A stability problem under event-triggered control for discrete linear systems with random time delays is considered in this paper. First, this paper improves an accumulative error-based event-triggered approach, which can switch the event-triggered parameter between the two-modes over time. Second, a new closed-loop discrete Markov switching system equation is derived by decoupling the accumulative error term, and the time delays are equal to the current Markov modes when the event-triggered scheme is met. Third, the co-designing problems for control gains and event-triggered parameters in the system are solved. Finally, the stochastic stability of the system is guaranteed through random analysis techniques and a free-weighting matrix method, and the effectiveness of the approach is demonstrated by using numerical examples.
Citation: Zhi Fu, Shen-Ping Xiao, Jiang-Lin Huang, Chang-Xin Li. Improved accumulative-error event-triggered control for discrete-time linear systems with random time delays[J]. AIMS Mathematics, 2025, 10(9): 22561-22578. doi: 10.3934/math.20251004
A stability problem under event-triggered control for discrete linear systems with random time delays is considered in this paper. First, this paper improves an accumulative error-based event-triggered approach, which can switch the event-triggered parameter between the two-modes over time. Second, a new closed-loop discrete Markov switching system equation is derived by decoupling the accumulative error term, and the time delays are equal to the current Markov modes when the event-triggered scheme is met. Third, the co-designing problems for control gains and event-triggered parameters in the system are solved. Finally, the stochastic stability of the system is guaranteed through random analysis techniques and a free-weighting matrix method, and the effectiveness of the approach is demonstrated by using numerical examples.
| [1] |
J. P. Hespanha, P. Naghshtabrizi, Y. G. Xu, A survey of recent results in networked control systems, P. IEEE, 95 (2007), 138–162. https://doi.org/10.1109/JPROC.2006.887288 doi: 10.1109/JPROC.2006.887288
|
| [2] |
R. Q. Lu, F. Wu, A. K. Xue, Networked control with reset quantized state based on Bernoulli processing, IEEE T. Ind. Electron., 61 (2013), 4838–4846. https://doi.org/10.1109/TIE.2013.2289870 doi: 10.1109/TIE.2013.2289870
|
| [3] |
A. K. Xue, H. J. Wang, R. Q. Lu, Event-based $H\infty$ control for discrete Markov jump systems, Neurocomputing, 190 (2016), 165–171. https://doi.org/10.1016/j.neucom.2016.01.021 doi: 10.1016/j.neucom.2016.01.021
|
| [4] |
K. Liu, A. Selivanov, E. Fridman, Survey on time-delay approach to networked control, Ann. Rev. Control, 48 (2019), 57–79. https://doi.org/10.1016/j.arcontrol.2019.06.005 doi: 10.1016/j.arcontrol.2019.06.005
|
| [5] |
K.Liu, E. Fridman, Networked-based stabilization via discontinuous Lyapunov functionals, Int. J. Robust Nonlin., 22 (2012), 420–436. https://doi.org/10.1002/rnc.1704 doi: 10.1002/rnc.1704
|
| [6] |
X. L. Luan, P. Shi, F. Liu, Stabilization of networked control systems with random delays, IEEE T. Ind. Electron., 58 (2010), 4323–4330. https://doi.org/10.1109/TIE.2010.2102322 doi: 10.1109/TIE.2010.2102322
|
| [7] |
H. Y. Sun, J. Sun, J. Chen, Analysis and synthesis of networked control systems with random network-induced delays and sampling intervals, Automatica, 125 (2021), 109385. https://doi.org/10.1016/j.automatica.2020.109385 doi: 10.1016/j.automatica.2020.109385
|
| [8] |
L. Q Zhang, Y. Shi, T. W. Chen, B. Huang, A new method for stabilization of networked control systems with random delays, IEEE T. Automat. Contr., 50 (2004), 1177–1181. https://doi.org/10.1109/ACC.2005.1470028 doi: 10.1109/ACC.2005.1470028
|
| [9] |
J. J. Li, Y. Y. Wang, J. Y. Zhang, Event-triggered sliding mode control for a class of uncertain switching systems, AIMS Math., 8 (2023), 29424–29439. https://doi.org/10.3934/math.20231506 doi: 10.3934/math.20231506
|
| [10] |
Z. G. Feng, P. Shi, Sliding mode control of singular stochastic Markov jump systems, IEEE T. Automat. Contr., 62 (2017), 4266–4273. https://doi.org/10.1109/TAC.2017.2687048 doi: 10.1109/TAC.2017.2687048
|
| [11] |
T. S. Xu, Y. G. Niu, B. Chen, F. Q. Deng, Protocol-based asynchronous sliding mode control for Markovian jump systems under random sampling, Nonlinear Dynam., 113 (2025), 697–710. https://doi.org/10.1007/s11071-024-09809-z doi: 10.1007/s11071-024-09809-z
|
| [12] |
Q. Ma, S. Y. Xu, Y. Zou, Stability and synchronization for Markovian jump neural networks with partly unknown transition probabilities, Neurocomputing, 74 (2011), 3404–3411. https://doi.org/10.1016/j.neucom.2011.05.018 doi: 10.1016/j.neucom.2011.05.018
|
| [13] |
C. C. Ren, S. P. He, Finite-time stabilization for positive Markovian jumping neural networks, Appl. Math. Comput., 365 (2020), 124631. https://doi.org/10.1016/j.amc.2019.124631 doi: 10.1016/j.amc.2019.124631
|
| [14] |
Y. Q. Wu, H. Y. Su, R. Q. Lu, Z. G. Wu, Z. Shu, Passivity-based non-fragile control for Markovian jump systems with aperiodic sampling, Syst. Control Lett., 84 (2015), 35–43. https://doi.org/10.1016/j.sysconle.2015.08.001 doi: 10.1016/j.sysconle.2015.08.001
|
| [15] |
Y. Li, H. B. Zhang, Positive observer design for switched positive T-S fuzzy delayed systems with dwell time constraints, ISA T., 96 (2020), 37–50. https://doi.org/10.1016/j.isatra.2019.06.006 doi: 10.1016/j.isatra.2019.06.006
|
| [16] |
C. Peng, Q. L. Han, D. Yue, To transmit or not to transmit: A discrete event-triggered communication scheme for networked Takagi-Sugeno fuzzy systems, IEEE T. Fuzzy Syst., 21 (2015), 164–170. https://doi.org/10.1109/TFUZZ.2012.2199994 doi: 10.1109/TFUZZ.2012.2199994
|
| [17] |
P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, IEEE T. Automat. Contr., 52 (2007), 1680–1685. https://doi.org/10.1109/TAC.2007.904277 doi: 10.1109/TAC.2007.904277
|
| [18] |
L. L. Li, D. W. Ho, S. Y. Xu, A distributed event-triggered scheme for discrete-time multi-agent consensus with communication delays, IET Control Theory A., 8 (2014), 830–837. https://doi.org/10.1049/iet-cta.2013.0761 doi: 10.1049/iet-cta.2013.0761
|
| [19] |
Y. Y. Cheng, Y. Li, A novel event-triggered constrained control for nonlinear discrete-time systems, AIMS Math., 8 (2023), 20530–20545. https://doi.org/10.3934/math.20231046 doi: 10.3934/math.20231046
|
| [20] |
X. F. Wang, M. D. Lemmon, Self-triggering under state-independent disturbances, IEEE T. Automat. Contr., 55 (2010), 1494–1500. https://doi.org/10.1109/TAC.2010.2045697 doi: 10.1109/TAC.2010.2045697
|
| [21] |
M. Mazo, A. Anta, P. Tabuada, An ISS self-triggered implementation of linear controllers, Automatica, 46 (2010), 1310–1314. https://doi.org/10.1016/j.automatica.2010.05.009 doi: 10.1016/j.automatica.2010.05.009
|
| [22] |
A. Anta, P. Tabuada, To sample or not to sample: Self-triggered control for nonlinear systems, IEEE T. Automat. Contr., 55 (2010), 2030–2042. https://doi.org/10.1109/TAC.2010.2042980 doi: 10.1109/TAC.2010.2042980
|
| [23] | M. Mazo, P. Tabuada, On event-triggered and self-triggered control over sensor/actuator networks, In: 2008 47th IEEE conference on decision and control, 2008,435–440. http://doi.org/10.1109/CDC.2008.4739414 |
| [24] |
S. H. Mousavi, M. Ghodrat, H. J. Marquez, Integral-based event-triggered control scheme for a general class of non-linear systems, IET Control Theory A., 9 (2015), 1982–1988. https://doi.org/10.1049/iet-cta.2014.1322 doi: 10.1049/iet-cta.2014.1322
|
| [25] |
W. Kwon, B. Koo, S. Lee, Integral-based event-triggered synchronization criteria for chaotic Lur'e systems with networked PD control, Nonlinear Dynam., 94 (2018), 991–1002. https://doi.org/10.1007/s11071-018-4405-9 doi: 10.1007/s11071-018-4405-9
|
| [26] |
X. M. Zhang, Q. L. Han, B. L. Zhang, X. H. Ge, D. W. Zhang, Accumulated-state-error-based event-triggered sampling scheme and its application to $H\infty$ control of sampled-data systems, Sci. China Inform. Sci., 67 (2024), 162206. https://doi.org/10.1007/s11432-023-4038-3 doi: 10.1007/s11432-023-4038-3
|
| [27] |
X. M. Zhang, Q. L. Han, B. L. Zhang, D. W. Zhang, X. H. Ge, Accumulative-error-based event-triggered control for discrete-time linear systems: A discrete-time looped functional method, IEEE-CAA J. Automatic., 11 (2024), 1–11. https://doi.org/10.1109/JAS.2024.124476 doi: 10.1109/JAS.2024.124476
|
| [28] |
D. Yue, E. G. Tian, Q. L. Han, A delay system method for designing event-triggered controllers of networked control systems, IEEE T. Automat. Contr., 58 (2012), 475–481. https://doi.org/10.1109/TAC.2012.2206694 doi: 10.1109/TAC.2012.2206694
|
| [29] |
D. Zhang, B. Z. Du, Event-triggered controller design for positive TS fuzzy systems with random time-delay, J. Franklin I., 15 (2022), 7796–7817. https://doi.org/10.1016/j.jfranklin.2022.08.024 doi: 10.1016/j.jfranklin.2022.08.024
|
| [30] |
J. Zhang, Dynamic event-triggered delay compensation control for networked predictive control systems with random delay, Sci. Rep., 13 (2023), 20017. https://doi.org/10.1038/s41598-023-46753-1 doi: 10.1038/s41598-023-46753-1
|
| [31] |
W. Wu, S. Reimann, D. Görges, S. Liu, Event-triggered control for discrete-time linear systems subject to bounded disturbance, Int. J. Robust Nonlin., 26 (2016), 1902–1918. https://doi.org/10.1002/rnc.3388 doi: 10.1002/rnc.3388
|
| [32] |
X. M. Zhang, Q. L. Han, X. H. Ge, B. D. Ning, B. L. Zhang, Sampled-data control systems with non-uniform sampling: A survey of methods and trends, Ann. Rev. Control, 55 (2023), 70–91. https://doi.org/10.1016/j.arcontrol.2023.03.004 doi: 10.1016/j.arcontrol.2023.03.004
|
| [33] |
X. Wang, J. Sun, G. Wang, F. Allgöwer, J. Chen, Data-driven control of distributed event-triggered network systems, IEEE-CAA J. Automatic., 10 (2023), 351–364. https://doi.org/10.1109/JAS.2023.123225 doi: 10.1109/JAS.2023.123225
|
| [34] |
H. C. Y. Yang, C. Peng, Z. R. Cao, Attack-model-independent stabilization of networked control systems under a jump-like TOD scheduling protocol, Automatica, 152 (2023), 110982. https://doi.org/10.1016/j.automatica.2023.110982 doi: 10.1016/j.automatica.2023.110982
|