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Abstract: This paper proposes a novel neutrosophic rough set model to solve group decision-
making problems. First, we proposed a novel multi-granularity variable-precision neutrosophic rough
set model, which included three basic models: optimistic, pessimistic, and compromise. Second,
the properties of the upper and lower approximations of the multi-granularity variable-precision
neutrosophic rough set were investigated by means of the residual implications of triangular norms,
and their favorable algebraic properties were proved. Finally, the effectiveness, stability, and sensitivity
of the three proposed models were verified through a multi-attribute group decision-making example
in a single universe, and the experimental results showed that this method could accurately rank the
targets. In summary, our method provided multiple strategies and fault tolerance.
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1. Introduction

Real-world decision-making is often accompanied by a high degree of uncertainty, imprecision,
and conflicting information. Although traditional fuzzy sets, rough sets, and their extended models
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(such as intuitionistic fuzzy sets, variable precision rough sets, neutrosophic sets, etc.) can handle
some problems from different perspectives, there is a lack of models that can effectively integrate their
advantages, and they face three major challenges in complex group decision-making. First, it is difficult
to simultaneously achieve robustness against neutrosophic data noise, granular fusion of multi-source
heterogeneous information, and independent characterization of true, false, and uncertain information
within a single framework. Second, most mainstream neutrosophic set models are based on specific
triangular norms [1] and lack strict logical support based on more general residual implications and
dual operators. Third, single-granularity models are prone to information loss when integrating the
preferences of multiple decision-makers, which affects the stability and reliability of results. These
limitations restrict the application of existing methods in complex decision-making in key fields such as
neutrosophic information, medical diagnosis, and target recognition, and constitute the core motivation
of this research.

As a key advancement in the field of rough set theory, multi-granularity technology enables
comprehensive analyses of information from different perspectives, thereby more efficiently mining
and revealing the structural characteristics of complex data. Currently, its wide applicability has been
verified in various fields such as medical diagnosis [2] and target optimization [3]. One study [4]
utilizes probabilistic linguistic term sets to represent the preferences and opinions of decision-makers,
thereby improving the accuracy and consistency of decision-making. Meanwhile, the feature of
variable precision can significantly enhance the anti-interference capability of the model, enabling
it to better handle data with uncertainty and noise. For this reason, researchers have proposed a variety
of rough set models by integrating the idea of variable precision, such as the models constructed in
prior studies [5,6]. However, the existing related models still have obvious limitations. On the one
hand, due to the lack of a dynamic precision adjustment mechanism [7], multi-granularity rough sets
either waste effective information due to the absence of fault-tolerant space or affect the final results
by forcibly incorporating errors when facing data noise or ambiguous boundaries; on the other hand,
although variable precision rough sets can provide a fault-tolerant space for neutrosophic sets through
error thresholds and avoid the rigidity problem of hard thresholds, they can only adjust precision under
a single granularity [8], which neither enables the separation of multi-dimensional information nor
adapts to the differentiated precision requirements in multi-criteria decision-making.

Against the backdrop of the complex contemporary era, the shift from individual decision-
making to group decision-making has become increasingly urgent and necessary. On one hand,
real-world decision-making issues involve multi-domain knowledge and factors. Constrained by
their own knowledge, experience, and cognitive limitations, individual decision-makers struggle to
comprehensively and accurately grasp key information, making them prone to misjudgments when
dealing with complex problems. For instance, social networks in the big data era require knowledge
across multiple domains [9], which is hardly manageable for a single individual. On the other hand,
decisions now have a broader impact and are related to the interests of multiple parties. Due to
the limited perspective of individual decision-making, it is difficult to fully consider the demands of
different groups, resulting in insufficient recognition and feasibility of the decisions made. In contrast,
group decision-making can pool the wisdom, experience, and perspectives of multiple individuals;
can integrate information more comprehensively; and is conducive to coordinating the interests of
multiple parties while enhancing the scientificity and democracy of decisions [10]. This shift is an
inevitable outcome of the times and decision-making needs. Liu et al. [11] devised a new variable-
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weight approach for multi-attribute group decision-making (MAGDM) problems. Su et al. [12]
proposed a MAGDM method based on probabilistic linguistic term sets, which aims to evaluate online
learning platforms and analyze the situation of self-confidence. Shen et al. [13] constructed a large-
scale group decision-making method that integrates dynamic social networks and opinion dynamics.
They effectively clustered experts by designing an improved Louvain algorithm, distinguished opinion
leaders and followers using structural hole theory and also built a network update mechanism. To
improve consensus efficiency, they proposed a hybrid opinion dynamics model by combining the
advantages of the DeGroot and Hegselmann—Krause models. Shen et al. [10] developed a multi-
objective optimization consensus framework for large-scale group decision-making. They designed
a method for determining decision-makers’ weights based on structural hole theory and, on this basis,
developed a novel clustering method centered on the maximum group consensus level. However,
these studies have certain limitations: When processing large-scale data, the models exhibit high
computational complexity, which may affect their decision-making efficiency.

On the basis of this analysis, this study conducts an in-depth exploration of the theory and
application of multi-granularity variable-precision neutrosophic rough sets (MGVPNRS), with its core
contributions reflected in three aspects. First, by means of the residual implication of t-norms and
their dual logical operators, variable precision, multi-granularity, and neutrosophic sets are integrated
to construct a novel MGVPNRS model. This model has three basic variants: Optimistic, pessimistic,
and compromise models. Second, the MGVPNRS model is applied to MAGDM problems, and a
reasonable method for formulating decision schemes is designed. Compared with single-granularity
models, the multi-granularity framework can more fully accommodate the preference differences
among decision-makers and improve the comprehensiveness of decisions. Relying on the fault-
tolerant mechanism of variable precision, it effectively reduces the interference of noisy data on
the characterization of uncertainty, thereby coping with complex decision-making processes more
efficiently. Third, the proposed method is applied to the scenario of medical emergency management
and compared with other decision-making methods. Experimental results verify the effectiveness and
stability of the method, while also demonstrating a certain degree of sensitivity.

The following outlines the article’s structural framework. In Section 2, some fundamental concepts
are reviewed. In Section 3, a novel MGVPNRS model is proposed, and its algebraic properties are
studied. In Section 4, an approach to MAGDM is constructed on the basis of the proposed model. In
Section 5, the effectiveness, stability, and reasonable sensitivity of the proposed model are verified via
case applications and comparative evaluations. Lastly, in Section 6, we summarize the work, and an
outlook for future work is provided. For improved readability, we list the symbols of some common
terms in Table 1.

Table 1. Glossary of symbols.

Object Symbolic representation
Elements in the universe of discourse U x,d, e, h,gq,z

Symbol with a value range of [0,1] a,B,y,w, v, 0

Set Q.S

Relation N.T, 3, ¢
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2. Preliminaries

In the present chapter, we revisit some key notions about fuzzy logic operators (FLOs). Let I =
[0,1], and ® : I? — I denotes a left-continuous #-norm, and —: I*> — [ is the residuated implication
determined by Yu,l € LLv — ¢ = \/{f € I : vOf < ¢}. Similarly, Z : I> — I denotes a right-
continuous #-conorm, and <: I> — [ is the residuated coimplication determined by Vv, € I,v <
= Nf €l:daf > e} [14]. Furthermore, we assume — : /[ — [ is an involutive negation. The
negative operator — deﬁned by =4(v) = 1 —v, v € I is called the standard negative operator, and ® and
= are dual with respect to = (—y). Table 2 lists some typical examples of ®, =, and the associated +—
and <.

Table 2. Examples of ©, E, and their associated — and <.

® and = — and —

{l,ifZSq
i—pqg=

Opg=2-q .
%, otherwise

{O,ifZZC]
I—=pq=

ZEpg=z2+q9—2-4q - .
7—_;, otherwise

0Og=0V(z+qg—-1)
ZEg=1A@+q)

zLg=1A{10-2+¢q)
291q9g=0VvV(g-2)

l,if z<¢q
©Oug=zNq Py g = .
q, otherwise
_ { 0,ifz>g¢q
=mq=2Vgq T7mMqg= .
q, otherwise
J =g — (1 —2)r,if z >
20yq = max(1 — (1 - 2)" + (1 — ¢)"), n € (0, +0) Iy g = -Y-gr--2 q
1, otherwise
0,if z >
z8yq = min(1, /7" + q"),n € (0, +0) 7oy q= =4
/g — 7", otherwise
l,ifz<¢q
_ 29
20nq = g’ € (0, +c0) ARG { 1g+(1=Y)(Etg-29) 7)(“‘1 X otherwise
it i—rg—(]— 0, 1fz >q
= +g-2qg—(1-y)zq
2pq = == v € (0, +00 " B
Hq e Y € ) na= { : Z:E} Z;ZZ otherwise
0,ifz+g<1 lLifz<gq
Z®an = . . IPum g =
min{z, g}, otherwise max{l — z, g}, otherwise
_ Lifz+g>1 01fz>q
T&amq = . Z9wmwm g = .
max{z, q}, otherwise min{z, 1 }, otherwise

Lemma 1. For any a,B,y € I,y,(s € S), and B,(z € Z) € I, then
(l)a—>B—ovy)=f—=(@—>y)anda— B y) =P (@ 7v)
RQa<poeoarp=1leoB—>a=0
(3) (V) = (AB) = ANys = Bo) and (Nys) = (V) =V V(s = Bo)
(4) a@)(ﬁ - 7) < (a@y) and aE(B — y) 2 B < (Oluy)

(5) \S/(a@ys) = af®\s/ys and /S\(a/_ys) = a_/s\ys.
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Definition 1. [15] A single-valued neutrosophic set (SVNS) L is denoted by Vx € U, as follows:
L ={Cx, To(x), 1(x), Fr(x) | x € U},

T, (x),I.(x), Fr(x) € [0,1], and satisfies O < Tr(x) + [.(x) + Fr(x) < 3, the single-valued neutrosophic
number (SVNN) in the SVNS is denoted as (T (x), I;(x), F1(x)).

Suppose that U is a nonempty finite universe, and /(%) stands for a neutrosophic set in U. Va =
(ar, a;, ar); simultaneously, we utilize & to signify the constant neutrosophic set valued a. Set Q, L €
I(U), and % € {U,N, O, E, —, <}, one define neutrosophic set Q % L by Yx € U and (Q x* L)(x) =
Q(x) % L(x). For every Y C U, we define neutrosophic set 8y by dy(d) = (1,0, 0) whenever d € Y and
Oy(d) = (0,1, 1) otherwise.

A SVNS K € I(U x U) is called a single-valued neutrosophic relation (SVNR) on U. The pair
(U, RN) is termed a generalized neutrosophic approximation space (GNAS). Furthermore, Vd, e, h € U
as follows:

(D) IfN(d,d) = (1,0,0), then N is reflexive;

(2) If X(d, e)ON(e, h) < K(d, h), then N is O-transitive.

If N satisfies (1) and (2), then N is a ®-preorder.

Definition 2. [I5]If Q and S be two SVNSs on U, we define:
(1) Q € S ifand only if{iff) Vx € U, To(x) < Ts(x), Ip(x) > I5(x), and Fy(x) > Fg(x);
(2) =Q = {(x, Fo(x), I = Ip(x), To(x))lx € U};
(3) QNS = ((x, To(x) A Ts(x), Ip(x) V Is(x), Fo(x) V Fs(x)lx € U);
(4) QUS ={(x,To(x) V Ts(x),1p(x) A Is(x), Fo(x) A Fs(x))lx € U}.

Definition 3. [16] Let a1=(T,,, 1,,, F.,) and ay=(T,,, l,,, F,,) represent two SVNNs, the operation
rules are as follows:

(1) Ay =1 = (1 = To )Y Ua))'s (Fa )Y,

(2) af = (T 1= (A = L)L 1= (1= Fo,)Y);

B)ar@ay=To, +To,—To, Ta,, 1o, " 1n,, Fo, - Fo,);

(4) a1 0ar =Ty, Toys Loy + 1o, = 1o, - 1oy, Fo, + Fo, = Fo, - Fo,).

Definition 4. [17] Let Q and S be two SVNSs in U, where “E” and “®” denote t-conorm and t-norm.
(1) The union of Q and S is a SVNS G, denoted G = QES, where Vx € U, Tyzs(x) =
TQ(X)ETS (.X),IQES (X) = IQ(X)@IS (.X), and FQES (.X) = FQ(.X)@FS (.X)
(2) The intersection of Q and S is a SVNS K, denoted K = QOS, where Yx € U, Toes(x) =
To(x)OTs(x), Iges(x) = Ip(x)Els(x), and Fges(x) = Fo(x)EFs(x).

3. Novel models of variable-precision neutrosophic rough sets

Novel variable-precision neutrosophic rough sets (VPNRSs) (i.e.,single-granularity VPNRS and
multi-granularity VPNRS) models will be introduced in the following subsections, with an emphasis
on the relevant properties of the MGVPNRS model, since single-granularity is a special case of multi-

granularity.
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3.1. Definition and basic properties

Next, we propose a single-granularity VPNRS model.
For any Z C U, let | Z| represents its cardinality. For w € I, we write

U, ={Z CU:|Z| = wlUI.

Definition 5. Assume that (U, N) is a GNAS, w € I, and Q € I(U). One defines §‘”(Q),§w(Q) e I(U):

Vgel,

Two@ =\ /\(Txgx) H Tow),
geZeU, x€Z

@ = /\ \/ (Is(g %) = Io),
geZeU, x€Z

Feo@= [\ (Fsgx = Fo),
geZeU,, x€Z

TRM(Q)(g) = /\ \/ (FN(g’ X) — TQ(-X))a
geZeU,, x€Z

@@=\ A=) - ),
geZeU, xeZ

Fg‘”(Q)(g) = \/ /\ (TN(g’ X) = FQ(X))

geZeU, xeZ

Next, we will introduce the MGCVPNRS model and its properties.

Definition 6. (Optimistic model) Let U, T = {N,N,,--- ,N;} be a family of GNAS (referred to
as FGNAS), and Q € I(U). Then the pair (OY “’(Q),WM(Q)) is called an optimistic C-variable
precision neutrosophic rough set (OCVPNRS) of Q, where OY“(Q) and Ww(Q) are determined via
the following:

Toro@ =\ \/ /\(Ts& 0 - Tow),

i geYel, xeY
lorio(8) = /\ yAﬂ Vy(’&(g’ x) = Ig(x)),
i geYel, xe
Foro® = [\ /\ \/ (Fs(g2 < Fo().
i geYel, xeY
Torio(® = /\ yAﬂ vy(Fxxg, x) < To(x)),
i geYel, xe
Iio)(8) = \/ >/ﬂ Ay ((1 = k(8. )) > Ip().
i geYel, xe
For® = \/ >/ﬂ AM(TN,(g, x) b Fo(x)).
i geYel, xe

AIMS Mathematics Volume 10, Issue 10, 23187-23219.



23193

Next, we present several theorems on OCVPNRSs and provide their proofs.

Theorem 1. Let U, T = {8, N,,--- ,Ns}(js a FG&% a€l, Q andS € I(U).
(1) QS S = 07“(Q) COT*(S),0T (Q) S OT (S);
(2) OYT“(Q N S) C OY“(Q) N OY“(S), 0T (QUS) 2 0T (Q)UOT (8);
(3) OY(d - Q) C & - 0Y“(Q), 0T (& = Q)2 & = OT (Q);
(4) OT“(&) 2 &, OT (&) C &. Particularly, OT*(U) = U, OT (D) = 0;
(5) OT“(GOQ) 2 3O0T“(Q) and G=ZOT (Q) 2 OT (GEQ).

Proof. (1) This is proved direct inference from Definition 6 and Lemma 1 (2).
(2) This follows directly from (1).
(3) Let g € U, then by Definition 6, Lemma 1 (3) and (6), we have

Toroa-0)(8) = \/ \/ /\(Tx,»(g,x)'—)T(&HQ)(X))

i geZeU, xeZ

=\/ VAl - Tz 0 - To(x)

i geZeU, x€Z

<are\/ \/ A\Tulg0) - To()

i geZeU, xeZ
= (Ta = Tor)(®),

VoV AT - Tanow)

i geZeU, x€Z

VoV Aler e Tntsn o Tox)

i geZeU, xeZ

o=\ \/ A\Txgn - To(x)

i geZeU, xeZ
= (Ta - T@“’(Q))(g),

Torei-0)(8)

IA

A AV (s = Lano™)

i geZeU, xeZ

A AV (@2 = Uiz 0 = Io()

i geZeU, xeZ

e NN\ U0 = Iox)

i geZeU, xeZ

= (I = lor)(®).

Tovo@-0)(8)

\%

Foro@ao0(8) = /\ /\ \/(in(g,x)%F(aHQ)(X))

i geZeU, xeZ
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A A V(e = Fulen = Fox)

i geZeU, xeZ

v [\ Fig 0 = Fo(x)

i geZelU, x€Z
= (Fa = For)®).

Y

Thus, OT“(& — Q) < & — OT“(Q). Likewise, we can get O (& < Q) > & < OT (Q).
(4) By Lemma 1 (1) and (4), we have

Toyew)(8) = \/ \/ /\ (Txi(g, x) - Té(x)) > ay,

i geZeU, xeZ
loeaw@ =\ N\ (Is(g.0) = L) <,
i geZeU, xeZ
Forw@=/\ [\ V (Fs@n = Fu®) <as.
i geZeU, x€Z

Therefore, OT“(&) > &. Likewise, O (&) < &.
(5) For any g € U, we have

\/ \/ /\ (Tx,-(g, x) - (Td(aQ)(x))

i geZeU, xeZ

VoV A\ (@0 (g0 - Tox)

i geZeU, xeZ

= a0\/ \/ A\Tx@ 0 Tow)

i geZeU, x€Z
= (T40Tor0)(®),

Tore@00)(8)

\%

Iovaoo(@ = N\ N\ (ls(g%) = Useo ()

i geZelU, xeZ

A NV (@20 0) = Io(x))

i geZeU, x€Z

w2 N\ N\ Us e 0) = Io(x)

i geZeU, xeZ
(I:Elor0)(8).

IA

Fore@ep(8) = /\ /\ \/ (in(g, Xx) = (fo(aQ)(x))

i geZeU, xeZ
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< ANV (@EFs (2,0 = Fox))
i geZeU, xeZ
= a2\ \/Fuen) = Fo)
i geZelU, x€Z
= (FsZFor0)(®)-
Thus, OT“(#0Q) > 4®0T“(Q). Likewise, we can get 20T (Q) > OT (JEQ). O

It can be seen that the optimistic model possesses the basic properties of rough sets. It not only
satisfies the monotonicity of set inclusion relations but also preserves set inclusion relations under
union and intersection operations. Additionally, it satisfies set inclusion relations under the operations
of continuous triangular norms and their induced residual implications.

Deﬁnitionl (Pessimistic model) Let U, T = {N,N,,--- ,N;} be a FGNAS, and Q € I(U). The couple
(PY“(Q), PY (Q) is termed the pessimistic C-variable precision neutrosophic rough set (PCVPNRS)
of Q, where PY“(Q) and WM(Q)) are determined via the following:

T = [\ /\ (Tse 0 o To),

i sezeu, ez
Ipreg) = v } ZA% X(z&.(g, x) = Io(x),
Frrog) = V } ée\% lé(&,.(g, x) © Fo()),
Tore ) = V § ZA% \é (Fx.(g %) = To()),
g = [\ va AZ ((1 = Iy (g, ) P To(x)).
Frpog = Agzvﬂ AZ (Ts(g, %) > Fo(x)).

The following theorem describes the algebraic properties of the pessimistic model. Next, we
enunciate several theorems of the PCVPNRS.

Theorem 2. Let U, Y = {8, Ny, -+ ,N,} beg FGNAS. g“z el, 0,8 € I(U).
(1) QC S = PY“(Q) C PTY(S) and PY (Q) € PY (S);
(2) PY“(QN'S) C PY(Q) N PY“(S) and PY (QUS) 2 PT (Q) UPT (S);
(3) PY“(@ — Q) C & = PY(Q) and PT (& = Q) 2 & — PT (Q);
(4) PY“(&) 2 &, PT (&) C & Particularly, PY“(U) = U, PT (D) = 0;
(5) PT“(@0OQ) 2 4OPYT(Q) and &EZPT (Q) 2 PT (4E0).

Proof. This bears a resemblance to Theorem 1 and has the same properties as the optimistic model. O
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The optimistic and pessimistic models represent two extreme cases, thus leading to the introduction
of a compromise model.

Definition i (Compromise model) Let U, T = {NX{,N,,--- ,N;} be a FGNAS, and Q € I(U), the couple
(CY“(Q), CY (Q) termed the compromise C-variable precision neutrosophic rough set (CCVPNRS) of
Q, where CY“(Q) and ﬁw(Q)) are determined via THE following:

Tevo)(8) = pTove(0)(g) + (1 — p)Tprep)(8),

Ieyeg)(8) = ploveg)(8) + (1 = pP)pre(g)(8)s
Feyog)(8) = pForeo)(8) + (1 = p)Fpreo)(8),
Tev0)(8) = pTg79)(8) + (1 = )T (8),

I750)(8) = PIgy(0)(8) + (1 = g, (8),
Fe0)(8) = pFore ) (&) + (1 = p)Fge ) (8).

Theorem 3. Let (U, = {N{,N,,--- ’Nﬂl) be a fEJXAS. 0,5 € I(U).
(1)Q €8 = CT(Q) € CT“(S),CT(Q) < CT (S):
(2) CY“(QNS) € CT(Q) N CT(S),CT (QUS) 2 CT (Q)UCT (S);
(3) CY“(&) 2 & CT (&) C &. Particularly, CY*(U) = U,CYT (D) = 0.

Proof. (1)—(3) have similar proofs to Theorems 1 and 2. O

Definition 9. (Distributive property) ® and Z are said to satisfy the distributive property provided that
forany e, g,r € I, the following holds:

eO(g + 1) = eOg + eOr, eE(g +r) = eEg + eEr.

Remark 1. The distributive property holds when ® = Gp.
Theorem 4. Let U, T = (N, N, -+, N} is a FGNAS, © = Op, then

CT(§05Q) 2 40,CY(Q).

Proof. By Theorem 1 (5) and Theorem 2 (5), and Definition 9.

Teraoro =P\ N\ (Ts@0 e Tio,o0w)+1-p A\ \/ A\ (Tx(e0 = Teo,0)

i geZeU, x€Z i geZeU, xeZ

=\ VAT @0,Tem)+1-p) \ \/ N (Tx(g.0) - @0pTo(x))

i geZeU, xeZ i geZeU, xeZ

>0\ \/ N\Tx(e0 e To)+ai0,a-p) \ \/  A\Txiz0) - To)

i geZeU, xeZ i geZeU, xeZ

= Ter@OrTcre)s

leyo@or,0 = P /\ /\ \/ (Ix(8: %) = Iao,0() + (1 = p) \/ /\ \/ (Ix.(8: %) = Two,0/(x))

i geZeU, xeZ i geZeU, xeZ
=p A\ /\ V(g0 = @)+ 1-p\/ A \/ (ks 0) = (@Zplp(x))
i geZeU, xeZ i geZeU, xeZ
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<mZpp [\ N\ Vs o ) +aE,a-p\/ N\ Uxx) < )

i geZeU, xeZ i geZeU, xeZ

= Icy@wErIcy(o),

Ferwor =P\ /\ \ (Fu(e:0 = Fao,0)+ 1 =-p)\/  /\ \/ (Fu(e, 0 = Fiao,0()

i geZeU, x€Z i geZeU, xeZ
o\ NV (Fuen = @EFe)+1-p\/ /\ \/ (Fulen = @pFox)
i geZeU, x€Z i geZeU, xeZ

<wmZmp \ N\ Fsn o Fo)+az,d-p\/ /\ \/Fxex o Fokx)

i geZeU, xeZ i geZeU, xeZ

= Fev@wEpFcreo)-

Therefore,
CY*(@0pQ) 2 4OCT(Q).

O

It is not difficult to find that the compromise model only satisfies the monotonicity of the set
inclusion relations and the preserves set inclusion relations under union and intersection operations.
Next, we illustrate that the inequality in Theorem 4 does not satisfy other logical operators.

Demonstration of Theorem 4. Let U = {w,m,n},® = O, E = E;, and

N]I

N2:

N; =

take

0.2,0.6,0.4
0= ( ) +

(0.4,0.5,0.4)
(0.5,0.6,1.0)
(0.9,0.2,0.4)

(0.9,0.2,0.4)
(0.4,0.5,0.1)
(1.0,0.5,0.0)

(0.7,0.7,0.0)
(0.8,0.2,0.1)
(0.0,0.8,1.0)

(0.5,0.7,0.1)
(0.2,0.6,0.4)
(0.8,0.9,1)

(0.3,0.9,0.1)
(0.0,0.1,0.7)
0.4,0.4,0.2)

(0.4,0.8,0.9)
(1.0,0.1,0.8)
(1.0,0.0, 1.0)

(0.5,0.4,1.0)

(1,0.8,0.8)
(0.9,0.2,0.4)
(0.6,1.0,0.0)

(0.1,0.7,0.0)
(1.0,0.8,0.8)
(0.1,0.5,0.4)

(1.0,0.4,0.5)
(0.1,0.3,0.5)
(1.0,1.0,0.0)

0.7,0.1,0.5
L )

w

m

n

and @ = (0.2,0.6,0.1), p = 0.5, and w = 0.7. This proves that

CY*@0.0) =

(0.2517,0.2,0.6) N (0.1515,0.3162,0.4243) N (0.3072,0.3464,0.6325)

a0,.CY(Q) =

Therefore, CT“(@®Q) 2 a®CY*(Q) cannot be compared in terms of magnitude. Similarly, we

w

m

(0.2,0.6,0.6) N (0.2,0.6,0.4243) N (0.2,0.6,0.6325)

m

find that ZCT (Q) 2 CT (¢ZQ) does not hold.
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Remark 2. Observe that when p = 0 (respectively, p = 1), the CCVPNRS transforms into the
PCVPNRS (respectively, the OCVPNRS). Thus, as the parameter p approaches 0 (respectively, p
approaches 1), it implies that the compromise model gravitates towards the PCVPNRS (respectively,
the OCVPNRS).

Observe that when p = 0 (respectively, p = 1), the CCVPNRS reduces to the PCVPNRS
(respectively, the OCVPNRS). Consequently, as p tends to O (respectively, p approaches 1), the
CCVPNRS demonstrates a tendency to lean toward the PCVPNRS (correspondingly, the OCVPNRS).

We collectively refer to the three models of OCVPNRS, PCVPNRS, and CCVPNRS as MGCVPNRSs.

The subsequent proposition outlines certain distinctive properties of MGCVPNRSs that set them
apart from other neutrosophic rough sets.

Proposition 1. For a FGNAS (U, Y = {8,N,,--- ,8}), w € I, and then

(DIfHC U, =L then HC OY(H), OT (U - H) € U - H;

(2) Suppose Q,S € I(U), and w > 0.5,

OT*(Q)U OY*(S) C 07 (QUS),

o7 (0N S) c OT(0) NOT(S).
Proof. (1) Let w = 2 then H € U,, and Vg € H, have

uP
Toran@ = \/ \/ A(Ts@n - Ta)2\/ N\ (Tx(e0 = Ta) =1,
i geZeU, xeZ i xeH
loean@ = N\ NV (0= ) < \\/ (0 = Ia) =0,
i geZelU, x€Z i xeH
Foran@ = /\ /\ \ (Fs@0 = Fa)< \\/ (Fs(gx) = Fa() =0.
i geZeU, xeZ i xeH

Thus H € OT“(H). The same line of reasoning applies to the proof of the other formulae.
(2) Let w > 0.5, s0 w > 2w — 1, and then U, € U,,_,. Hence, VQ,S € I(U),Yg € U, and

T(ﬂw(Q)U@w(S))(g) = Toro () V Tores)(8)

< Toreus)(8) by Theorem 1 (1)
= \/ v /\ (Txi(g, x) - T(Qus)(g))

i geZeU, xeZ
< \/ \/ /\ (Tx,-(g, x) - T(QuS)(g)) by U, € Uny-1

i geZeUy,1 x€Z

= Tﬂz“"](QUS)(g)’

I(@w@u@w(s))(g) = Tor (&) V lores)(8)
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> Toveus)(8) by Theorem 1 (1)
= A AV (g0 = lous (@)

i geZeU, xeZ
> /\ /\ \/ (Ixi(g, X) = I(QuS)(g)) by U, € Uy

i geZeUsy-1 x€Z

— I@2w71(QUS)(g)’

F(ﬂw(@uﬂwm)(g) = Foro)(8) V Fores)(8)

> Foreous)(8) by Theorem 1 (1)
= /\ /\ \/ (Fx[,(g, Xx) = F(QUS)(g))

i geZeU, x€Z
> /\ /\ \/ (in(g, x) = F(QUS)(g)) by U, € Ui

i geZeUsy-1 x€Z
= F@Zw—l(Qus)(g).

This implies that O(“(Q)U OY“(S) € OT**~'(QUS). Another formulation is also proved in a similar
way. ]

Proposition 2. For a FGNAS (U, = {N,N,,--- ,N,}) and w € I, we have

(DIfHCU, w= 8, then HC PY(H), PY (U - H) C U - H;

(2) Let Q,S € I(U), w > 0.5,

PY(Q) U PYT“(S) C PY*7'(QUS),

PT(@nS) c PT Q) NPT (S).
Proof. Similar to Proposition 1. O
Form Propositions 1 and 2, it follows that the following proposition holds:
Proposition 3. For a FGNAS (U, = {K8,N,,--- ,N,}) and w € I, we have

(DIfHC U, =18 then H C QY“(H), QT (U - H) C U - H;

(2) Let Q,S € I(U), w > 0.5,

0Y°(Q) U QT“(S) € QY™ QU S),

2w—-1

0T (0N S)c QT (Q) N OT (5).
Next, we prove that the MGCVPNRS satisfies duality.
Theorem 5. Assume U, T = {N,N,,--- ,N;} be a FGNAS, YQ € I(U), and w € 1. If O, E are dual,
and — is the standard ﬂ%)ation, then .
(1) =(0T“(Q)) =gm (—=0Q) and —'(KY;) (Q) = 0Y“(=0);
(2) ~(PY*(Q)) = Iﬁw(—'Q) and —'(fiw(Q)) = PY“(=Q);
(3) ~(CT?(Q)) = CY (=Q) and ~(CT (Q)) = CY*(=Q).
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Proof. (1) Take VQ € I(U), Vg € U, and O, E are dual, and - is the standard negation

Torco®@ = \ AT e Teom)

i geZeU, xeZ

= \/ \/ /\(Tx,-(g,x)HF(Q)(X))

i geZeU, xeZ
FW(Q)(g)
T_o7(0)(8),

Iovco®@ = /\ N\ V(0 = o)

i geZeU, xeZ

= ANV (sten = (1= 1)

i geZeU, xeZ

= 1=\ A (0= k(g0 - To)

i geZeU, xeZ
= 1- IW(Q)(g)

= L ov0) (&

/\ /\ \/ (Fx,(g, x) F(ﬂQ)(X))

i geZeU, x€Z

\/ \/ /\ (Fx.(8: %) = Tig(x))

i geZeU, x€Z
= Tﬁ"’(Q) (g )

= F_om0) @)

Fore-0)(8)

Therefore, —-(WQ)(Q)) = 0Y*(=Q). In a similar way, we can get =(0OT“(Q)) = Ww(—-Q).
Parts (2) and (3) follow the proof of (1). O

This means that the optimistic model, the pessimistic model, and the compromise model all satisfy

the duality property.
Finally, we investigate the relationship between MGCVPNRS-defined constructs for two different

neutrosophic relation families.

Proposition 4. Assume that T = {X,8,,--- X}, I = {1, 65, -+ , €} are families of SVNR on U, for
YO e I(U), andVw € 1.
(1) When s =1, 8; > €;,i=1,2,--- 5,

07°(Q) € 03°(Q), 0T’ (Q) 2 03" (Q);
(2) When 3 C 7,

07“(Q) 2 09°(Q), 0T’ (Q) € 05" (Q).
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23201

Proof. (1) Take g € U.

Tor)(8)

VoV A(Tse 0 - Tow)

i geZeU, xeZ

VA (Tule 0 - Tow)
i geZeU, x€Z

= Toz“0(8);

ANV (e n = Iow)

i geZeU, x€Z

ANV (lele %) = Iow)
i geZeU, xeZ

log(0)(8),

ANV (Fsign = Fow)

i geZeU, xeZ

> NNV (Fale.n = Fow)
i geZeU, xeZ

= Foge0(8)-

IA

Love()(8)

\%

Foyo0)(8)

Therefore, OT“(Q) € 03“(Q). In the same way, we can find that Ww(Q) 2 Ew(Q).
(2) Take g € U.

Toro® = \ \/ A(Ts(ex) P Tow)

i geZeU, xeZ

> \/ \/ A (Tue» - To)

i geZeU, xeZ
= Tog00)(8);

Iovo@ = /\ V(s = Iow)

i geZeU, x€Z

< ANV (e = Io)

i geZeU, x€Z
= logv0)(8)

For@ = /\ /\ 'V (Fulgn = Fo)

i geZeU, xeZ

ANV (Fagn = Fow)

i geZeU, xeZ

IA
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= Fog90)(8)-

Therefore, OT“(Q) 2 0F“(Q). Likewise, we can see that WM(Q) C %M(Q). O

Proposition 5. Assume that T = {8,8,,--- ,8,}, I = (€1, €, - -+ , £} are families of SVNR on U, for
YO el(U)andVw € 1.
(1) When s =1, 8; > €;,i=1,2,---,5,

PY“(Q) € P3“(Q), PT(Q) 2 PI (Q).
(2) When 3 C 7,

PY“(Q) C P3“(Q). PT"(Q) 2 PT (Q).
Proof. Similar to Proposition 4. O
Proposition 6. Assume that T = {X{,8,,--- , X}, I = {€1, 6, , €} are families of SVNR on U and
N, >, forYQ € [(U),andVw € 1.

CY(Q) € C3“(Q), CT’(Q)2CT (Q).

Proof. 1t can be proved by Propositions 4 and 5. O

3.2. Comparable property and idempotent property

In the current part, it will be shown that the MGCVPNRS fulfills the comparability property

whenever T’ has reflexivity. Furthermore, it will be demonstrated that the idempotent property is
satisfied by the OCVPNRS when Y is a preorder.

Definition 10. Ler T = {X;,N,, - -+, N} be a neutrosophic relation family on U.
(1) We call Y reflexive if each N; is reflexive.
(2) We call Y partially reflexive if there is an N; that is reflexive.

Theorem 6. Let (U, T = {8,N,, -+, NS}E a reflexive FGNAS and w G_I We then have YQ € I(UH),
0T“(Q) C 0 C O (Q), PY*(Q) C O € PY (Q), and CY“(Q) C Q € CT (Q).

Proof. Let g € U, in which case

Tor@ =\ \/ /\(Tx@x e Tow)<\/ \/ (Ts(z8) P To@) = Tol®),

i geZeU, xeZ i geZeU,
lorio@ =\ /\ V(@0 =lw)z \ N\ (ke = @)=,
i geZelU, x€Z i geZeU,
Forip@ =\ /\ V(Fs@n = Fo@)2 N\ /\ (Fu(g8) = Fo@) = Fo(g),
i geZeU, xeZ i geZeU,
and
Taro@ =\ /\ V(Fs@o=Tew)z N\ /\ (Fsleo = To®) = Tole),
i geZeU, xeZ i geZeU,

AIMS Mathematics Volume 10, Issue 10, 23187-23219.



23203

L@ =\ \/ A(-kEn)eLw) s\ \/ ((1-k&g) = ) = ).

i geZeU, x€Z i geZeU,
Faro@=\ \/ AT Fom)<\/ \/ (Ts(g8) = Fol®) = Fo@.
i geZeU, xeZ i geZeU,

Thus, OT“(Q) € O C OT (Q). In the same way, it is inferred that PY“(Q) € Q C PT (Q), and
CYT“(Q) € Q < CT (0. O

This indicates that the optimistic model, the pessimistic model, and the compromise model all
satisfy the comparability property.

Form Theorems 1 (4), 2 (4), and 3 (3); Propositions 1 (1), 2 (1), and 3 (1); and Theorem 6, the
following corollary is drawn.

Now, the idempotent property is examined as follows.

Definition 11. Assume that T = {N,N,,--- ,N;} is a SVNR family on U.
(1) We call C' ®-transitive if every N; is O-transitive.
(2) We call X' E-transitive if every N; is E-transitive.

Proposition 7. Suppose (U, = {8,N,,--- ,N}) is a FGNAS, w € I, and Q € I(U). Then
(1) OYT“(Q) C OY“(OY“(Q)), while Y is O-transitive.
(2) Ww(OT (Q)) C OY (Q), while Y is E-transitive.

Proof. (1) Suppose that Q € I(U), with respectto g € U.

Toreor0)(8) = \/ \/ /\(Tx,-(g,X)HT@w(QKX))

i geZeU, xeZ
=\ V Altsene=\/ \/ AT - To@))
i geZeU, x€Z j=1 xeZeU, qcZ
>\ \/ AN T - (Taxn9) = To@))
i geZelU, x€Z qgeZ
=V VA A ((Tste 00T (x.9) - To(@)
i geZeU, x€Z qeZ
> \/ \/ /\ (Txl.(g, q) — TQ(q)) by the ®—transitive property
i geZelU, qeZ
= Tore(8),
Iovorion@ =\ V (ls(g0) = lorig()
i geZelU, xeZ
= A A Viseoo ANV (@ = @)
i geZeU, xeZ j=1 xeZeU,, qeZ
< A AV V(s = (ktng = 1@))
i geZeU, x€Z qeZ
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= /\ /\ \/\/((le.(g,x)Elx,-(x,CI))‘—>1Q(q))

i geZeU, xeZ qeZ

/\ /\ \/ (IN[(g, q) — IQ(q)) by the Z—transitive property

i geZel, qeZ
= lore)(8),

IA

Foror® = /\ /\ V (Fu(g» = Foro)

i geZeU, xeZ
= A A VEseoo ANV (Fs@a = Fo@))
i geZeU, xeZ Jj=1 xeZeU,, qeZ
< A AV V (Fso = (Fuxag = Fo@))
i geZeU, x€Z qeZ
= A A\ V V(Fute nEFs(x.0) = Fol@)
i geZeU, x€Z qeZ
< /\ /\ \/ (F x(8.9) = F Q(q)) by the Z—transitive property
i geZeU, qeZ
= For(8):

Therefore, 07“(Q) € OT“(OY*(Q)).
(2) Similar to (1). ]

According to Theorem 6 and Proposition 7, we derive the idempotent property for the OCVPNRS.

Theorem 7. Presume (U, = {NX{,N,,---,N,}) is a reflexive FGNAS, w € I, and Q € I(U). Then
(1) OY*(Q) = OY“(0OY“(Q)), while Y is O-transitive.
(2) OT (0T (Q)) = O (Q), while Y is E-transitive.

For the PCVPNRS and CCVPNRS, it cannot be verified that they satisfy Proposition 7. So, it seems
that it may be impossible to talk about idempotent properties for the PCVPNRS and CCVPNRS.

4. The construction of the MAGDM model

The MAGDM problem is increasingly pervasive in our daily lives. MAGDM involves selecting
or ranking all feasible alternatives on the basis of diverse criteria. A multitude of approaches exist
for solving MAGDM problems. In this study, an algorithm grounded in the MGVPNRS model is
proposed to solve the MAGDM problem. Assume that V = {x, x5, ..., x,,} 1s the object set and that
AT = {11, 1, ..., t,} 1s the attribute set, w = {w, Wy, ..., w,} 1s the attribute weight, and T = {T, T>, ..., T,,}
is the decision column. Let N € I(U X U) be a SVNR from U to U. With the Algorithm 1, we obtain
the optimal solution.
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Algorithm 1. The decision-making process.

Input Multi-granulation neutrosophic decision 1S, and two parameters w, p.

Output Select the optimal medical emergency rescue system.

Step 1: Normalized SVNN decision-making matrix.

Step 2: According to Eqgs (4.1)—(4.3), obtain the attribute weights and the decision column.
Step 3: By Definition 6, we compute W(Q) and OT“(Q) of Q.

Subsequently, we proceed to aggregate the experts.

Step 4: According to the Definition 16, we calculated the score functions for objects x; to xs.
Step 5: Using the score function as the criterion, sort each alternative scheme.

Definition 12. In an neutrosophic information system (IS), the SVNR N defined below, is called a
distance-based SVNR with Yh;, h, € U

R ) = |1 - \/ZL](TSI_TI(I)Z i1 = Iu)? \/Zﬁzl(Fsz—sz)z
S t ’ t ’ t '

Obviously, N is a tolerance.

Definition 13. [I8] Let H = (hy,hy,..h,)(k = 1,2,3,...,n). S is the SVNS, and its neutrosophic
entropy is defined as

1
ES)=1-- Z(Ts(hk) + Fs(h) - s () — Ls (h)ll. (4.1)
n /’lkEH
The neutrosophic entropy measures the indeterminacy within the attribute’s data. Higher entropy
implies a higher level of indeterminacy. Below is the formula for calculating the weight w; of the j-th
attribute:
1 - E(h))
(,()J' e
21— E(hy))

The greater the weight, the higher the certainty and the lower the uncertainty of the data for that
attribute. Consequently, such data provide more information when distinguishing between different
evaluation objects and hold greater significance. Conversely, an attribute with a smaller weight
indicates that its data are generally uncertain or ambiguous, and thus contributes less to distinguishing
between evaluation objects.

Remark 3. Let x; = (T;,1;,F;)(j = 1,2,...,n) is a set of SVNNs, and w = (W1, W2y ..., W) is the
attribute weight, satisfying w € [0, 1] and 3_, w = 1.

Definition 14. [19] Let a;, = (T, I, Fi)(k = 1,2,3,...5) be a set of SVNNs, for which we have defined
a new SVNN:

4.2)

SNNWA(ar, @, as, ... a) = (1= | (=1, | [, | [0 (4.3)
k=1 k=1 k=1
Definition 15. [20] We define the sum of two SVNSs as follows:

omT = {(K, Oy Tk € ‘LI)}. “4.4)
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Definition 16. If we assume that Y = (Ty, Iy, Fy) is a SVNN, the score of Y can be defined as follows:
S(Y) = TY—IY—Fy. (45)

5. The application in MAGDM

In this section, building upon the proposed MGVPNRS model and incorporating Zhang’s
dataset [21], this study systematically develops a methodological decision-making framework.

Earthquakes possess formidable destructive capabilities, and accurately predicting them remains an
extremely arduous task. Moreover, the aftermath of an earthquake can severely disrupt social order.
In light of these factors, it is crucial for us to fully recognize the significance of medical assistance
in disaster relief operations. In particular, when their lives are in peril, individuals strongly desire
to obtain prompt and effective emergency aid. Hence, in the new century, minimizing the impact of
disasters and enhancing the efficiency of medical rescue efforts carry substantial practical implications.

Currently, five regions’ medical emergency rescue systems are awaiting evaluation. In order to
select the optimal solution from these systems, decision-makers need to comprehensively consider
various factors. This is a typical multi-attribute group decision-making problem.

On the basis of the analysis above, we will implement our model for evaluating medical emergency
rescue systems. We will validate the effectiveness and reliability of our method, test its sensitivity and
stability through parameter analysis, and also conduct a parameter analysis and discuss the advantages
of our method in comparison with other methods.

Example 1. Let V = {hy, hy, hs, hy, hs} denote five medical emergency rescue systems, and let
AT = {ky, ky, ks, kq, ks, ke} represent six conditional attributes (the diagnostic assessment proficiency,
the perception of risk-related information, the capacity to handle information from diverse sources,
the resilience against interference when analyzing information, the ability of accurate positioning, the
coordination competence of a heterogeneous team), and they are all beneficial attributes. Through
our decision-making method of ranking, we can figure out which system is the optimal choice. The
decision-making expert group consists of five experts. The experts evaluate these five systems using
the six indicators ki, ka, k3, k4, ks, and ke, and the index evaluation value takes the form of a SVNN.
Tables 3—7 presents the decision matrix.

Letw =09, p =05 0 =0, and E = E,. Using the optimistic approach as an example, we
detail the computation steps, then present the rankings for all three methods (optimistic, pessimistic,
and compromise).

Next, on the basis of the Algorithm 1, we present the specific steps.

(1) Introduce the IS

Tables 3—7 present the evaluation information of five regions’ medical emergency rescue systems
by five experts, in which the attribute values are represented by g,; (1 < r < 5,1 < j < 6),
& = (Tj(x), 1,j(x), F.j(x))sxe. Since all six indicators are benefit-type indicators, we do not need
to normalize this.

(2) Deriving the attribute weights and determining decision attributes.

Using Eqs (4.1) and (4.2), we obtained the attribute weight (keeping the calculation results to four
decimal places, the same applies below).

w; =1{0.1974,0.1470,0.2223,0.1534,0.1200, 0.1598},
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The decision column is obtained by Eq (4.3):

wy =1{0.1668,0.1707,0.2356,0.1648,0.1257,0.1363},
w3 =1{0.2032,0.1840,0.1372,0.1471,0.1121, 0.2164},

ws = {0.2619,0.1580,0.1509,0.1673,0.1706, 0.0913},
ws ={0.2041,0.2083,0.1867,0.2203,0.1194, 0.0612}.

T, = {(h,0.5529,0.4231,0.4912), (h,,0.6576,0.3424,0.3368),
(h3,0.6375,0.3879, 0.4020), (h4,0.4756, 0.5550, 0.6009),
(hs,0.5598,0.4932,0.4536)},

T, = {(h,0.5350,0.4381,0.5102), (h,,0.7002, 0.2564,0.2769),
(h3,0.6065,0.4080,0.4047), (hs,0.5179, 0.4920, 0.4955),
(hs,0.5616,0.4441,0.5096)},

T5 = {(h,0.5309,0.4736,0.5126), (h,,0.6552,0.3482,0.3923),
(h3,0.6599,0.3383,0.3579), (hs,0.4353,0.5838,0.6197),
(hs,0.0.4427,0.5510, 0.5282)},

Ty = {(h1,0.5411,0.4457,0.5308), (hs, 0.7261,0.2103,0.2381),
(hs,0.6767,0.2834,0.3451), (hs,0.6007, 0.3809, 0.4641),
(hs,0.5323,0.4548,0.5329)},

Ts = {(h;,0.5523,0.4576,0.4570), (hy, 0.7001, 0.2593,0.2777),

(h3,0.6325,0.3656,0.3956), (hs,0.5124,0.4744,0.5716),
(hs,0.5557,0.3855,0.4542)}.

Table 3. Information about the five medical emergency systems of expert Group 1.

V/AT

ki

ka

ks

ks

ks

ke

hy
hy
hs
hy
hs

(0.70,0.25,0.30)
(0.65,0.30,0.35)
(0.60,0.45,0.40)
(0.45,0.40,0.55)
(0.55,0.60,0.40)

(0.15,0.65,0.85)
(0.55,0.45,0.50)
(0.60,0.40,0.45)
(0.35,0.65,0.70)
(0.40,0.55,0.65)

(0.25,0.65,0.70)
(0.75,0.20,0.15)
(0.70,0.25,0.30)
(0.55,0.60,0.65)
(0.60,0.50,0.45)

(0.65,0.45,0.50)
(0.65,0.40, 0.50)
(0.60,0.50,0.55)
(0.45,0.65,0.60)
(0.70,0.30,0.35)

(0.65,0.50,0.45)
(0.60, 0.55,0.50)
(0.70,0.30,0.35)
(0.65,0.50,0.45)
(0.45,0.65,0.60)

(0.70,0.25,0.35)
(0.65,0.40,0.35)
(0.60,0.55,0.45)
(0.35,0.60,0.65)
(0.55,0.45,0.40)

Table 4. Information about the five investment companies of expert Group 2.

V/AT

ki

ky

ks

ky

ks

ke

hy
s
hy
hy
hs

(0.65,0.35,0.40)
(0.70,0.25,0.20)
(0.65,0.30,0.35)
(0.50,0.45,0.45)
(0.60,0.50,0.45)

(0.35,0.65,0.70)
(0.65,0.40,0.35)
(0.50,0.55,0.45)
(0.40, 0.65, 0.60)
(0.35,0.70, 0.60)

(0.35,0.55,0.65)
(0.80,0.10,0.15)
(0.70,0.25,0.30)
(0.60,0.35,0.40)
(0.55,0.45,0.65)

(0.60,0.45,0.50)
(0.60,0.45,0.50)
(0.45,0.65,0.60)
(0.50,0.55,0.60)
(0.75,0.20,0.25)

(0.55,0.40,0.45)
(0.70,0.25,0.35)
(0.65,0.50,0.45)
(0.60,0.55,0.50)
(0.50,0.45,0.65)

(0.70,0.25,0.35)
(0.65,0.40,0.35)
(0.60,0.45,0.40)
(0.45,0.55,0.50)
(0.50,0.55,0.60)
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Table 5. Information about the five medical emergency systems of expert Group 3.

V/AT ki ka ks ks ks ke

hy (0.55,0.60,0.40)  (0.20,0.60,0.80) (0.30,0.65,0.75) (0.50,0.60,0.65) (0.60,0.55,0.50) (0.75,0.20,0.30)
hy (0.65,0.30,0.35)  (0.65,0.40,0.35) (0.60,0.45,0.50) (0.65,0.35,0.45) (0.65,0.50,0.45) (0.70,0.25,0.35)
hs (0.75,0.20,0.20)  (0.60,0.35,0.40) (0.65,0.35,0.45) (0.65,0.35,0.45) (0.60,0.55,0.50) (0.65,0.40,0.55)
hy (0.35,0.65,0.60) (0.35,0.65,0.70) (0.55,0.50,0.65) (0.55,0.45,0.65) (0.45,0.65,0.60) (0.40,0.60,0.55)
hs (0.50,0.45,0.45)  (0.30,0.70,0.65) (0.45,0.65,0.50) (0.40,0.55,0.65) (0.35,0.65,0.70) (0.55,0.45,0.40)

Table 6. Information about the five medical emergency systems of expert Group 4.

V/AT ky ka ks ky ks ke

hy (0.65,0.35,0.40) (0.25,0.60,0.75) (0.40,0.55,0.65) (0.60,0.45,0.55) (0.50,0.55,0.60) (0.70,0.25,0.35)
hy (0.80,0.10,0.15)  (0.70,0.20,0.25) (0.75,0.20,0.15) (0.50,0.65,0.60) (0.80,0.15,0.20) (0.60,0.50,0.45)
hs (0.65,0.25,0.35)  (0.75,0.20,0.20) (0.65,0.35,0.40) (0.65,0.35,0.45) (0.70,0.25,0.35) (0.65,0.45,0.40)
ha (0.70,0.20,0.30)  (0.45,0.50,0.55) (0.45,0.55,0.60) (0.65,0.40,0.50) (0.65,0.45,0.50) (0.50,0.55,0.60)
hs (0.60,0.40,0.50) (0.40,0.55,0.65) (0.35,0.65,0.70) (0.70,0.25,0.35) (0.50,0.55,0.60) (0.45,0.55,0.50)

Table 7. Information about the five medical emergency systems of expert Group 5.

V/AT ky ky ks ky ks ke

hy (0.55,0.35,0.50) (0.35,0.70,0.60) (0.45,0.65,0.50) (0.65,0.35,0.45) (0.70,0.35,0.25) (0.65,0.40,0.35)
hy (0.75,0.15,0.20)  (0.70,0.20,0.25) (0.70,0.25,0.30) (0.65,0.45,0.35) (0.75,0.30,0.25) (0.55,0.45,0.50)
hs (0.60,0.40,0.50)  (0.60,0.35,0.40) (0.65,0.45,0.35) (0.70,0.25,0.35) (0.65,0.40,0.35) (0.45,0.55,0.50)
ha (0.65,0.25,0.35)  (0.25,0.60,0.75) (0.50,0.70,0.65) (0.55,0.45,0.65) (0.50,0.55,0.60) (0.60,0.50,0.45)
hs (0.55,0.50,0.60) (0.20,0.65,0.75) (0.40,0.60,0.65) (0.80,0.10,0.15) (0.60,0.50,0.45) (0.50,0.55,0.60)

(3) Calculate the neutrosophic relations
From Definition 12, we obtain SVNRs. The results are shown in Tables 8—12.

Table 8. The SVNR of Decision-maker 1.

3 T, 7 Ty 71
h. (1,0,0) (0.7362,0.2131,0.2677) (0.7323,0.2566,0.2424) (0.7568,0.1768,0.1768) (0.7869, 0.2000, 0.1633)
hy  (0.7362,0.2131,0.2677) (1,0,0) (0.9388,0.1429,0.1021) (0.7949,0.2291,0.2685) (0.8775,0.1882,0.1581)
hy  (0.7323,0.2566,0.2424) (0.9388,0.1429,0.1021) (1,0,0) (0.8197,0.2051,0.2082) (0.8542,0.2160,0.1671)
hy  (0.7568,0.1768,0.1768) (0.7949,0.2291,0.2685) (0.8197,0.2051,0.2082) (1,0,0) (0.8380,0.2160,0.1671)
hs  (0.7869,0.2000,0.1633) (0.8775,0.1882,0.1581) (0.8542,0.2160,0.1671) (0.8380,0.1947,0.1882) (1,0,0)

Table 9. The SVNR of Decision-maker 2.

hl h2 h'& h4 hS
n (1,0,0) (07691, 0.2309,0.2654) (0.8232,0.1791,0.1826) (0.8354,0.1696,0.1354) (0.8661,0.1780,0.1720)
hy,  (0.7691,0.2309, 0.2654) (1,0,0) (0.8979,0.1594,0.1137) (0.8163,0.2189,0.2010) (0.7969, 0.2582,0.3136)
h;  (0.8232,0.1791,0.1826) (0.8979,0.1594,0.1137) (1,0,0) (0.8920,0.1041,0.0957) (0.7969, 0.2582,0.3136)
hs  (0.8354,0.1696,0.1354) (0.8163,0.2189,0.2010) (0.8920,0.1041,0.0957) (1,0,0) (0.8775,0.1568,0.1904)
hs  (0.8661,0.1780,0.1720) (0.7969,0.2582,0.3136) (0.8317,0.2300,0.2441) (0.8775,0.1568,0.19074) (1,0,0)
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Table 10. The SVNR of Decision-maker 3.

I ha I3 ha hs
I (1,0,0) (0.7655,0.1990,0.2282) (0.7568,0.2630,0.2354) (0.7869,0.1915,0.1486) (0.8432,0.1339,0.1514)
hy  (0.7655,0.1990,0.2282) (1,0,0) (0.9423,0.0890,0.0707) (0.7682,0.2389,0.2273) (0.7611,0.2062,0.1848)
hy  (0.7568,0.2630,0.2354) (0.9423,0.0890, 0.0707) (1,0,0) (0.7664,0.2500,0.2517) (0.7664,0.2336,0.1871)
hs (0.7869,0.1915,0.1486) (0.7682,0.2389,0.2273) (0.7664,0.2500,0.2517) (1,0,0) (0.8775,0.1275,0.1155)
hs  (0.8432,0.1339,0.1514) (0.7611,0.2062,0.1848) (0.7664,0.2336,0.1871) (0.8775,0.1275,0.1155) (1,0,0)

Table 11. The SVNR of Decision-maker 4.

I s s ha hs
hl (1,0,0) (0.7239,0.3182,0.3500) (0.7559,0.2415,0.2716) (0.8646,0.1500,0.1458) (0.8709,0.1555,0.1190)
hy  (0.7239,0.3182,0.3500) (1,0,0) (0.8920,0.1568,0.1594)  (0.8096,0.2508,0.2700) (0.7284,0.3506,0.3674)
hy  (0.7559,0.2415,0.2716) (0.8920,0.1568,0.1594) (1,0,0) (0.8380,0.1756,0.1958) (0.7773,0.2398,0.2574)
hs (0.8646,0.1500,0.1458) (0.8096,0.2508,0.2700) (0.8380,0.1756,0.1958) (1,0,0) (0.9087,0.1190, 0.1307)
hs  (0.8709,0.1555,0.1190) (0.7284,0.3506,0.3674) (0.7773,0.2398,0.2574) (0.9087,0.1190,0.1307) (1,0,0)

Table 12. The SVNR of Decision-maker 5.

hl h2 hx h4 ]’l5
I (1,0,0) (0.8010,0.2784,0.2179) (0.8419,0.1826,0.1323) (0.8882,0.1173,0.2000) (0.8845,0.1500,0.2031)
hy  (0.8010,0.2784,0.2179) (1,0,0) (0.9021,0.1756,0.1443)  (0.7664,0.2700,0.3189) (0.7331,0.3215,0.3221)
h;  (0.8419,0.1826,0.1323) (0.9021,0.1756,0.1443) (1,0,0) (0.8107,0.1882,0.2550)  (0.8000,0.1607,0.2170)
hs  (0.8882,0.1173,0.2000) (0.7664,0.2700,0.3189) (0.8107,0.1882,0.2550) (1,0,0) (0.8677,0.1837,0.2441)
hs  (0.8845,0.1500,0.2031) (0.7331,0.3215,0.3221) (0.8000,0.1607,0.2170) (0.8677,0.1837,0.2441) (1,0,0)

(4) Calculate the OT" (Q) and oT“(Q) of Q
By the formula in Definition 6, the optimistic lower and upper bounds WM(Q) and OY“(Q) of O

are derived. The results are shown in Table 13.

Table 13. The optimistic lower and upper approximations.

or* or’
h (0.5529,0.4381,0.4644) (0.5529,0.4347,0.4729)
hs (0.7261,0.2103,0.2781) (0.6552,0.3482,0.3798)
hs (0.6767,0.2834,0.3710) (0.6375,0.3879,0.3588)
hy (0.5858,0.3811,0.4641) (0.5422,0.4510,0.4670)
hs (0.5616,0.3855,0.4542) (0.5575,0.4387,0.4670)

(5) Calculate the score function by Definition 16 as shown in Table 14.

Table 14. Score function.

V/AT OYT*®OT PY* @ PT’ cremCY”’ Sor S pr Scr

hy (0.8001, 0.1904,0.2196) (0.8179,0.1497,0.1820) (0.8092,0.1688, 0.1999) 0.3900 0.4862 0.4404
hy (0.9056,0.0732,0.1056) (0.8813,0.0953,0.1209) (0.8941,0.0835,0.1130) 0.7267 0.6651 0.6976
h3 (0.8828,0.1099,0.1331) (0.8603,0.1110,0.1324) (0.8720,0.1105, 0.1327) 0.6398 0.6169 0.6288
hy (0.8104,0.1719,0.2167) (0.7881,0.1639,0.1823) (0.7996,0.1678,0.1987) 0.4218 0.4420 0.4330
hs (0.8060,0.1691,0.2121) (0.7733,0.1784,0.1863) (0.7903,0.1737,0.1988) 0.4248 0.4085 0.4178
AIMS Mathematics Volume 10, Issue 10, 23187-23219.
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(6) Table 15 demonstrates that various strategies yield distinct rankings, yet the optimal selection
consistently remain h;.

Table 15. Ranking of different strategies.

P Strategies Ranking

0 Pessmistic hy > hy > hy > hy > hs
0.5 Compromise hy > hy > hy > hy > hs
1 Optimistic hy > h3 > hs > hy > hy

5.1. Parameter analysis

The introduced model includes two parameters, w and p, alongside multiple logic operators. This
section evaluates how w affects the rankings in the compromise model, while p influences the ranking
of the other three strategies.

5.1.1. Discussion of p

Fixing w = 0.9, = = —p, = = —p, let p € (0,1) be a step length of 0.1. Table 16 presents the
results.

As shown in Table 16, the rankings of the three strategies change with the variation of p. This shows
that our model exhibits sensitivity to parameters. When the value of p approaches 0, this implies that
decision-makers with a neutral stance tend to make optimistic judgments. Similarly, when the value
of p approaches 1, this shows that decision-makers with a neutral stance tend to make pessimistic
judgments.

As shown in Figure 1, as p increases, the scores of 4, and /5 also increase continuously; in contrast,
the score of /; shows a downward trend, which is also a key factor contributing to the change in the
rankings. Nevertheless, for each strategy, the optimal choice remains h,, indicating that our model
maintains relative stability.

Table 16. Ranking of different values of p.

p S (h) S (h2) S (h3) S (h4) S (hs) Ranking

0.1 0.4774 0.6719 0.6194 0.4404 0.4106 hy > hy > hy > hy > hs
0.2 0.4684 0.6785 0.6218 0.4387 0.4125 hy > hy > hy > hy > hs
0.3 0.4593 0.6850 0.6242 0.4369 0.4144 hy > hy > hy > hy > hs
0.4 0.4500 0.6914 0.6265 0.4350 0.4161 hy > hy > hy > hy > hs
0.6 0.4308 0.7037 0.6311 0.4309 0.4194 hy > hsy > hy > hs > h
0.7 0.4209 0.7096 0.6333 0.4288 0.4208 hy > hy > hy > hy > hs
0.8 0.4108 0.7154 0.6355 0.4265 0.4222 hy > hs > hy > hs > h,
0.9 0.4005 0.7211 0.6376 0.4242 0.4236 hy > hy > hy > hs > hy
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Figure 1. Comparison of ranking results under different p values.
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Ranking (1

5.1.2. Discussion of w

Subsequently, we consider how variations in the parameter w affect the ranking outcomes. It should
be noted that 1-w represents the proportion of incorrect or missing data. Generally, the proportion
remains within a low range, so 1-w is usually close to 0. In other words, w is roughly 1. Therefore, in
Example 1, we set p = 0.5, = =r>p,~>= <>p and let w range from 0.6 to 1 with an increment of 0.1.
The outcomes can be seen in Table 17.

The data in Table 17 show that for different strategies, the sorting results change as w varies, which
reflects the sensitivity of our method.

When w takes the values of 0.7 and 0.8, the ranking of /; drops sharply to the last place, while the
rankings of h4 and hs rise. This indicates that the impact of the optimistic strategy on the scores of
hy, hy, and hs is significantly different from that of other strategies. When w takes the values of 0.9 and
1, the ranking of /s rises further and surpasses /4, while /#; remains in the last place. This shows that
when w is 0.9 or above, the performance of /s under the optimistic strategy continues to improve.

As shown in Figure 2, regardless of changes in the rankings, the optimal choice remains consistent,
always being h,. This reflects the stability of the proposed method. Meanwhile, the rankings fluctuate
with changes in w, which indicates that the proposed method has a certain degree of sensitivity.

AIMS Mathematics Volume 10, Issue 10, 23187-23219.
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Table 17. Ranking of different values of w.

Strategies w Sthy) St Sthy) S(hy) S(hs) Ranking
0.6 03473 0.7389 0.6126 0.2770 0.3097 hy, > hy > hy > hs > hy
0.7 0.3790 0.6938 0.6013 0.3186 0.3222 hy > h3 > h; > hs > hy
Pessmistic 0.8 0.3790 0.6938 0.6013 0.3186 0.3222 hy > h3 > h; > hs > hy
0.9 04862 0.6651 0.6169 0.4420 0.4085 hy > hy > hy > hy > hs
1 0.4862 0.6651 0.6169 0.4420 0.4085 hy > hy > hy > hy > hs
0.6 03473 0.7389 0.6104 0.2645 0.3015 hy, > hy > hy > hs > hy
0.7 0.3790 0.6938 0.6013 0.3186 0.3222 hy > h3 > h; > hs > hy
Compromise 0.8 0.3790 0.6938 0.6013 0.3186 0.3222 hy > hy > hy > hs > hy
0.9 0.4404 0.6976 0.6288 0.4330 0.4178 hy > hy > hy > hy > hs
1 0.4404 0.6976 0.6288 0.4330 0.4178 hy > hy > hy > hy > hs
0.6 03473 0.7297 0.6175 0.3048 0.3279 hy, > hy > hy > hs > hy
0.7 03637 0.7281 0.6132 0.3824 0.3813 hy > h3 > hy > hs > Iy
Optimistic 0.8 0.3637 0.7281 0.6132 0.3824 0.3813 hy, > h3 > hy > hs > hy
0.9 0.3900 0.7267 0.6398 0.4218 0.4248 hy > hy > hs > hy > hy
1 0.3900 0.7267 0.6398 0.4218 0.4248 hy > h3 > hs > hy > Iy

Pessimistic Compromise

(B Eh2 Chs EEEhe NS

Optimistic

o

Highest Priority)
Highest Priority)
»~

Highest Priority)

Ranking (1
Ranking (1
w

Ranking (1
n

0.6 0.7 0.8 0.9 1 0.6 0.7 0.8 0.9 1 0.6 0.7 0.8 0.9 1
w w w

Figure 2. Comparison of ranking results of different strategies with parameter variations.

5.1.3. Analysis of fuzzy logic operators

Example 1 extends the analysis by first applying the (—p,—p) operator and then augmenting the
experiment with four fuzzy logic operators: (—;,>;), (—y,>g), and (—y,~>y). This allows us to
examine how different aggregation strategies influence the final ranking outcomes. We set w = 0.9 and
o = 0.5. Table 18 displays the results.
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Table 18. Ranking of different fuzzy logic operators.

Strategies FLO S (hy) S (hy) S (h3) S (hy) S (hs) Ranking
(~1, 1) 0.3292 0.7389 0.6175 0.2976 0.2693 hy > hy > hy > hs > hy
Pessmistic (B, =) 04475 0.4816 0.4687 0.4780 0.4728 hy > hy > hs > h3 > Iy
(—p,=p) 0.4862 0.6651 0.6169 0.4420 0.4085 hy > hy > hy > hy > hs
(~H, =) -0.0296 0.0570 0.0411 -0.0997 —0.0526 hy > h3 > h; > hs > hy
(v, =vy) 0.4937 0.6097 0.5916 0.5068 0.4564 hy > hy > hy > hy > hs
(1,0 0.3365 0.7389 0.6195 0.2797 0.2831 hy > hy > hy > hs > hy
Compromise (1, “—>py)  0.4713 0.4803 0.4836 0.4873 0.4816 hy > hy > hs > hy > Iy
(~p,=p) 0.4005 0.7211 0.6376 0.4242 0.4236 hy > hy > hy > hs > Iy
(~H, =) 0.0436 0.2635 0.1608 0.0254 0.0480 hy > hy > hs > hy > hy
(v, =vy) 0.4681 0.6139 0.5721 0.4790 0.4553 hy > hy > hy > hy > hs
(1,0 0.3373 0.7389 0.6198 0.2776 0.2846 hy > hy > hy > hs > hy
Optimistic (B, —an)  0.4937 0.4789 0.4945 0.4961 0.4903 hy > hy > hy > hs > hy
(~p,=p) 0.3900 0.7267 0.6398 0.4218 0.4248 hy > hy > hs > hy > Iy
(~H, =) 0.1106 0.4159 0.2643 0.1353 0.1382 hy > hy > hs > hy > Iy
(v, =vy) 0.4406 0.6177 0.5505 0.4486 0.4521 hy > hy > hs > hy > Iy

As demonstrated in Table 18, the orderings for distinct logical operators differ. For (>7,—)),
(—p,—p), and (y,—>y), the best selections are always the same, that is /,. The ranking varies due to
different logical operators, but the optimal choice remains unchanged, which demonstrates the stability
of our method. For (,,,=,)) and for different strategies, the optimal choices are different. This
result indicates that the ordering outcomes are influenced by FLOs and exhibit certain sensitivity.

5.2. Comparisons with other methods

In this section, we systematically analyze and compare nine decision-making methods proposed by
previous researchers, covering both their theoretical and experimental aspects.

(1) In terms of theory

Decision-making methods come in different varieties. As shown in Table 19, we compared the basic
theories and frameworks of 10 decision-making models (including our own). Our analysis leads to the
following key conclusions.

e In terms of model selection, references [22—-24] focus on interval-valued neutrosophic sets,
references [21,25,26] conduct research on neutrosophic sets, reference [27] involves intuitionistic
fuzzy sets, and references [28, 29] target interval-valued intuitionistic fuzzy sets. Compared
with these models, the proposed model in this paper enhances fault tolerance and reduces the
interference caused by noisy data through its variable precision characteristic.

e For multiple strategies: We make full use of the advantages of multi-granularity, as it offers
three strategies for our method: optimistic, pessimistic, and compromise. This allows decision-
makers to choose the most appropriate solution depending on their personal preferences (shaped
by factors such as personality, cognition, and thinking styles). Furthermore, by incorporating
the uncertainty characteristics of the neutrosophic set, we put forward the multi-granularity
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neutrosophic rough set. This approach strengthens the model’s capability to handle multi-feature
and multi-source information.

e For the type of decision-making: Compared with individual decision-making, group decision-
making can effectively curb individual cognitive biases, avoid risks caused by subjective
tendencies in individual decision-making, and more comprehensively balance multiple interests.

Table 19. The rankings for different methods.

Methods Fault tolerance Multi-strategy Decision-making types
Our Variable precision Multi-granularity Group
Nancy and Garg [25] None None Individual
Selvachandran et al. [26] None None Individual
Zhang et al. [21] None None Group
Stanujkic et al. [22] None None Group
Liu et al. [23] None None Group
Liu et al. [24] None None Group
Garg et al. [27] None None Group
Zhou et al. [28] None None Group

Tu et al. [29] None None Individual

(2) In terms of experiment

There are significant differences in the ranking results of different methods, and the optimal choices
also vary. As shown in Table 20, among the 12 evaluated methods, 10 methods (including the three
strategies we proposed) consider £, to rank first, and 2 methods consider £, to rank second. One method
considers A3 to rank first, and 9 methods consider /3 to rank second. Therefore, the probability that
the medical diagnosis system /, ranks in the top two is 100%. Thus, the alternative 4, is the optimal
choice. The possibility that the medical diagnosis system /3 enters the top two is 83.3%. Therefore, 3
can be used as the sub-optimal choice for the medical emergency management system.

To further investigate the effectiveness of ranking the results among different methods, Spearman’s
correlation coefficient (SCC) is applied for analysis. The mathematical formula of SCC is given below:

n_2
SCC=1-2%ili
nn?-1)
where n represents the number of objects and r; is the rank difference of the same object between two
sets of data. We computed the SCCs among 12 methods, and the results are presented in Figure 3.

In the Figure 3, a color that is closer to yellow indicates a stronger positive correlation, while a color
that is closer to blue implies a stronger negative correlation. The majority of the methods fall within the
yellow region, which suggests that a strong positive correlation exists among most of these methods,
e.g., our method and the methods in references [21-29]. Therefore, the method we proposed is highly
consistent with these methods. Furthermore, Liu et al.’s [23] method exhibits relatively low correlation
coeflicients with other methods, which suggests that methodological differences significantly influence
the correlation coefficients. However, the optimal and worst choices remain consistent across all
methods. Hence, it is credible and efficient.
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Table 20. The rankings of different methods.

Methods Rankings Best selection
Ours (optimistic) hy > hzy > hs > hy > hy hy
Ours (compromise) hy > hy > hy > hy > hs hy
Ours (pessimistic) hy > hy > hy > hy > hs hy
Nancy and Garg [25] hy > hy > hy > hs > hy hy
Selvachandran et al. [26] hy > hs > hy > hy > hs hy
Zhang et al. [21] hy > hy > hy > hs > hy hy
Stanujkié et al. [22] hl > hz > h3 > h5 > h4 h1
Liu et al. [23] hy > hy > hy > hs > hy hs
Liu et al. [24] hz > ]’l5 > ]’l4 > ]’l3 > ]’ll h2
Garg et al. [27] h2 > h3 > hl > ]’l5 > h4 ]’l2
Zhou et al. [28] hy > l’l3 > hy > h5 > hy hy
Tu et al. [29] hy > hy > hy > hs > hy hy

Selvachandran — 0.9000 1.0000 1.0000 0.9000 1.0000 0.9000 0.9000 0.9000 0.9000 —

— 1.0000

1.0000

Figure 3. SCCs of different methods.

6. Conclusions

0.5

-0.5

We proposed a novel MGVPNRS model and investigated its theoretical foundations and

applications. The key summaries of this article are presented below.
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(1) We establish a MGVPNRS based on the residual implication of t-norms and the residual
co-implication of t-conorms, and investigate their fundamental properties, thereby enriching the
theoretical framework of neutrosophic rough sets.

(2) By integrating variable precision and multi-granularity, we construct a MGVPNRS model. This
model includes three submodels: optimistic, pessimistic, and compromise. It can fully take decision-
makers’ subjective preferences into account, features high fault tolerance, and can effectively reduce
the probability of decision-making errors. Furthermore, it is applied to solve MAGDM problems.

(3) Finally, through a series of parametric analyses and contrastive experiments, we further validate
the superiority of our model.

In the long run, our research will focus on the following areas.

(1) We will engage in in-depth research on various fuzzy logic operators to further broaden the
model architecture of neutrosophic rough set theory.

(2) Neutrosophic set theory can be applied to other fields, such as the case of feature selection [30]
and pattern recognition [31]. Meanwhile, we will study a novel aggregation operator, similarity
measure, and distance measure, aiming to provide effective tools for uncertain information fusion in
complex systems.

(3) Future research will focus on exploring efficient processing strategies suitable for large-scale
data [32,33] and extending the relevant research to other rough set models [34, 35].
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