Research article Topical Sections

DDT Theorem over ideal in quadratic field

  • Published: 05 February 2025
  • MSC : 11M06, 111N99, 11R04

  • Let $ K $ be a quadratic field and $ \mathfrak{a} $ be a fixed integral ideal of $ O_K $. In this paper, we investigate the distribution of ideals that divide $ \mathfrak{a} $ using the Selberg-Delange method. This is a natural variation of a result studied by Deshouillers, Dress, and Tenenbaum (often referred to as the DDT Theorem), and we find that this distribution converges to the arcsine distribution.

    Citation: Zhishan Yang, Zongqi Yu. DDT Theorem over ideal in quadratic field[J]. AIMS Mathematics, 2025, 10(1): 1921-1934. doi: 10.3934/math.2025089

    Related Papers:

  • Let $ K $ be a quadratic field and $ \mathfrak{a} $ be a fixed integral ideal of $ O_K $. In this paper, we investigate the distribution of ideals that divide $ \mathfrak{a} $ using the Selberg-Delange method. This is a natural variation of a result studied by Deshouillers, Dress, and Tenenbaum (often referred to as the DDT Theorem), and we find that this distribution converges to the arcsine distribution.



    加载中


    [1] Z. Cui, J. Wu, The Selberg-Delange method in short intervals with an application, Acta Arith., 163 (2014), 247–260. https://doi.org/10.4064/aa163-3-4 doi: 10.4064/aa163-3-4
    [2] H. Delange, Sur des formules dues à Atle Selberg, Bull. Sci. Math., 83 (1959), 101–111.
    [3] H. Delange, Sur les formules de Atle Selberg, Acta Arith., 19 (1971), 105–146. https://doi.org/10.4064/AA-19-2-105-146 doi: 10.4064/AA-19-2-105-146
    [4] B. Feng, J. Wu, The arcsine law on divisors in arithmetic progressions modulo prime powers, Acta Math. Hungar., 163 (2021), 392–406. https://doi.org/10.1007/s10474-020-01105-7 doi: 10.1007/s10474-020-01105-7
    [5] G. Hanrot, G. Tenenbaum, J. Wu, Moyennes de certaines fonctions arithmetiques sur les entiers friables, 2, Proc. Lond. Math. Soc., 96 (2008), 107–135.
    [6] M. Huxley, On the difference between consecutive primes, Invent. Math., 15 (1971), 164–170. https://doi.org/10.1007/BF01418933
    [7] Y. Lau, Summatory formula of the convolution of two arithmetical functions, Mh. Math., 136 (2002), 35–45. https://doi.org/10.1007/s006050200032 doi: 10.1007/s006050200032
    [8] Y. Lau, J. Wu, Sums of some multiplicative functions over a special set of integers, Acta Arith., 101 (2002), 365–394. https://doi.org/10.4064/aa101-4-5 doi: 10.4064/aa101-4-5
    [9] C. D. Pan, C. B. Pan, Algebraic number theory (Chinese), Shandong: Shandong University Press, 2011.
    [10] A. Selberg, Note on a paper by L. G. Sathe, Journal of the Indian Mathematical Society, 18 (1954), 83–87. https://doi.org/10.18311/jims/1954/17018 doi: 10.18311/jims/1954/17018
    [11] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge: Cambridge University Press, 1995.
    [12] J. Wu, Q. Wu, Mean values for a class of arithmetic functions in short intervals, Math. Nachr., 293 (2020), 178–202. https://doi.org/10.1002/mana.201800276 doi: 10.1002/mana.201800276
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(855) PDF downloads(30) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog