Research article Special Issues

Analytical solution of the systems of nonlinear fractional partial differential equations using conformable Laplace transform iterative method

  • Received: 14 November 2024 Revised: 21 December 2024 Accepted: 21 January 2025 Published: 07 February 2025
  • MSC : 35J05, 35J10

  • In this study, we presented the conformable Laplace transform iterative method to find the approximate solution of the systems of nonlinear temporal-fractional differential equations in the sense of the conformable derivative. The advantage of the suggested approach was to compute the solution without discretization and restrictive assumptions. Three distinct examples were provided to show the applicability and efficacy of the proposed approach. To examine the exact and approximate solutions, we utilized the 2D and 3D graphics. Furthermore, the outcomes produced in this study were consistent with the exact solutions; hence, this strategy efficiently and effectively determined exact and approximate solutions to nonlinear temporal-fractional differential equations.

    Citation: Nisar Gul, Saima Noor, Abdulkafi Mohammed Saeed, Musaad S. Aldhabani, Roman Ullah. Analytical solution of the systems of nonlinear fractional partial differential equations using conformable Laplace transform iterative method[J]. AIMS Mathematics, 2025, 10(2): 1945-1966. doi: 10.3934/math.2025091

    Related Papers:

    [1] Xiaoling Zhang, Cuiling Ma, Lili Zhao . On some m-th root metrics. AIMS Mathematics, 2024, 9(9): 23971-23978. doi: 10.3934/math.20241165
    [2] Rajesh Kumar, Sameh Shenawy, Lalnunenga Colney, Nasser Bin Turki . Certain results on tangent bundle endowed with generalized Tanaka Webster connection (GTWC) on Kenmotsu manifolds. AIMS Mathematics, 2024, 9(11): 30364-30383. doi: 10.3934/math.20241465
    [3] Aliya Naaz Siddiqui, Mohammad Hasan Shahid, Jae Won Lee . On Ricci curvature of submanifolds in statistical manifolds of constant (quasi-constant) curvature. AIMS Mathematics, 2020, 5(4): 3495-3509. doi: 10.3934/math.2020227
    [4] Fahad Sikander, Tanveer Fatima, Sharief Deshmukh, Ayman Elsharkawy . Curvature analysis of concircular trajectories in doubly warped product manifolds. AIMS Mathematics, 2024, 9(8): 21940-21951. doi: 10.3934/math.20241066
    [5] Salah G. Elgendi . Parallel one forms on special Finsler manifolds. AIMS Mathematics, 2024, 9(12): 34356-34371. doi: 10.3934/math.20241636
    [6] Ibrahim Al-Dayel, Meraj Ali Khan . Ricci curvature of contact CR-warped product submanifolds in generalized Sasakian space forms admitting nearly Sasakian structure. AIMS Mathematics, 2021, 6(3): 2132-2151. doi: 10.3934/math.2021130
    [7] Tong Wu, Yong Wang . Super warped products with a semi-symmetric non-metric connection. AIMS Mathematics, 2022, 7(6): 10534-10553. doi: 10.3934/math.2022587
    [8] Fangmin Dong, Benling Li . On a class of weakly Landsberg metrics composed by a Riemannian metric and a conformal 1-form. AIMS Mathematics, 2023, 8(11): 27328-27346. doi: 10.3934/math.20231398
    [9] Ali H. Alkhaldi, Meraj Ali Khan, Shyamal Kumar Hui, Pradip Mandal . Ricci curvature of semi-slant warped product submanifolds in generalized complex space forms. AIMS Mathematics, 2022, 7(4): 7069-7092. doi: 10.3934/math.2022394
    [10] Songting Yin . Some rigidity theorems on Finsler manifolds. AIMS Mathematics, 2021, 6(3): 3025-3036. doi: 10.3934/math.2021184
  • In this study, we presented the conformable Laplace transform iterative method to find the approximate solution of the systems of nonlinear temporal-fractional differential equations in the sense of the conformable derivative. The advantage of the suggested approach was to compute the solution without discretization and restrictive assumptions. Three distinct examples were provided to show the applicability and efficacy of the proposed approach. To examine the exact and approximate solutions, we utilized the 2D and 3D graphics. Furthermore, the outcomes produced in this study were consistent with the exact solutions; hence, this strategy efficiently and effectively determined exact and approximate solutions to nonlinear temporal-fractional differential equations.



    Finsler geometry extends the classical Riemannian geometry by considering more general metric structures. A very important class of Finsler metrics is known as (α,β)-metrics, which were introduced by M. Matsumoto in 1972. An (α,β)-metric can be expressed as F=αϕ(s), where α is a Riemannian metric and s=βα, β is a 1-form. Randers metric, Kropina metric, exponential metric, Matsumoto metric, and cubic metric are important classes of (α,β)-metric [9].

    To study the curvature characteristics is a central problem in Finsler geometry. The Ricci curvature and S-curvature are very important non-Riemannian quantities in the Finslerian manifold [2]. The Ricci curvature in Finsler geometry is a natural extension of the Ricci curvature in Riemannian geometry and is defined as the trace of the Riemann curvature [5]. The S-curvature is a mathematical quantity and measures the rate of change of volume form of a Finsler space along the geodesics. Recent studies in differential geometry, such as those on Ricci solitons and conformal structures, have highlighted the importance of Ricci-type curvatures in understanding the geometric flow and structure of manifolds [6,7,8]. In Finsler geometry, the study of curvature involves understanding the deviation from flatness. The projective Ricci curvature is one aspect of this analysis. The concept of projective Ricci curvature in Finsler geometry is introduced by X. Cheng [1] in 2017. Projective geometry deals with the properties that are invariant under projective transformations. The projective Ricci curvature measures the deviation of the Finsler metric from being projectively flat. Projective Ricci curvature has applications in various areas of mathematics and physics. It plays a crucial role in understanding the geometry of Finsler manifolds and connects to the problems in the calculus of variations, differential equations, and geometric optics.

    In 2020, H. Zhu [15] gave an expression of projective Ricci curvature for an (α,β)-metric. Later on, many geometers [4,12,13] have studied the geometric properties of projective Ricci curvature. In this article, we obtain the geometric properties and flatness condition of projective Ricci curvature for the cubic Finsler metric, which is defined as F=αϕ(s) with

    ϕ=(1+s)3, (1.1)

    i.e., F=(α+β)3α2. Cubic metric is Finsler metric for b2<14 [14].

    The following notations will be used to state our main result:

    2sjk=bj;kbk;j,2rjk=bj;k+bk;j,sjk=ajlskl,rjk=ajlrkl,sj=blslj=bkskj,rj=blrlj=bkrkj,rj0=rjkyk,r00=rjkyjyk,r=rjkbjbk=bjrj,sj0=sjkyk,s0=sjyj,r0=rjyj,bj=ajkbk,tjk=sjmsmk,tj=bmtmj=sisij, (1.2)

    where ";" denotes the covariant derivative with respect to the Levi-Civita connection of the Riemannian metric α.

    A 1-form β is said to be a Killing form if rij=0. The 1-form β is said to be a constant Killing form if it is a Killing form and constant length concerning α, equivalently rij=0 and si=0.

    In this paper we will use the following lemma:

    Lemma 1.1. If α2=0(modβ), that is, aijyiyj contains bi(x)yi as a factor, then the dimension is equal to two and b2 vanishes. In this case, we have δ=di(x)yi satisfying α2=βδ and dibi=2.

    We first prove the following result:

    Theorem 1.1. For the cubic Finsler metric F=(α+β)3α2 on an n-dimensional (n>2) Finsler manifold M, the S-curvature vanishes if and only if β is a constant Killing form.

    Next, we obtain the flatness condition for the projective Ricci curvature as

    Theorem 1.2. If the n-dimensional (n>2) Finsler space with cubic metric F=(α+β)3α2 is projective Ricci-flat (PRic=0), then β is parallel with respect to the Riemannian metric α.

    In view of the above result, we obtain

    Corollary 1.1. If the n-dimensional (n>2) Finsler space with cubic metric F=(α+β)3α2 is projective Ricci flat then, it vanishes the S-curvature. Therefore, the Riemannian metric of α is Ricci flat (Ricα=0).

    We also prove the following result:

    Theorem 1.3. The n-dimensional (n>2) Finsler space with cubic metric F=(α+β)3α2 is weak PRic-curvature if and only if it is a PRic-flat metric.

    Let F be an n-dimensional Finsler manifold, and let Gj be the geodesic coefficients of F, which are defined as

    Gj=14gjl[2(F2)xkylyk(F2)xl],yϵTxM.

    The geodesic coefficients of an (α,β)-metric are given as [3]

    Gj=Gjα+αQsj0+(r002αQs0)(Ψbj+Θyjα), (2.1)

    where Giα denotes the geodesic coefficients of the Riemannian metric α and

    Q=ϕϕsϕ,ψ=ϕ"2ϕ(ϕsϕ+(Bs2)ϕ"),Θ=ϕϕs(ϕϕ"+ϕϕ)2ϕ(ϕsϕ+(Bs2)ϕ"). (2.2)

    For any xϵM and yϵTxM{0}, the Riemann curvature Ry is defined as

    Ry(v)=Rjk(y)vkxj,v=vjxj,

    where

    Rjk=2Gjxk+2Gi2Gjyiyk2GjxiykyiGjyiGiyk.

    The trace of Riemann curvature is called Ricci curvature Ric=Rmm, which is a mathematical object that regulates the rate at which a metric ball's volume in a manifold grows. A Finsler metric F is called an Einstein metric if Ricci curvature satisfies the equation Ric(x,y)=(n1)γF2, where γ=γ(x) is a scalar function.

    In 1997, Z. Shen [11] discussed S-curvature, which measures the average rate of change of (TxM;Fx) in the direction yϵTxM and is defined as

    S(x,y)=Gmymym(logσF)xm,

    where σF is defined as

    σF=Vol(Bn)Vol{yiϵRn|F(x,y)<1},

    and Vol denotes the Euclidean volume, and Bn(1) denotes the unit ball in Rn.

    The expression of S-curvature for an (α,β)-metric is given as [10]

    S=(s0+r0)(2ψΠ)α1Φ2Δ2(r002αQs0), (2.3)

    where

    Π=f(b)bf(b),Δ=1+sQ+(Bs2)Qs,B=b2,Φ=(QsQs)(nΔ+1+sQ)(Bs2)(1+sQ)Qss. (2.4)

    The projective Ricci curvature is first defined by X. Cheng [1] as

    PRic=Ric+n1n+1S|mym+n1(n+1)2S2, (2.5)

    where "|" denotes the horizontal covariant derivative with respect to the Berwald connections of F. A Finsler space F is called weak projective Ricci curvature if

    PRic=(n1)[3θF+γ]F2, (2.6)

    where γ=γ(x) is a scalar function and θ=θi(x)yi is a 1-form. If γ= constant, then F is called constant projective Ricci curvature. If θ=0, then F is called isotropic projective Ricci curvature PRic = (n1)γF2.

    In 2020, H. Zhu [15] gave an expression of the projective Ricci curvature for the (α,β)-metrics as

    PRic=Ricα+1n+1[r200α2V1r00s0αV2r00r0αV3+r00|0αV4+s20V5+r00rV64r20V7+2r0s0V8]+(r00rii+r00|bbiri0|0r0iri0)V9+r0isi0V10+s0|0V11+s0isi0V12+αrs0V13+αsjsj0V14+α[4n+1risi02s0|b2riis0+3r0isi+bisi|0]V15+αsi0|iV16+α2sisiV17+α2sijsjiV18+r0|0V19+2(n1)n+1[Ψsα(r002αQs0)(Bs2)+2Ψ(r0+s0)]ρ0+(n1)[2Ψ(r002αQs0)ρb2αQρksk0+ρ20+ρ0|0], (2.7)

    where

    V1=4sΨs+(4ΨΨssΨ2s)(Bs2)22(Ψss+6sΨΨs)(Bs2)n2+1n+1Ψ2s(Bs2)2,V2=4[2Ψ(ΨQss+2QΨss+QsΨs)Q(Ψs)2](Bs2)2+4[2(QsQs)(Ψs)2(1+10sQ)ΨΨs2ΨQss2QΨssQsΨs+ΨBs](Bs2)+2Qss+8Ψs4QΨ+4sΨQs+20sQΨs+(n1)[4((Ψ)2QssQ(Ψs)2)(Bs2)2+4((QsQs)(Ψ)2)+Ψ(ΨsQss)(Bs2)+2s(QsΨ+QΨs)2QΨ+Qss]+8n+1Ψs[ΨQΨs(Bs2)](Bs2),V3=2Ψs2(3ΨΨsΨBs)(Bs2)(n1)(12Ψ(Bs2))Ψs+4n+1ΨΨs(Bs2),V4=2Ψs(Bs2),V5=(n1){4[2QΨ2QssΨ2(Qs)2Q2(Ψs)2](Bs2)2+4[2QΨ(QΨ2sQsΨQss+Ψs)+Ψ(Qs)2+QsΨB](Bs2)4QΨ(s2QΨ3sQs+2Q)+4sQ(QΨs+ΨB)+8QsΨ+2QQss(Qs)2+4ΨB}+4[4QΨ(ΨQss+QΨss+QsΨs)2(Qs)2Ψ2Q2(Ψs)2](Bs2)2+8[QΨ(4sQsΨ4sQΨs+2QΨ2QssΨs)+(Qs)2ΨQ2ΨssQQsΨs+QΨBs+QsΨB](Bs2)+24sQ2Ψs8QΨ(s2QΨ3sQs+2Q)+8sQΨB+4Ψ(Ψ+4Qs)+4QQss+16QΨs2(Qs)28n+1[ΨQΨs(Bs2)]2,
    V6=4[(n+1)ΨB+2(Ψ)2],V7=n2+n+2n+1Ψ2+2ΨB,V8=(n1)[2(2QsΨ2+2QΨΨs+QsΨB)(Bs2)+2sQ(2Ψ2+ΨB)2QΨs+2ΨB]+4[2QsΨ23QΨΨs+QΨBs+QsΨB](Bs2)+4sQ(2Ψ2+ΨB)+4Ψ2+4QΨs4ΨB8n+1Ψ[ΨQΨs(Bs2)],V9=2Ψ,V10=2[2QsΨ(Bs2)2sQΨΨ+Qs+4n+1QΨs(Bs2)],V11=2QsΨ(Bs2)+2Ψ(1+2Q)Qs+4n+1[QΨs(Bs2)Ψ],V12=2Qs2Q(QsQs),V13=8Q[ΨB+2n+1Ψ2],V14=2n+1Q[(n3)Ψ+4QΨs(Bs2)],V15=2QΨ,V16=2Q,V17=4Q2Ψ,V18=Q2,V19=2(n1)n+1Ψ,ρ=lnσασn+1,ρ0=ρxiyi. (2.8)

    For Eq (1.1), we obtain the following values:

    Q=312s,Qs=6(12s)2,Qss=24(12s)3,ψ=31+6Bs8s2,ψs=3+48s(1+6Bs8s2)2,ψss=18(3+16B+8s+64s2)(1+6Bs8s2)3,ψB=18(1+6Bs8s2)2,ψBs=36+576s(1+6Bs8s2)2,Θ=3(14s))2(1+6Bs8s2),Θs=9+72B48s+96s22(1+6Bs8s2)2,ΘB=9(1+4s)2(1+6Bs8s2)2,Δ=1+6Bs8s2(12s)2,Φ=(3(15s6s2+B(8+6n+8s24ns)+n(15s4s2+32s3)(12s)4. (3.1)

    By using Eqs (2.1) and (3.1), we obtain the spray coefficient Gj for the cubic metric as

    Gj=Gjα+12α(12s)(1+6Bs8s2)[(6+36B6s48s2)α2sj0+[18αs0(4s1)+3r00(16s+8s2)]yj6αbj[6s0+(2s1)r00]]. (3.2)

    In view of Eqs (2.5) and (3.1) and using Mathematica program, we obtain the S-curvature for the cubic Finsler metric as

    S=12(α2β)(α2+6Bα2αβ8β2)2[2r0(α2β)((1+6B)α2αβ8β2)[αβΠ8β2Π+α2(6+Π+6BΠ)]2s0[3α2((1+3n+6B(2+3n))α33(3+5n+8B(2+3n))α2β6(1+2n)αβ2+32(1+3n)β3)+(α2β)((1+6B)α2+αβ+8β2)2Π]+3r00(α2β)[(1+n+B(8+6n))α3(58B+5n+24Bn)α2β2(3+2n)αβ2+32nβ3]]. (3.3)

    Now, we are in the position to prove Theorem 1.1.

    Proof of Theorem 1.1. First we prove the converse part.

    Let us assume that β is a constant Killing form i.e., s0=0 and r00=0; putting this in Eq (3.3) vanishes the S-curvature.

    For the if part, let us take S=0; then Eq (3.3) becomes

    t0+t1α+t2α2+t3α3+t4α4+t5α5=0, (3.4)

    where

    t0=64β4(4βΠr0+4βΠs03nr00),t1=4β3(16βΠr016βΠs0+3(3+10n)r00),t2=(192β392β3Π384Bβ3Π)r0+(192β3576nβ392384Bβ3Π)s0+(12β248Bβ2+18nβ2+144Bnβ2)r00,t3=(72β2+22β2Π+144Bβ2Π)r0+(36β2+72nβ2+22β2Π+144Bβ2Π)s0+(21β24Bβ21nβ108Bnβ)r00,t4=(36β144Bβ+8βΠ+72BβΠ+144B2βΠ)r0+(54β288Bβ+90nβ+432Bnβ+8βΠ+72BβΠ+144B2βΠ)s0+(3+24B+3n+18Bn)r00,t5=(12+72B2Π24BΠ72B2Π)r0+(672B18n108Bn2Π24BΠ72B2Π)s0.

    Taking the rational and irrational parts of Eq (3.4), we obtain

    t0+α2(t2+α2t4)=0, (3.5)
    t1+α2(t3+α2t5)=0. (3.6)

    From Eqs (3.5) and (3.6), we can say that α2 will divide t0 as well as t1. In view of Lemma 1.1,α2 is coprime with β for n>2. Solving Eqs (3.5) and (3.6), we get, respectively,

    4βΠ(r0+s0)3nr00=γ1α2,forγ1=γ1(x),

    and

    16βΠ(r0+s0)3(10n+3)r00=γ2α2,forγ2=γ2(x).

    From the above equations, we obtain

    r00=cα2,and thenr0=cβ, (3.7)

    for some scalar function c=c(x) on M.

    Putting the above values in Eq (3.4) and simplifying, we get

    256Πβ5(cβ+s0)=α2(....),

    where (...) denotes the polynomial term in α and β. Here also α2 does not divide β5 and (cβ+s0). Therefore, cβ+s0=0. Differentiating it with respect to yi, we obtain cbi+si=0, which, on contracting by bi, gives c=0, implying s0=0 and r00=0. Which means β is a constant Killing form.

    This completes, the proof of Theorem 1.1.

    In this section we obtain the projective Ricci curvature for the aforesaid metric.

    Proof of Theorem 1.2. For this, we first obtain all the values of Eq (2.8) by using Eq (3.1) and the Mathematica program as

    V1=1(1+n)(16B+s+8s2)4[3(6B(6(1+n)+8(1+n)s+(36(37+n)n)s24(45+n(37+8n))s3256(4+n(3+n))s4)+s(4(1+n)92(1+n)s+92(1+n)s2+(238+n(241+3n))s3+32(23+n(20+3n))s4+256(14+n(11+3n))s5)+3B2(66+24s(1+32s)+(n+16ns)2+n(65+8s(1+64s))))],
    V2=1(1+n)(1+2s)(16B+s+8s2)4[6(5+192B+1224B26n+186Bn+1206B2nn218Bn254B2n26(3(5+6n+n2)+12B2(10+n+9n2)+B(16+41n+51n2))s+3(99104nn236B(125n+n2)+384B2(8+n+3n2))s2+2(508+675n+245n2+12B(244125n+105n2))s36(330+183n45n2+64B(70+23n+15n2))s496(3611n+23n2)s5+2048(8+3n+n2)s6)],
    V3=3(1+16s)(6B(3+5n)+n(2+2s26s2)+3(1+s4s2)n2(1+s+2s2))(1+n)(16B+s+8s2)3,
    V4=6(1+16s)(B+s2)(16B+s+8s2)2,
    V5=1(1+n)(1+2s)3(16B+s+8s2)4[36(67n+n2(63+n(82+35n))s+15(8+3n(3+n))s2+(849+n(1354+785n))s3(2562+n(2351+1123n))s46(398+495n+771n2)s5+64(45+n(7+100n))s6+2048(3+n(7+2n))s7216B3(1+n)2(1+8s)+9B2(74+9n(9+n)144s6n(47+37n)s+48(1+n(11+8n))s2+160(2+3n(5+n))s3)+6B(13+13n+2n2(70+n(109+89n))s+(151+55n(1+2n))s2+2(178+n(317+505n))s38(47+n(136+199n))s41024(1+n(5+n))s5))],
    V6=72n(1+6Bs8s2)2,V7=9(23n+n2)(1+n)(1+6Bs8s2)2,
    V8=1(1+n)(1+2s)(1+6Bs8s2)3[18(7+n(8+3n)33s+3n(4+3n)s+6(10+(75n)n)s2256(1+2n)s36B(1+n2n2+4(14+(23+n)n)s))],
    V9=61+6Bs8s2,
    V10=6(1+n+6B(3+n))+18(1+4B(15+n)+n)s+36(3+n)s296(11+n)s3(1+n)(1+2s)(16B+s+8s2)2,
    V11=12(1+3B3s60Bs3s2+64s3)(1+n)(1+2s)(16B+s+8s2)2,V12=6(18s)(1+2s)3,
    V13=432n(1+n)(1+2s)(16B+s+8s2)2, (4.1)
    V14=18(3+6Bn6Bn+3(3+4B(19+n)+n)s+6(1+n)s216(15+n)s3)(1+n)(1+2s)2(16B+s+8s2)2,
    V15=18(1+2s)(16B+s+8s2),V16=612s,
    V17=108(1+2s)2(16B+s+8s2),V18=9(1+2s)2,V19=6(1+n)(1+n)(1+6Bs8s2).

    Plugging all the values of the above Eq (4.1) into Eq (2.7) and simplifying by the using Mathematica program, we obtain the projective Ricci curvature for the aforesaid metric as

    PRic=1(1+n)2(α2β)3((1+6B)α2+αβ+8β2)4i=13i=0αiti,

    where

    t0=2048β9(3r200(14+n(11+3n))+8(1+n)β(3r00|0+2(1+n)Ricαβ)+8β(2(1+n)(1+n)2β(ρ20+ρ0|0))3(1+n2)ρ0r00),
    t1=256β8(3r200(145+n(112+33n))+4(1+n)β(57r00|0+32(1+n)Ricαβ)+4β(32(1+n)(1+n)2β(ρ20+ρ0|0))57(1+n2)ρ0r00),t13=9(1+6B)3(12sksk+sikski+6Bsikski)(1+n)2. (4.2)

    Next, we obtain the flatness condition under which the projective Ricci curvature vanishes.

    Let the projective Ricci curvature PRic=0, which implies U(α,β)=0, where

    U(α,β)=t0+αt1+α2t2+......+α13t13. (4.3)

    Using Mathematica, we can see that

    U(α,β)=14(67n+n2)(α2β)3(α+β)2(α+16β)2(r00(α2β)6s0α2)2mod[(1+6B)α2αβ8β2].

    Therefore

    (...)[(1+6B)α2αβ8β2])14(67n+n2)(α2β)3(α+β)2(α+16β)2(r00(α2β)6s0α2)2=0,

    where (....) are polynomial in α and β. As B<14, therefore ((1+6B)α2αβ8β2) does not divide (α2β)3 or (α+β)2 or (α+16β)2. Therefore ((1+6B)α2αβ8β2) will divide (r00(α2β)6s0α2)2; then ((1+6B)α2αβ8β2) will also divide (r00(α2β)6s0α2), i.e.,

    (r00(α2β)6s0α2)=(c1+αc0)((1+6B)α2αβ8β2),

    where c1 is a 1-form and c0 is a scalar. Taking the rational and irrational parts of the above equation, we obtain

    2βr006α2s0=c1α2(1+6B)8β2c1c0α2β, (4.4)

    and

    r00=c0α2(1+6B)βc18c0β2. (4.5)

    Solving the above equations, we get c1=85βc0, and then (4.5) gives

    r00=c0[α2(1+6B)325β2]. (4.6)

    Substituting the above values into Eq (4.4), we obtain

    (4B1)c0β+10s0=0. (4.7)

    Differentiating the above equation with respect to yi gives (4B1)c0bi+si=0, which, on contracting by bi, we obtain c0=0. Then from Eqs (4.6) and (4.7), we obtain

    r00=0,s0=0. (4.8)

    In view of (4.8), Eq (4.3) becomes

    3α2(2s0ksk0(α8β)+(3sikskiα2+2sk0;k(α2β))(α2β))+Ricα(α2β)3(n1)(α2β)2((α2β)ρ20+6α2sk0ρk(α2β)ρ0|0)=0,

    which can be rewritten as

    (α2β){6α2s0ksk0+9α4sikski6α2sk0;k(α2β)Ricα(α2β)2+(n1)(α2β)[6α2sk0ρk(α2β)ρ20(α2β)ρ0|0]}=36s0ksk0α2β.

    Since (α2β) does not divide α2 or β, therefore (α2β) will divide s0ksk0. Thus

    s0ksk0=(d1+αd0)(α2β),

    where d1 is a 1-form and d0 is a scalar. Taking the rational and irrational parts of the above equation and solving, we obtain

    s0ksk0=d0(α24β2). (4.9)

    If d00 then one can conclude by the above equation that α is not positive definite, which is not possible. Therefore, d0=0. This implies that

    sik=0, (4.10)

    i.e., β is closed. In view of Eqs (4.8) and (4.10), we obtain bi;k=0, then 1-form β is parallel with respect to α.

    This completes the proof of Theorem 1.2.

    Now, we obtain the condition for the weak projective Ricci curvature of a cubic Finsler metric.

    Proof of Theorem 1.3. Let F be a cubic Finsler metric with weak projective Ricci curvature. Then from Eq (2.6) we obtain

    (n1)[3θ(α+β)3α2+γ(α+β)6]=α4(1+n)2(α2β)3((1+6B)α2αβ8β2)4i=13i=0αiti. (4.11)

    For the cubic metric, we have B<14, which implies that α4 does not divide (α2β)3 or ((1+6B)α2αβ8β2)4 or 3θ(α+β)3α2. Consequently, it follows that α2 must divide γ(α+β)6. However, such division is only possible if γ=0. Combining this result with Eq (4.11), then we deduce that 3θ(α+β)3 is divided by α2. This is impossible unless θ=0. Then F reduces to a projective Ricci-flat metric.

    The converse is obvious. This completes the proof.

    Example 4.1. The Finsler metric 1|y|2(|y|+<a,y>)3 for a=constant is projectively Ricci flat.

    Projective Ricci curvature is a concept in differential geometry that generalizes the notion of Ricci curvature. It has various applications in the fields of general relativity, optimal transformation theory, complex geometry, Weyl geometry, Einstein metrics, and many more. In this article, we have proved that if the cubic metric F=(α+β)3α2 is projective Ricci flat (PRic=0), then β is parallel with respect to Riemannian metric α, and then from Eq (2.3), the S-curvature vanishes. Therefore, from Eq (2.5), we obtain that the Riemannian metric α is also Ricci-flat, which is Corollary 1.1.

    M. K. Gupta and S. Sharma wrote the framework and the original draft of this manuscript. Y. Li and Y. Xie reviewed and validated the manuscript. All authors have read and agreed to the final version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare no conflict of interest.



    [1] M. A. Herzallah, Notes on some fractional calculus operators and their properties, J. Fract. Calc. Appl., 5 (2014), 1–10.
    [2] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int., 5 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [3] M. M. Al-Sawalha, R. P. Agarwal, R. Shah, O. Y. Ababneh, W. Weera, A reliable way to deal with fractional-order equations that describe the unsteady flow of a polytropic gas, Mathematics, 10 (2022), 2293. https://doi.org/10.3390/math10132293 doi: 10.3390/math10132293
    [4] D. Baleanu, J. A. T. Machado, A. C. Luo, Fractional dynamics and control, Springer, 2012. https://doi.org/10.1007/978-1-4614-0457-6
    [5] B. Bira, T. Raja Sekhar, D. Zeidan, Exact solutions for some time-fractional evolution equations using Lie group theory, Math. Methods Appl. Sci., 41 (2018), 6717–6725. https://doi.org/10.1002/mma.5186 doi: 10.1002/mma.5186
    [6] M. Al-Smadi, O. A. Arqub, Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates, Appl. Math. Comput., 342 (2019), 280–294. https://doi.org/10.1016/j.amc.2018.09.020 doi: 10.1016/j.amc.2018.09.020
    [7] D. Baleanu, A. K. Golmankhaneh, A. K. Golmankhaneh, M. C. Baleanu, Fractional electromagnetic equations using fractional forms, Int. J. Theor. Phys., 48 (2009), 3114–3123. https://doi.org/10.1007/s10773-009-0109-8 doi: 10.1007/s10773-009-0109-8
    [8] M. Al-Smadi, Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation, Ain Shams Eng. J., 9 (2018), 2517–2525. https://doi.org/10.1016/j.asej.2017.04.006 doi: 10.1016/j.asej.2017.04.006
    [9] Z. Altawallbeh, M. Al-Smadi, I. Komashynska, A. Ateiwi, Numerical solutions of fractional systems of two-point BVPs by using the iterative reproducing kernel algorithm, Ukr. Math. J., 70 (2018), 687–701. https://doi.org/10.1007/s11253-018-1526-8 doi: 10.1007/s11253-018-1526-8
    [10] S. Hasan, A. El-Ajou, S. Hadid, M. Al-Smadi, S. Momani, Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system, Chaos Soliton. Fract., 133 (2020), 109624. https://doi.org/10.1016/j.chaos.2020.109624 doi: 10.1016/j.chaos.2020.109624
    [11] F. Riewe, Mechanics with fractional derivatives, Phys. Rev. E, 55 (1997), 3581. https://doi.org/10.1103/PhysRevE.55.3581 doi: 10.1103/PhysRevE.55.3581
    [12] N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 62 (2000), 3135. https://doi.org/10.1103/PhysRevE.62.3135 doi: 10.1103/PhysRevE.62.3135
    [13] S. Noor, A. W. Alrowaily, M. Alqudah, R. Shah, S. A. El-Tantawy, Innovative solutions to the fractional diffusion equation using the Elzaki transform, Math. Comput. Appl., 29 (2024), 75. https://doi.org/10.3390/mca29050075 doi: 10.3390/mca29050075
    [14] J. Muhammad, N. Gul, R. Ali, Enhanced decision-making with advanced algebraic techniques in complex Fermatean fuzzy sets under confidence levels, Int. J. Knowl. Innov. Stud., 2 (2024), 107–118. https://doi.org/10.56578/ijkis020205 doi: 10.56578/ijkis020205
    [15] M. Khalid, I. A. Mallah, S. Alha, A. Akgul, Exploring the Elzaki transform: unveiling solutions to reaction-diffusion equations with generalized composite fractional derivatives, Contemp. Math., 5 (2024), 1426–1438. https://doi.org/10.37256/cm.5220244621 doi: 10.37256/cm.5220244621
    [16] H. Yasmin, A. A. Alderremy, R. Shah, A. Hamid Ganie, S. Aly, Iterative solution of the fractional Wu-Zhang equation under Caputo derivative operator, Front. Phys., 12 (2024), 1333990. https://doi.org/10.3389/fphy.2024.1333990 doi: 10.3389/fphy.2024.1333990
    [17] Y. Mahatekar, P. S. Scindia, P. Kumar, A new numerical method to solve fractional differential equations in terms of Caputo-Fabrizio derivatives, Phys. Scr., 98 (2023), 024001. https://doi.org/10.1088/1402-4896/acaf1a doi: 10.1088/1402-4896/acaf1a
    [18] A. Khan, J. F. Gómez-Aguilar, T. S. Khan, H. Khan, Stability analysis and numerical solutions of fractional order HIV/AIDS model, Chaos Soliton. Fract., 122 (2019), 119–128. https://doi.org/10.1016/j.chaos.2019.03.022 doi: 10.1016/j.chaos.2019.03.022
    [19] A. El-Ajou, O. A. Arqub, Z. A. Zhour, S. Momani, New results on fractional power series: theories and applications, Entropy, 15 (2013), 5305–5323. https://doi.org/10.3390/e15125305 doi: 10.3390/e15125305
    [20] A. Kilicman, Z. A. A. Al Zhour, Kronecker operational matrices for fractional calculus and some applications, Appl. Math. Comput., 187 (2007), 250–265. https://doi.org/10.1016/j.amc.2006.08.122 doi: 10.1016/j.amc.2006.08.122
    [21] A. Khan, T. Abdeljawad, J. F. Gómez-Aguilar, H. Khan, Dynamical study of fractional order mutualism parasitism food web module, Chaos Soliton. Fract., 134 (2020), 109685. https://doi.org/10.1016/j.chaos.2020.109685 doi: 10.1016/j.chaos.2020.109685
    [22] M. I. Liaqat, A. Akgül, A novel approach for solving linear and nonlinear time-fractional Schrödinger equations, Chaos Soliton. Fract., 162 (2022), 112487. https://doi.org/10.1016/j.chaos.2022.112487 doi: 10.1016/j.chaos.2022.112487
    [23] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [24] E. Balcı, İ. Öztürk, S. Kartal, Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative, Chaos Soliton. Fract., 123 (2019), 43–51. https://doi.org/10.1016/j.chaos.2019.03.032 doi: 10.1016/j.chaos.2019.03.032
    [25] W. Xie, C. Liu, W. Z. Wu, W. Li, C. Liu, Continuous grey model with conformable fractional derivative, Chaos Soliton. Fract., 139 (2020), 110285. https://doi.org/10.1016/j.chaos.2020.110285 doi: 10.1016/j.chaos.2020.110285
    [26] C. Ma, M. Jun, Y. Cao, T. Liu, J. Wang, Multistability analysis of a conformable fractional-order chaotic system, Phys. Scr., 95 (2020), 075204. https://doi.org/10.1088/1402-4896/ab8d54 doi: 10.1088/1402-4896/ab8d54
    [27] H. Tajadodi, A. Khan, J. F. Gómez-Aguilar, H. Khan, Optimal control problems with Atangana-Baleanu fractional derivative, Optim. Contr. Appl. Met., 42 (2021), 96–109. https://doi.org/10.1002/oca.2664 doi: 10.1002/oca.2664
    [28] J. S. Duan, T. Chaolu, R. Rach, Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach-Adomian-Meyers modified decomposition method, Appl. Math. Comput., 218 (2012), 8370–8392. https://doi.org/10.1016/j.amc.2012.01.063 doi: 10.1016/j.amc.2012.01.063
    [29] A. Di Matteo, A. Pirrotta, Generalized differential transform method for nonlinear boundary value problem of fractional order, Commun. Nonlinear Sci. Numer. Simul., 29 (2015), 88–101. https://doi.org/10.1016/j.cnsns.2015.04.017 doi: 10.1016/j.cnsns.2015.04.017
    [30] A. Al-rabtah, V. S. Ertürk, S. Momani, Solutions of a fractional oscillator by using differential transform method, Comput. Math. Appl., 59 (2010), 1356–1362. https://doi.org/10.1016/j.camwa.2009.06.036 doi: 10.1016/j.camwa.2009.06.036
    [31] S. Momani, S. Abuasad, Application of He's variational iteration method to Helmholtz equation, Chaos Soliton. Fract., 27 (2006), 1119–1123. https://doi.org/10.1016/j.chaos.2005.04.113 doi: 10.1016/j.chaos.2005.04.113
    [32] O. Abdulaziz, I. Hashim, S. Momani, Solving systems of fractional differential equations by homotopy-perturbation method, Phys. Lett. A, 372 (2008), 451–459. https://doi.org/10.1016/j.physleta.2007.07.059 doi: 10.1016/j.physleta.2007.07.059
    [33] J. H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114 (2000), 115–123. https://doi.org/10.1016/S0096-3003(99)00104-6 doi: 10.1016/S0096-3003(99)00104-6
    [34] Y. Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430
    [35] Y. He, Y. Kai, Wave structures, modulation instability analysis and chaotic behaviors to Kudryashov's equation with third-order dispersion, Nonlinear Dyn., 12 (2024), 10355–10371. https://doi.org/10.1007/s11071-024-09635-3 doi: 10.1007/s11071-024-09635-3
    [36] J. Xie, Z. Xie, H. Xu, Z. Li, W. Shi, J. Ren, et al., Resonance and attraction domain analysis of asymmetric duffing systems with fractional damping in two degrees of freedom, Chaos Soliton. Fract., 187 (2024), 115440. https://doi.org/10.1016/j.chaos.2024.115440 doi: 10.1016/j.chaos.2024.115440
    [37] C. Zhu, S. A. Idris, M. E. M. Abdalla, S. Rezapour, S. Shateyi, B. Gunay, Analytical study of nonlinear models using a modified Schrodinger's equation and logarithmic transformation, Results Phys., 55 (2023), 107183. https://doi.org/10.1016/j.rinp.2023.107183 doi: 10.1016/j.rinp.2023.107183
    [38] S. Guo, A. Das, Cohomology and deformations of generalized reynolds operators on leibniz algebras, Rocky Mountain J. Math., 54 (2024), 161–178. https://doi.org/10.1216/rmj.2024.54.161 doi: 10.1216/rmj.2024.54.161
    [39] C. Guo, J. Hu, J. Hao, S. Čelikovsky, X. Hu, Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions, Kybernetika, 59 (2023), 342–364. https://doi.org/10.14736/kyb-2023-3-0342 doi: 10.14736/kyb-2023-3-0342
    [40] A. A. Alderremy, R. Shah, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1944. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944
    [41] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation, soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
    [42] M. M. Al-Sawalha, A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives, AIMS Math., 10 (2022), 18334–18359. https://doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010
    [43] E. M. Elsayed, R. Shah, K. Nonlaopon, The analysis of the fractional-order Navier-Stokes equations by a novel approach, J. Funct. Spaces, 2022 (2022), 8979447. https://doi.org/10.1155/2022/8979447 doi: 10.1155/2022/8979447
    [44] M. Naeem, H. Rezazadeh, A. A. Khammash, R. Shah, S. Zaland, Analysis of the fuzzy fractional-order solitary wave solutions for the KdV equation in the sense of Caputo-Fabrizio derivative, J. Math., 2022 (2022), 3688916. https://doi.org/10.1155/2022/3688916 doi: 10.1155/2022/3688916
    [45] M. Alqhtani, K. M. Saad, R. Shah, W. M. Hamanah, Discovering novel soliton solutions for (3+1)-modified fractional Zakharov-Kuznetsov equation in electrical engineering through an analytical approach, Opt. Quant. Electron., 55 (2023), 1149. https://doi.org/10.1007/s11082-023-05407-2 doi: 10.1007/s11082-023-05407-2
    [46] M. Alqhtani, K. M. Saad, R. Shah, W. Weera, W. M. Hamanah, Analysis of the fractional-order local Poisson equation in fractal porous media, Symmetry, 14 (2022), 1323. https://doi.org/10.3390/sym14071323 doi: 10.3390/sym14071323
    [47] S. A. El-Tantawy, R. T. Matoog, A. W. Alrowaily, S. M. Ismaeel, On the shock wave approximation to fractional generalized Burger-Fisher equations using the residual power series transform method, Phys. Fluids, 36 (2024), 023105. https://doi.org/10.1063/5.0187127 doi: 10.1063/5.0187127
    [48] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. Shafee, R. Shah, Noise effect on soliton phenomena in fractional stochastic Kraenkel-Manna-Merle system arising in ferromagnetic materials, Sci. Rep., 14 (2024), 1810. https://doi.org/10.1038/s41598-024-52211-3 doi: 10.1038/s41598-024-52211-3
    [49] S. Noor, W. Albalawi, R. Shah, M. M. Al-Sawalha, S. M. E. Ismaeel, S. A. El-Tantawy, On the approximations to fractional nonlinear damped Burger's-type equations that arise in fluids and plasmas using Aboodh residual power series and Aboodh transform iteration methods, Front. Phys., 12 (2024), 1374481. https://doi.org/10.3389/fphy.2024.1374481 doi: 10.3389/fphy.2024.1374481
    [50] M. I. Liaqat, E. Okyere, The fractional series solutions for the conformable time-fractional Swift-Hohenberg equation through the conformable Shehu Daftardar-Jafari approach with comparative analysis, J. Math., 2022 (2022), 3295076. https://doi.org/10.1155/2022/3295076 doi: 10.1155/2022/3295076
    [51] J. Younis, B. Ahmed, M. AlJazzazi, R. Al Hejaj, H. Aydi, Existence and uniqueness study of the conformable Laplace transform, J. Math., 2022 (2022), 4554065. https://doi.org/10.1155/2022/4554065 doi: 10.1155/2022/4554065
    [52] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [53] Z. Al-Zhour, F. Alrawajeh, N. Al-Mutairi, R. Alkhasawneh, New results on the conformable fractional Sumudu transform: theories and applications, Int. J. Anal. Appl., 17 (2019), 1019–1033.
    [54] B. Ahmed, Generalization of fractional Laplace transform for higher order and its application, J. Innov. Appl. Math. Comput. Sci., 1 (2021), 79–92.
    [55] A. Khan, M. I. Liaqat, M. A. Alqudah, T. Abdeljawad, Analysis of the conformable temporal-fractional swift-hohenberg equation using a novel computational technique, Fractals, 31 (2023), 2340050. https://doi.org/10.1142/S0218348X23400509 doi: 10.1142/S0218348X23400509
    [56] M. Sultana, M. Waqar, A. H. Ali, A. A. Lupas, F. Ghanim, Z. A. Abduljabbar, Numerical investigation of systems of fractional partial differential equations by new transform iterative technique, AIMS Math., 10 (2024), 26649–26670. https://doi.org/10.3934/math.20241296 doi: 10.3934/math.20241296
    [57] H. Jafari, S. Seifi, Solving a system of nonlinear fractional partial differential equations using homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1962–1969. https://doi.org/10.1016/j.cnsns.2008.06.019 doi: 10.1016/j.cnsns.2008.06.019
  • This article has been cited by:

    1. Md Aquib, Slant Submersions in Generalized Sasakian Space Forms and Some Optimal Inequalities, 2025, 14, 2075-1680, 417, 10.3390/axioms14060417
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(661) PDF downloads(158) Cited by(0)

Figures and Tables

Figures(4)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog