Let $ K $ be a quadratic field and $ \mathfrak{a} $ be a fixed integral ideal of $ O_K $. In this paper, we investigate the distribution of ideals that divide $ \mathfrak{a} $ using the Selberg-Delange method. This is a natural variation of a result studied by Deshouillers, Dress, and Tenenbaum (often referred to as the DDT Theorem), and we find that this distribution converges to the arcsine distribution.
Citation: Zhishan Yang, Zongqi Yu. DDT Theorem over ideal in quadratic field[J]. AIMS Mathematics, 2025, 10(1): 1921-1934. doi: 10.3934/math.2025089
Let $ K $ be a quadratic field and $ \mathfrak{a} $ be a fixed integral ideal of $ O_K $. In this paper, we investigate the distribution of ideals that divide $ \mathfrak{a} $ using the Selberg-Delange method. This is a natural variation of a result studied by Deshouillers, Dress, and Tenenbaum (often referred to as the DDT Theorem), and we find that this distribution converges to the arcsine distribution.
| [1] |
Z. Cui, J. Wu, The Selberg-Delange method in short intervals with an application, Acta Arith., 163 (2014), 247–260. https://doi.org/10.4064/aa163-3-4 doi: 10.4064/aa163-3-4
|
| [2] | H. Delange, Sur des formules dues à Atle Selberg, Bull. Sci. Math., 83 (1959), 101–111. |
| [3] |
H. Delange, Sur les formules de Atle Selberg, Acta Arith., 19 (1971), 105–146. https://doi.org/10.4064/AA-19-2-105-146 doi: 10.4064/AA-19-2-105-146
|
| [4] |
B. Feng, J. Wu, The arcsine law on divisors in arithmetic progressions modulo prime powers, Acta Math. Hungar., 163 (2021), 392–406. https://doi.org/10.1007/s10474-020-01105-7 doi: 10.1007/s10474-020-01105-7
|
| [5] | G. Hanrot, G. Tenenbaum, J. Wu, Moyennes de certaines fonctions arithmetiques sur les entiers friables, 2, Proc. Lond. Math. Soc., 96 (2008), 107–135. |
| [6] | M. Huxley, On the difference between consecutive primes, Invent. Math., 15 (1971), 164–170. https://doi.org/10.1007/BF01418933 |
| [7] |
Y. Lau, Summatory formula of the convolution of two arithmetical functions, Mh. Math., 136 (2002), 35–45. https://doi.org/10.1007/s006050200032 doi: 10.1007/s006050200032
|
| [8] |
Y. Lau, J. Wu, Sums of some multiplicative functions over a special set of integers, Acta Arith., 101 (2002), 365–394. https://doi.org/10.4064/aa101-4-5 doi: 10.4064/aa101-4-5
|
| [9] | C. D. Pan, C. B. Pan, Algebraic number theory (Chinese), Shandong: Shandong University Press, 2011. |
| [10] |
A. Selberg, Note on a paper by L. G. Sathe, Journal of the Indian Mathematical Society, 18 (1954), 83–87. https://doi.org/10.18311/jims/1954/17018 doi: 10.18311/jims/1954/17018
|
| [11] | G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge: Cambridge University Press, 1995. |
| [12] |
J. Wu, Q. Wu, Mean values for a class of arithmetic functions in short intervals, Math. Nachr., 293 (2020), 178–202. https://doi.org/10.1002/mana.201800276 doi: 10.1002/mana.201800276
|