This paper introduces a new subclass of harmonic functions with a positive real part, denoted by $ HP_q(\beta) $, where $ 0 \leq \beta < 1 $ and $ 0 < q < 1 $. A sufficient coefficient condition is established for functions within this class, which is also necessary when dealing with negative coefficients. In addition, the growth theorem is derived, and the extreme points associated with this subclass are also identified. Finally, the $ q $-integral operator for harmonic functions of the form $ f = h + g $ with a positive real part is presented.
Citation: Khadeejah Rasheed Alhindi. Application of the q-derivative operator to a specialized class of harmonic functions exhibiting positive real part[J]. AIMS Mathematics, 2025, 10(1): 1935-1944. doi: 10.3934/math.2025090
This paper introduces a new subclass of harmonic functions with a positive real part, denoted by $ HP_q(\beta) $, where $ 0 \leq \beta < 1 $ and $ 0 < q < 1 $. A sufficient coefficient condition is established for functions within this class, which is also necessary when dealing with negative coefficients. In addition, the growth theorem is derived, and the extreme points associated with this subclass are also identified. Finally, the $ q $-integral operator for harmonic functions of the form $ f = h + g $ with a positive real part is presented.
| [1] |
M. F. Khan, K. Matarneh, S. Khan, S. Hussain, M. Darus, New class of close-to-convex harmonic functions defined by a fourth-order differential inequality, J. Math., 2022 (2022), 4051867. https://doi.org/10.1155/2022/4051867 doi: 10.1155/2022/4051867
|
| [2] |
A. Alsoboh, A. Amourah, M. Darus, C. A. Rudder, Studying the harmonic functions associated with quantum calculus, Mathematics, 11 (2023), 2220. https://doi.org/10.3390/math11102220 doi: 10.3390/math11102220
|
| [3] |
H. Aldweby, M. Darus, Quasi partial sums of harmonic univalent functions, Rev. Colomb. Mat., 53 (2019), 15–25. https://doi.org/10.15446/recolma.v53n1.81035 doi: 10.15446/recolma.v53n1.81035
|
| [4] |
H. Aldweby, M. Darus, A subclass of harmonic univalent functions associated with the analogue of the Dziok-Srivastava operator, ISRN Math., 2013 (2013), 382312. https://doi.org/10.1155/2013/382312 doi: 10.1155/2013/382312
|
| [5] |
H. Aldweby, M. Darus, On harmonic meromorphic functions associated with basic hypergeometric functions, Sci. World J., 2013 (2013), 164287. https://doi.org/10.1155/2013/164287 doi: 10.1155/2013/164287
|
| [6] |
A. Amourah, I. Aldawish, K. R. Alhindi, B. A. Frasin, An application of Rabotnov functions on certain subclasses of bi-univalent functions, Axioms, 11 (2022), 680. https://doi.org/10.3390/axioms11120680 doi: 10.3390/axioms11120680
|
| [7] | F. H. Jackson, XI.–On q-functions and a certain difference operator, Earth. Env. Sci. T. R. So., 46 (1909), 253–281. |
| [8] | F. H. Jackson, T. Fukuda, O. Dunn, On q-definite integrals, Q. J. Pure Appl. Math., 41 (1910), 193–203. |
| [9] |
H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. A, 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0
|
| [10] |
E. E. Ali, N. Breaz, R. M. El-Ashwah, Subordinations and superordinations studies using $q$-difference operator, AIMS Math., 9 (2024), 18143–18162. https://doi.org/10.3934/math.2024138 doi: 10.3934/math.2024138
|
| [11] |
D. Breaz, G. Murugusundaramoorthy, K. Vijaya, L. I. Cotîrlă, Certain class of bi-univalent functions defined by Sălăgean q-difference operator related with involution numbers, Symmetry, 15 (2023), 1302. https://doi.org/10.3390/sym15071302. doi: 10.3390/sym15071302
|
| [12] |
N. Khan, H. M. Srivastava, A. Rafiq, M. Arif, S. Arjika, Some applications of the q-difference operator involving a family of meromorphic harmonic functions, Adv. Differ. Equ., 2021 (2021), 1–18. https://doi.org/10.1186/s13662-021-03325-x doi: 10.1186/s13662-021-03325-x
|
| [13] |
M. F. Khan, I. Al-Shbeil, N. Aloraini, N. Khan, S. Khan, Applications of symmetric quantum calculus to the class of harmonic functions, Symmetry, 14 (2022), 2188. https://doi.org/10.3390/sym14102188. doi: 10.3390/sym14102188
|
| [14] |
C. Zhang, S. Khan, A. Hussain, N. Khan, S. Hussain, N. Khan, Applications of q-difference symmetric operator in harmonic univalent functions, AIMS Math., 7 (2021), 667–680. https://doi.org/10.3934/math.2022042 doi: 10.3934/math.2022042
|
| [15] | S. Elhaddad, H. Aldweby, M. Darus, Some properties on a class of harmonic univalent functions defined by q-analogue of Ruscheweyh operator, J. Math. Anal., 9 (2018), 28–35. |
| [16] | S. Elhaddad, H. Aldweby, M. Darus, On a subclass of harmonic univalent functions involving a new operator containing q-Mittag-Leffler function, Int. J. Math. Comput. Sci., 14 (2019), 833–847. Available from: http://ijmcs.future-in-tech.net. |
| [17] |
E. A. Ekram, G. Oros, R. El-Ashwah, A. M. Albalahi, Applications of fuzzy differential subordination theory on analytic $p$-valent functions connected with $q$-calculus operator, AIMS Math., 9 (2024), 21239–21254. https://doi.org/10.3934/math.20241031 doi: 10.3934/math.20241031
|
| [18] |
M. Arif, O. Barkub, H. M. Srivastava, S. Abdullah, S. A. Khan, Some Janowski-type harmonic q-starlike functions associated with symmetrical points, Mathematics, 8 (2021), 629. https://doi.org/10.3390/math8040629 doi: 10.3390/math8040629
|
| [19] |
B. Khan, H. M. Srivastava, M. Tahir, M. Darus, Q. Z. Ahmad, N. Khan, Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions, AIMS Math., 6 (2021), 1024–1039. https://doi.org/10.3934/math.2021061 doi: 10.3934/math.2021061
|
| [20] |
K. R. Alhindi, Convex families of q-derivative meromorphic functions involving the polylogarithm function, Symmetry, 15 (2023), 1388. https://doi.org/10.3390/sym15071388 doi: 10.3390/sym15071388
|
| [21] |
E. E. Ali, R. M. El-Ashwah, A. M. Albalahi, R. Sidaoui, A. Moumen, Inclusion properties for analytic functions of q-analogue multiplier-Ruscheweyh operator, AIMS Math., 9 (2024), 6772–6783. https://doi.org/10.3934/math.2024330 doi: 10.3934/math.2024330
|
| [22] |
K. R. Alhindi, K. M. Alshammari, H. A. Aldweby, Classes of analytic functions involving the q-Ruschweyh operator and q-Bernardi operator, AIMS Math., 9 (2024), 33301–33313. https://doi.org/10.3934/math.20241589 doi: 10.3934/math.20241589
|
| [23] | Z. J. Jakubowski, W. Majchrzak, K. Skalska, Harmonic mappings with a positive real part, Mater. XIV Konferencji z Teorii Zagadnien Ekstremalnych, 1993, 17–24. |
| [24] | T. M. Rassias, S. Yalçin, M. Öztürk, M. Yamankaradeniz, On some subclasses of harmonic functions, Funct. Equ. Inequal., 2000,325–331. |
| [25] | M. Öztürk, S. Yalçin, M. Yamankaradeniz, On harmonic functions constructed by the Hadamard product, J. Ineq. Pure Appl. Math., 3 (2002). Available from: http://jipam.vu.edu.au/. |