes a novel neutrosophic rough set model to solve group decision-making problems. First, we proposed a novel multi-granularity variable-precision neutrosophic rough set model, which included three basic models: optimistic, pessimistic, and compromise. Second, the properties of the upper and lower approximations of the multi-granularity variable-precision neutrosophic rough set were investigated by means of the residual implications of triangular norms, and their favorable algebraic properties were proved. Finally, the effectiveness, stability, and sensitivity of the three proposed models were verified through a multi-attribute group decision-making example in a single universe, and the experimental results showed that this method could accurately rank the targets. In summary, our method provided multiple strategies and fault tolerance.



    加载中


    [1] M. X. Luo, Z. Y. Sun, L. X. Wu, Fuzzy inference full implication method based on single valued neutrosophic t-representable t-norm: purposes, strategies, and a proof-of-principle study, Neutrosophic Syst. Appl., 14 (2024), 1–16. https://doi.org/10.61356/j.nswa.2024.104 doi: 10.61356/j.nswa.2024.104
    [2] D. J. S. Martina, G. Deepa, Application of multi-valued rough neutrosophic set and matrix in multi-criteria decision-making: multi-valued neutrosophic rough set and matrix, Math. Appl. Sci. Eng., 4 (2023), 227–248. https://doi.org/10.5206/mase/16636 doi: 10.5206/mase/16636
    [3] C. Zhang, D. Li, X. Kang, Y. Liang, S. Broumi, A. K. Sangaiah, Multi-attribute group decision making based on multigranulation probabilistic models with interval-valued neutrosophic information, Mathematics, 8 (2020), 223. https://doi.org/10.3390/math8020223 doi: 10.3390/math8020223
    [4] X. L. Ma, X. R. Han, Z. S. Xu, R. M. Rodriguez, J. M. Zhan, Fusion of probabilistic linguistic term sets for enhanced group decision-making: foundations, survey and challenges, Inf. Fusion, 116 (2025), 102802. https://doi.org/10.1016/j.inffus.2024.102802 doi: 10.1016/j.inffus.2024.102802
    [5] Y. Kang, J. Dai, Attribute reduction in inconsistent grey decision systems based on variable precision grey multigranulation rough set model, Appl. Soft Comput., 133 (2023), 109928. https://doi.org/10.1016/j.asoc.2022.109928 doi: 10.1016/j.asoc.2022.109928
    [6] K. Yuan, W. Xu, D. Miao, A local rough set method for feature selection by variable precision composite measure, Appl. Soft Comput., 155 (2024), 111450. https://doi.org/10.1016/j.asoc.2024.111450 doi: 10.1016/j.asoc.2024.111450
    [7] H. Yu, Z. Q. Wang, Y. F. Xie, G. Y. Wang, A multi-granularity hierarchical network for long- and short-term forecasting on multivariate time series data, Appl. Soft Comput., 157 (2024), 111537. https://doi.org/10.1016/j.asoc.2024.111537 doi: 10.1016/j.asoc.2024.111537
    [8] X. H. Zhang, Q. Q. Ou, J. Q. Wang, Variable precision fuzzy rough sets based on overlap functions with application to tumor classification, Inf. Sci., 666 (2024), 120451. https://doi.org/10.1016/j.ins.2024.120451 doi: 10.1016/j.ins.2024.120451
    [9] J. X. Zhan, M. J. Cai, A cost-minimized two-stage three-way dynamic consensus mechanism for social network-large scale group decision-making: utilizing $K$-nearest neighbors for incomplete fuzzy preference relations, Expert Syst. Appl., 263 (2025), 125705. https://doi.org/10.1016/j.eswa.2024.125705 doi: 10.1016/j.eswa.2024.125705
    [10] Y. F. Shen, X. L. Ma, Z. S. Xu, M. H. Deveci, J. M. Zhan, A minimum cost and maximum fairness-driven multi-objective optimization consensus model for large-scale group decision-making, Fuzzy Sets Syst., 500 (2025), 109198. https://doi.org/10.1016/j.fss.2024.109198 doi: 10.1016/j.fss.2024.109198
    [11] S. Liu, W. Yu, F. T. S. Chan, B. Niu, A variable weight-based hybrid approach for multi-attribute group decision making under interval-valued intuitionistic fuzzy sets, Int. J. Intell. Syst., 36 (2021), 1015–1052. https://doi.org/10.1002/int.22329 doi: 10.1002/int.22329
    [12] W. H Su, D. Luo, C. Zhang, S. Zeng, Evaluation of online learning platforms based on probabilistic linguistic term sets with self-confidence multiple attribute group decision making method, Expert Syst. Appl., 208 (2022), 118153. https://doi.org/10.1016/j.eswa.2022.118153 doi: 10.1016/j.eswa.2022.118153
    [13] Y. F. Shen, X. L. Ma, M. H. Deveci, E. Herrera-Viedma, J. M. Zhan, A hybrid opinion dynamics model with leaders and followers fusing dynamic social networks in large-scale group decision-making, Inf. Fusion, 116 (2025), 102799. https://doi.org/10.1016/j.inffus.2024.102799 doi: 10.1016/j.inffus.2024.102799
    [14] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Springer Science & Business Media, 2013.
    [15] H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Interval neutrosophic sets and logic: theory and applications in computing, arXiv, 2005. https://doi.org/10.48550/arXiv.cs/0505014
    [16] R. Şahin, M. Karabacak, A novel similarity measure for single-valued neutrosophic sets and their applications in medical diagnosis, taxonomy, and clustering analysis, In: F. Smarandache, M. Abdel-basset, Optimization theory based on neutrosophic and plithogenic sets, Academic Press, 2020,315–341. https://doi.org/10.1016/B978-0-12-819670-0.00014-7
    [17] F. Smarandache, L. Vladareanu, Applications of neutrosophic logic to robotics, The Trickle Up Effect, 2019
    [18] A. Kumar, C. P. Gandhi, Y. Zhou, H. Tang, J. Xiang, Fault diagnosis of rolling element bearing based on symmetric cross entropy of neutrosophic sets, Measurement, 152 (2020), 107318. https://doi.org/10.1016/j.measurement.2019.107318 doi: 10.1016/j.measurement.2019.107318
    [19] J. J. Peng, J. Q. Wang, J. Wang, H. Y. Zhang, X. H. Chen, Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems, Int. J. Syst. Sci., 47 (2016), 2342–2358. https://doi.org/10.1080/00207721.2014.994050 doi: 10.1080/00207721.2014.994050
    [20] H. L. Yang, C. L. Zhang, Z. L. Guo, Y. L. Liu, X. W. Liao, A hybrid model of single valued neutrosophic sets and rough sets: single valued neutrosophic rough set model, Soft Comput., 21 (2017), 6253–6267. https://doi.org/10.1007/s00500-016-2356-y doi: 10.1007/s00500-016-2356-y
    [21] D. Zhang, M. W. Zhao, G. W. Wei, X. D. Chen, Single-valued neutrosophic TODIM method based on cumulative prospect theory for multi-attribute group decision making and its application to medical emergency management evaluation, Econ. Res.-Ekon. Istraž., 35 (2022), 4520–4536. https://doi.org/10.1080/1331677X.2021.2013914 doi: 10.1080/1331677X.2021.2013914
    [22] D. Stanujkić, D. Karabašević, G. Popović, D. Pamučar, Ž. Stević, E. K. Zavadskas, et al., A single-valued neutrosophic extension of the EDAS method, Axioms, 10 (2021), 245. https://doi.org/10.3390/axioms10040245 doi: 10.3390/axioms10040245
    [23] P. Q. Liu, J. X. Shen, P. Zhang, Multi-attribute group decision-making method using single-valued neutrosophic credibility numbers with the Dombi extended power aggregation operator and its application in intelligent transportation system data collection scheme selection, Eng. Appl. Artif. Intell., 133 (2024), 108639. https://doi.org/10.1016/j.engappai.2024.108639 doi: 10.1016/j.engappai.2024.108639
    [24] P. Q. Liu, J. X. Shen, P. Zhang, B. Ning, Multi-attribute group decision-making method using single-valued neutrosophic credibility numbers with fairly variable extended power average operators and GRA-MARCOS, Expert Syst. Appl., 263 (2025), 125703. https://doi.org/10.1016/j.eswa.2024.125703 doi: 10.1016/j.eswa.2024.125703
    [25] Nancy, H. Garg, A novel divergence measure and its based TOPSIS method for multi criteria decision-making under single-valued neutrosophic environment, J. Intell. Fuzzy Syst., 36 (2019), 101–115. https://doi.org/10.3233/jifs-18040 doi: 10.3233/jifs-18040
    [26] G. Selvachandran, S. G. Quek, F. Smarandache, S. Broumi, An extended technique for order preference by similarity to an ideal solution (TOPSIS) with maximizing deviation method based on integrated weight measure for single-valued neutrosophic sets, Symmetry, 10 (2018), 236. https://doi.org/10.3390/sym10070236 doi: 10.3390/sym10070236
    [27] H. Garg, D. Dutta, P. Dutta, B. Gohain, An extended group decision-making algorithm with intuitionistic fuzzy set information distance measures and their applications, Comput. Ind. Eng., 197 (2024), 110537. https://doi.org/10.1016/j.cie.2024.110537 doi: 10.1016/j.cie.2024.110537
    [28] Y. Zhou, X. R. Zhang, Y. S. Chen, X. H. Xu, M. Li, A water-land-energy-carbon nexus evaluation of agricultural sustainability under multiple uncertainties: the application of a multi-attribute group decision method determined by an interval-valued intuitionistic fuzzy set, Expert Syst. Appl., 242 (2024), 122833. https://doi.org/10.1016/j.eswa.2023.122833 doi: 10.1016/j.eswa.2023.122833
    [29] Z. Y. Tu, M. G. Xu, R. F. Ma, M. Li, H. Xu, Indoor environmental quality assessment based on Interval-Valued Intuitionistic Fuzzy Linguistic Term Set TOPSIS method, J. King Saud Univ. Comput. Inf. Sci., 37 (2025), 196. https://doi.org/10.1007/s44443-025-00188-y doi: 10.1007/s44443-025-00188-y
    [30] A. S. Abdulbaqi, A. D. Radhi, L. A. Z. Qudr, H. R. Penubadi, R. Sekhar, P. Shah, et al., Neutrosophic sets in big data analytics: a novel approach for feature selection and classification, Int. J. Neutrosophic Sci., 25 (2025), 428–438. https://doi.org/10.54216/IJNS.250138 doi: 10.54216/IJNS.250138
    [31] M. X. Luo, G. F. Zhang, L. X. Wu, A novel distance between single valued neutrosophic sets and its application in pattern recognition, Soft Comput., 26 (2022), 11129–11137. https://doi.org/10.1007/s00500-022-07407-y doi: 10.1007/s00500-022-07407-y
    [32] J. X. Zhan, M. J. Cai, Q. G. Li, Fuzzy clustering-based three-way asynchronous consensus for identifying manipulative and herd behaviors, IEEE Trans. Fuzzy Syst., 33 (2025), 3529–3541. https://doi.org/10.1109/TFUZZ.2025.3596689 doi: 10.1109/TFUZZ.2025.3596689
    [33] Y. F. Shen, X. L. Ma, G. Kou, R. M. Rodríguez, J. Zhan, Consensus methods with Nash and Kalai-Smorodinsky bargaining game for large-scale group decision-making, Eur. J. Oper. Res., 321 (2025), 865–883. https://doi.org/10.1016/j.ejor.2024.10.016 doi: 10.1016/j.ejor.2024.10.016
    [34] A. Nafeı, W. J. Yuan, H. Nasserı, A new method for solving interval neutrosophic linear programming problems, Gazi Univ. J. Sci., 33 (2020), 796–808. https://doi.org/10.35378/gujs.689125 doi: 10.35378/gujs.689125
    [35] A. R. Mishra, S. M. Chen, P. Rani, Multicriteria decision making based on novel score function of Fermatean fuzzy numbers, the CRITIC method, and the GLDS method, Inf. Sci., 623 (2023), 915–931. https://doi.org/10.1016/j.ins.2022.12.031 doi: 10.1016/j.ins.2022.12.031
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(438) PDF downloads(26) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(20)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog