In this study, we presented the conformable Laplace transform iterative method to find the approximate solution of the systems of nonlinear temporal-fractional differential equations in the sense of the conformable derivative. The advantage of the suggested approach was to compute the solution without discretization and restrictive assumptions. Three distinct examples were provided to show the applicability and efficacy of the proposed approach. To examine the exact and approximate solutions, we utilized the 2D and 3D graphics. Furthermore, the outcomes produced in this study were consistent with the exact solutions; hence, this strategy efficiently and effectively determined exact and approximate solutions to nonlinear temporal-fractional differential equations.
Citation: Nisar Gul, Saima Noor, Abdulkafi Mohammed Saeed, Musaad S. Aldhabani, Roman Ullah. Analytical solution of the systems of nonlinear fractional partial differential equations using conformable Laplace transform iterative method[J]. AIMS Mathematics, 2025, 10(2): 1945-1966. doi: 10.3934/math.2025091
In this study, we presented the conformable Laplace transform iterative method to find the approximate solution of the systems of nonlinear temporal-fractional differential equations in the sense of the conformable derivative. The advantage of the suggested approach was to compute the solution without discretization and restrictive assumptions. Three distinct examples were provided to show the applicability and efficacy of the proposed approach. To examine the exact and approximate solutions, we utilized the 2D and 3D graphics. Furthermore, the outcomes produced in this study were consistent with the exact solutions; hence, this strategy efficiently and effectively determined exact and approximate solutions to nonlinear temporal-fractional differential equations.
| [1] | M. A. Herzallah, Notes on some fractional calculus operators and their properties, J. Fract. Calc. Appl., 5 (2014), 1–10. |
| [2] |
M. Caputo, Linear models of dissipation whose $Q$ is almost frequency independent-$II$, Geophys. J. Int., 5 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
|
| [3] |
M. M. Al-Sawalha, R. P. Agarwal, R. Shah, O. Y. Ababneh, W. Weera, A reliable way to deal with fractional-order equations that describe the unsteady flow of a polytropic gas, Mathematics, 10 (2022), 2293. https://doi.org/10.3390/math10132293 doi: 10.3390/math10132293
|
| [4] | D. Baleanu, J. A. T. Machado, A. C. Luo, Fractional dynamics and control, Springer, 2012. https://doi.org/10.1007/978-1-4614-0457-6 |
| [5] |
B. Bira, T. Raja Sekhar, D. Zeidan, Exact solutions for some time-fractional evolution equations using Lie group theory, Math. Methods Appl. Sci., 41 (2018), 6717–6725. https://doi.org/10.1002/mma.5186 doi: 10.1002/mma.5186
|
| [6] |
M. Al-Smadi, O. A. Arqub, Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates, Appl. Math. Comput., 342 (2019), 280–294. https://doi.org/10.1016/j.amc.2018.09.020 doi: 10.1016/j.amc.2018.09.020
|
| [7] |
D. Baleanu, A. K. Golmankhaneh, A. K. Golmankhaneh, M. C. Baleanu, Fractional electromagnetic equations using fractional forms, Int. J. Theor. Phys., 48 (2009), 3114–3123. https://doi.org/10.1007/s10773-009-0109-8 doi: 10.1007/s10773-009-0109-8
|
| [8] |
M. Al-Smadi, Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation, Ain Shams Eng. J., 9 (2018), 2517–2525. https://doi.org/10.1016/j.asej.2017.04.006 doi: 10.1016/j.asej.2017.04.006
|
| [9] |
Z. Altawallbeh, M. Al-Smadi, I. Komashynska, A. Ateiwi, Numerical solutions of fractional systems of two-point BVPs by using the iterative reproducing kernel algorithm, Ukr. Math. J., 70 (2018), 687–701. https://doi.org/10.1007/s11253-018-1526-8 doi: 10.1007/s11253-018-1526-8
|
| [10] |
S. Hasan, A. El-Ajou, S. Hadid, M. Al-Smadi, S. Momani, Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system, Chaos Soliton. Fract., 133 (2020), 109624. https://doi.org/10.1016/j.chaos.2020.109624 doi: 10.1016/j.chaos.2020.109624
|
| [11] |
F. Riewe, Mechanics with fractional derivatives, Phys. Rev. E, 55 (1997), 3581. https://doi.org/10.1103/PhysRevE.55.3581 doi: 10.1103/PhysRevE.55.3581
|
| [12] |
N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 62 (2000), 3135. https://doi.org/10.1103/PhysRevE.62.3135 doi: 10.1103/PhysRevE.62.3135
|
| [13] |
S. Noor, A. W. Alrowaily, M. Alqudah, R. Shah, S. A. El-Tantawy, Innovative solutions to the fractional diffusion equation using the Elzaki transform, Math. Comput. Appl., 29 (2024), 75. https://doi.org/10.3390/mca29050075 doi: 10.3390/mca29050075
|
| [14] |
J. Muhammad, N. Gul, R. Ali, Enhanced decision-making with advanced algebraic techniques in complex Fermatean fuzzy sets under confidence levels, Int. J. Knowl. Innov. Stud., 2 (2024), 107–118. https://doi.org/10.56578/ijkis020205 doi: 10.56578/ijkis020205
|
| [15] |
M. Khalid, I. A. Mallah, S. Alha, A. Akgul, Exploring the Elzaki transform: unveiling solutions to reaction-diffusion equations with generalized composite fractional derivatives, Contemp. Math., 5 (2024), 1426–1438. https://doi.org/10.37256/cm.5220244621 doi: 10.37256/cm.5220244621
|
| [16] |
H. Yasmin, A. A. Alderremy, R. Shah, A. Hamid Ganie, S. Aly, Iterative solution of the fractional Wu-Zhang equation under Caputo derivative operator, Front. Phys., 12 (2024), 1333990. https://doi.org/10.3389/fphy.2024.1333990 doi: 10.3389/fphy.2024.1333990
|
| [17] |
Y. Mahatekar, P. S. Scindia, P. Kumar, A new numerical method to solve fractional differential equations in terms of Caputo-Fabrizio derivatives, Phys. Scr., 98 (2023), 024001. https://doi.org/10.1088/1402-4896/acaf1a doi: 10.1088/1402-4896/acaf1a
|
| [18] |
A. Khan, J. F. Gómez-Aguilar, T. S. Khan, H. Khan, Stability analysis and numerical solutions of fractional order HIV/AIDS model, Chaos Soliton. Fract., 122 (2019), 119–128. https://doi.org/10.1016/j.chaos.2019.03.022 doi: 10.1016/j.chaos.2019.03.022
|
| [19] |
A. El-Ajou, O. A. Arqub, Z. A. Zhour, S. Momani, New results on fractional power series: theories and applications, Entropy, 15 (2013), 5305–5323. https://doi.org/10.3390/e15125305 doi: 10.3390/e15125305
|
| [20] |
A. Kilicman, Z. A. A. Al Zhour, Kronecker operational matrices for fractional calculus and some applications, Appl. Math. Comput., 187 (2007), 250–265. https://doi.org/10.1016/j.amc.2006.08.122 doi: 10.1016/j.amc.2006.08.122
|
| [21] |
A. Khan, T. Abdeljawad, J. F. Gómez-Aguilar, H. Khan, Dynamical study of fractional order mutualism parasitism food web module, Chaos Soliton. Fract., 134 (2020), 109685. https://doi.org/10.1016/j.chaos.2020.109685 doi: 10.1016/j.chaos.2020.109685
|
| [22] |
M. I. Liaqat, A. Akgül, A novel approach for solving linear and nonlinear time-fractional Schrödinger equations, Chaos Soliton. Fract., 162 (2022), 112487. https://doi.org/10.1016/j.chaos.2022.112487 doi: 10.1016/j.chaos.2022.112487
|
| [23] |
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
|
| [24] |
E. Balcı, İ. Öztürk, S. Kartal, Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative, Chaos Soliton. Fract., 123 (2019), 43–51. https://doi.org/10.1016/j.chaos.2019.03.032 doi: 10.1016/j.chaos.2019.03.032
|
| [25] |
W. Xie, C. Liu, W. Z. Wu, W. Li, C. Liu, Continuous grey model with conformable fractional derivative, Chaos Soliton. Fract., 139 (2020), 110285. https://doi.org/10.1016/j.chaos.2020.110285 doi: 10.1016/j.chaos.2020.110285
|
| [26] |
C. Ma, M. Jun, Y. Cao, T. Liu, J. Wang, Multistability analysis of a conformable fractional-order chaotic system, Phys. Scr., 95 (2020), 075204. https://doi.org/10.1088/1402-4896/ab8d54 doi: 10.1088/1402-4896/ab8d54
|
| [27] |
H. Tajadodi, A. Khan, J. F. Gómez-Aguilar, H. Khan, Optimal control problems with Atangana-Baleanu fractional derivative, Optim. Contr. Appl. Met., 42 (2021), 96–109. https://doi.org/10.1002/oca.2664 doi: 10.1002/oca.2664
|
| [28] |
J. S. Duan, T. Chaolu, R. Rach, Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach-Adomian-Meyers modified decomposition method, Appl. Math. Comput., 218 (2012), 8370–8392. https://doi.org/10.1016/j.amc.2012.01.063 doi: 10.1016/j.amc.2012.01.063
|
| [29] |
A. Di Matteo, A. Pirrotta, Generalized differential transform method for nonlinear boundary value problem of fractional order, Commun. Nonlinear Sci. Numer. Simul., 29 (2015), 88–101. https://doi.org/10.1016/j.cnsns.2015.04.017 doi: 10.1016/j.cnsns.2015.04.017
|
| [30] |
A. Al-rabtah, V. S. Ertürk, S. Momani, Solutions of a fractional oscillator by using differential transform method, Comput. Math. Appl., 59 (2010), 1356–1362. https://doi.org/10.1016/j.camwa.2009.06.036 doi: 10.1016/j.camwa.2009.06.036
|
| [31] |
S. Momani, S. Abuasad, Application of He's variational iteration method to Helmholtz equation, Chaos Soliton. Fract., 27 (2006), 1119–1123. https://doi.org/10.1016/j.chaos.2005.04.113 doi: 10.1016/j.chaos.2005.04.113
|
| [32] |
O. Abdulaziz, I. Hashim, S. Momani, Solving systems of fractional differential equations by homotopy-perturbation method, Phys. Lett. A, 372 (2008), 451–459. https://doi.org/10.1016/j.physleta.2007.07.059 doi: 10.1016/j.physleta.2007.07.059
|
| [33] |
J. H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114 (2000), 115–123. https://doi.org/10.1016/S0096-3003(99)00104-6 doi: 10.1016/S0096-3003(99)00104-6
|
| [34] |
Y. Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430
|
| [35] |
Y. He, Y. Kai, Wave structures, modulation instability analysis and chaotic behaviors to Kudryashov's equation with third-order dispersion, Nonlinear Dyn., 12 (2024), 10355–10371. https://doi.org/10.1007/s11071-024-09635-3 doi: 10.1007/s11071-024-09635-3
|
| [36] |
J. Xie, Z. Xie, H. Xu, Z. Li, W. Shi, J. Ren, et al., Resonance and attraction domain analysis of asymmetric duffing systems with fractional damping in two degrees of freedom, Chaos Soliton. Fract., 187 (2024), 115440. https://doi.org/10.1016/j.chaos.2024.115440 doi: 10.1016/j.chaos.2024.115440
|
| [37] |
C. Zhu, S. A. Idris, M. E. M. Abdalla, S. Rezapour, S. Shateyi, B. Gunay, Analytical study of nonlinear models using a modified Schrodinger's equation and logarithmic transformation, Results Phys., 55 (2023), 107183. https://doi.org/10.1016/j.rinp.2023.107183 doi: 10.1016/j.rinp.2023.107183
|
| [38] |
S. Guo, A. Das, Cohomology and deformations of generalized reynolds operators on leibniz algebras, Rocky Mountain J. Math., 54 (2024), 161–178. https://doi.org/10.1216/rmj.2024.54.161 doi: 10.1216/rmj.2024.54.161
|
| [39] |
C. Guo, J. Hu, J. Hao, S. Čelikovsky, X. Hu, Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions, Kybernetika, 59 (2023), 342–364. https://doi.org/10.14736/kyb-2023-3-0342 doi: 10.14736/kyb-2023-3-0342
|
| [40] |
A. A. Alderremy, R. Shah, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1944. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944
|
| [41] |
H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation, soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
|
| [42] |
M. M. Al-Sawalha, A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives, AIMS Math., 10 (2022), 18334–18359. https://doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010
|
| [43] |
E. M. Elsayed, R. Shah, K. Nonlaopon, The analysis of the fractional-order Navier-Stokes equations by a novel approach, J. Funct. Spaces, 2022 (2022), 8979447. https://doi.org/10.1155/2022/8979447 doi: 10.1155/2022/8979447
|
| [44] |
M. Naeem, H. Rezazadeh, A. A. Khammash, R. Shah, S. Zaland, Analysis of the fuzzy fractional-order solitary wave solutions for the KdV equation in the sense of Caputo-Fabrizio derivative, J. Math., 2022 (2022), 3688916. https://doi.org/10.1155/2022/3688916 doi: 10.1155/2022/3688916
|
| [45] |
M. Alqhtani, K. M. Saad, R. Shah, W. M. Hamanah, Discovering novel soliton solutions for $(3+ 1)$-modified fractional Zakharov-Kuznetsov equation in electrical engineering through an analytical approach, Opt. Quant. Electron., 55 (2023), 1149. https://doi.org/10.1007/s11082-023-05407-2 doi: 10.1007/s11082-023-05407-2
|
| [46] |
M. Alqhtani, K. M. Saad, R. Shah, W. Weera, W. M. Hamanah, Analysis of the fractional-order local Poisson equation in fractal porous media, Symmetry, 14 (2022), 1323. https://doi.org/10.3390/sym14071323 doi: 10.3390/sym14071323
|
| [47] |
S. A. El-Tantawy, R. T. Matoog, A. W. Alrowaily, S. M. Ismaeel, On the shock wave approximation to fractional generalized Burger-Fisher equations using the residual power series transform method, Phys. Fluids, 36 (2024), 023105. https://doi.org/10.1063/5.0187127 doi: 10.1063/5.0187127
|
| [48] |
H. Yasmin, A. S. Alshehry, A. H. Ganie, A. Shafee, R. Shah, Noise effect on soliton phenomena in fractional stochastic Kraenkel-Manna-Merle system arising in ferromagnetic materials, Sci. Rep., 14 (2024), 1810. https://doi.org/10.1038/s41598-024-52211-3 doi: 10.1038/s41598-024-52211-3
|
| [49] |
S. Noor, W. Albalawi, R. Shah, M. M. Al-Sawalha, S. M. E. Ismaeel, S. A. El-Tantawy, On the approximations to fractional nonlinear damped Burger's-type equations that arise in fluids and plasmas using Aboodh residual power series and Aboodh transform iteration methods, Front. Phys., 12 (2024), 1374481. https://doi.org/10.3389/fphy.2024.1374481 doi: 10.3389/fphy.2024.1374481
|
| [50] |
M. I. Liaqat, E. Okyere, The fractional series solutions for the conformable time-fractional Swift-Hohenberg equation through the conformable Shehu Daftardar-Jafari approach with comparative analysis, J. Math., 2022 (2022), 3295076. https://doi.org/10.1155/2022/3295076 doi: 10.1155/2022/3295076
|
| [51] |
J. Younis, B. Ahmed, M. AlJazzazi, R. Al Hejaj, H. Aydi, Existence and uniqueness study of the conformable Laplace transform, J. Math., 2022 (2022), 4554065. https://doi.org/10.1155/2022/4554065 doi: 10.1155/2022/4554065
|
| [52] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
|
| [53] | Z. Al-Zhour, F. Alrawajeh, N. Al-Mutairi, R. Alkhasawneh, New results on the conformable fractional Sumudu transform: theories and applications, Int. J. Anal. Appl., 17 (2019), 1019–1033. |
| [54] | B. Ahmed, Generalization of fractional Laplace transform for higher order and its application, J. Innov. Appl. Math. Comput. Sci., 1 (2021), 79–92. |
| [55] |
A. Khan, M. I. Liaqat, M. A. Alqudah, T. Abdeljawad, Analysis of the conformable temporal-fractional swift-hohenberg equation using a novel computational technique, Fractals, 31 (2023), 2340050. https://doi.org/10.1142/S0218348X23400509 doi: 10.1142/S0218348X23400509
|
| [56] |
M. Sultana, M. Waqar, A. H. Ali, A. A. Lupas, F. Ghanim, Z. A. Abduljabbar, Numerical investigation of systems of fractional partial differential equations by new transform iterative technique, AIMS Math., 10 (2024), 26649–26670. https://doi.org/10.3934/math.20241296 doi: 10.3934/math.20241296
|
| [57] |
H. Jafari, S. Seifi, Solving a system of nonlinear fractional partial differential equations using homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1962–1969. https://doi.org/10.1016/j.cnsns.2008.06.019 doi: 10.1016/j.cnsns.2008.06.019
|