Processing math: 100%
Research article

Study of numerical treatment of functional first-kind Volterra integral equations

  • Received: 26 March 2024 Revised: 27 April 2024 Accepted: 30 April 2024 Published: 21 May 2024
  • MSC : 45L05, 65R20

  • First-kind Volterra integral equations have ill-posed nature in comparison to the second-kind of these equations such that a measure of ill-posedness can be described by ν-smoothing of the integral operator. A comprehensive study of the convergence and super-convergence properties of the piecewise polynomial collocation method for the second-kind Volterra integral equations (VIEs) with constant delay has been given in [1]. However, convergence analysis of the collocation method for first-kind delay VIEs appears to be a research problem. Here, we investigated the convergence of the collocation solution as a research problem for a first-kind VIE with constant delay. Three test problems have been fairly well-studied for the sake of verifying theoretical achievements in practice.

    Citation: Hassanein Falah, Parviz Darania, Saeed Pishbin. Study of numerical treatment of functional first-kind Volterra integral equations[J]. AIMS Mathematics, 2024, 9(7): 17414-17429. doi: 10.3934/math.2024846

    Related Papers:

    [1] Yumei Chen, Jiajie Zhang, Chao Pan . Numerical approximation of a variable-order time fractional advection-reaction-diffusion model via shifted Gegenbauer polynomials. AIMS Mathematics, 2022, 7(8): 15612-15632. doi: 10.3934/math.2022855
    [2] Najat Almutairi, Sayed Saber . Chaos control and numerical solution of time-varying fractional Newton-Leipnik system using fractional Atangana-Baleanu derivatives. AIMS Mathematics, 2023, 8(11): 25863-25887. doi: 10.3934/math.20231319
    [3] Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046
    [4] Fatmawati, Muhammad Altaf Khan, Ebenezer Bonyah, Zakia Hammouch, Endrik Mifta Shaiful . A mathematical model of tuberculosis (TB) transmission with children and adults groups: A fractional model. AIMS Mathematics, 2020, 5(4): 2813-2842. doi: 10.3934/math.2020181
    [5] Ahmed Abouelregal, Meshari Alesemi, Husam Alfadil . Thermoelastic reactions in a long and thin flexible viscoelastic cylinder due to non-uniform heat flow under the non-Fourier model with fractional derivative of two different orders. AIMS Mathematics, 2022, 7(5): 8510-8533. doi: 10.3934/math.2022474
    [6] Miguel Vivas-Cortez, Muhammad Uzair Awan, Sehrish Rafique, Muhammad Zakria Javed, Artion Kashuri . Some novel inequalities involving Atangana-Baleanu fractional integral operators and applications. AIMS Mathematics, 2022, 7(7): 12203-12226. doi: 10.3934/math.2022678
    [7] Muhammad Altaf Khan, Muhammad Ismail, Saif Ullah, Muhammad Farhan . Fractional order SIR model with generalized incidence rate. AIMS Mathematics, 2020, 5(3): 1856-1880. doi: 10.3934/math.2020124
    [8] Changdev P. Jadhav, Tanisha B. Dale, Vaijanath L. Chinchane, Asha B. Nale, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On solutions of fractional differential equations for the mechanical oscillations by using the Laplace transform. AIMS Mathematics, 2024, 9(11): 32629-32645. doi: 10.3934/math.20241562
    [9] Rahat Zarin, Abdur Raouf, Amir Khan, Aeshah A. Raezah, Usa Wannasingha Humphries . Computational modeling of financial crime population dynamics under different fractional operators. AIMS Mathematics, 2023, 8(9): 20755-20789. doi: 10.3934/math.20231058
    [10] Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876
  • First-kind Volterra integral equations have ill-posed nature in comparison to the second-kind of these equations such that a measure of ill-posedness can be described by ν-smoothing of the integral operator. A comprehensive study of the convergence and super-convergence properties of the piecewise polynomial collocation method for the second-kind Volterra integral equations (VIEs) with constant delay has been given in [1]. However, convergence analysis of the collocation method for first-kind delay VIEs appears to be a research problem. Here, we investigated the convergence of the collocation solution as a research problem for a first-kind VIE with constant delay. Three test problems have been fairly well-studied for the sake of verifying theoretical achievements in practice.



    We are concerned with Atangana-Baleanu variable order fractional problems:

    {Lu(x)=ABCDα(x)u(x)+a(x)u(x)=f(x,u),x[0,1],B(u)=0, (1.1)

    where 0<α(x)<1, ABCDα(x)(x) denotes the α(x) order Atangana-Baleanu Caputo derivatives, B(u) is the linear boundary condition, which includes initial value condition, periodic condition, final value condition and so on.

    The α(x)(0<α(x)<1) order Atangana-Baleanu Caputo derivatives of a function u(x) is firstly defined by Atangana and Baleanu [1]

    ABCDα(x)u(x)=M(α(x))1α(x)x0Eα(x)(α(x)1α(x)(xt)α(x))u(t)dt, (1.2)

    where Eα(x)(x) is the Mittag-Leffler function.

    Fractional order differential equations (FDEs) have important applications in several fields such as materials, chemistry transmission dynamics, optimal control and engineering [2,3,4,5,6]. In fact, the classical fractional derivatives are defined with weak singular kernels and the solutions of FDEs inherit the weak singularity. The Mittag-Leffler (ML) function was firstly introduced by Magnus Gösta Mittag-Leffler. Recently, it is found that this function has close relation to FDEs arising in real applications.

    Atangana and Baleanu [1] introduced a new fractional derivative by using the ML function, which is nonlocal and nonsingular. The new fractional derivatives is very important and have been applied to several different fields (see e.g. [7,8,9]). Up to now, several numerical algorithms have been developed for solving Atangana-Baleanu FDEs. Akgül et al. [10,11,12] proposed effective difference techniques and kernels based approaches for Atangana-Baleanu FDEs. On the basis of the Sobolev kernel functions, Arqub et al. [13,14,15,16,17] proposed the numerical techniques for Atangana-Baleanu fractional Riccati and Bernoulli equations, Bagley-Torvik and Painlev equations, Volterra and Fredholm integro-differential equations. Yadav et al. [18] introduced the numerical algorithms and application of Atangana-Baleanu FDEs. El-Ajou, Hadid, Al-Smadi et al. [19] developed approximated technique for solutions of population dynamics of Atangana-Baleanu fractional order.

    Reproducing kernel Hilbert space (RKHS) is ideal for function approximation and estimate of fractional derivatives. In recent years, reproducing kernel functions (RKF) theory have been employed to solve linear and nonlinear fractional order problems, singularly perturbed problems, singular integral equations, fuzzy differential equations, and so on (see, e.g. [10,11,12,13,14,15,16,17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]). However, there exists little discussion on numerical schemes for solving variable order Atangana-Baleanu FDEs.

    In this paper, by using polynomials RKF, we will present a new collocation method for solving variable order Atangana-Baleanu FDEs.

    This work is organized as follows. We summarize fractional derivatives and RKHS theory in Section 2. In Section 3, we develop RKF based collocation technique for Atangana-Baleanu variable order FDEs. Numerical experiments are provided in Section 4. Concluding remarks are included in the last section.

    Definition 2.1. Let H be a Hilbert function space defined on E. The function K:E×ER is known as an RKF of space H if

    (1)K(,t)HforalltE,(2)w(t)=(w(),K(,t)),foralltEandallwH.

    If there exists a RKF in a Hilbert space, then the space is a RKHS.

    Definition 2.2. Symmetric function K:E×ER is known as a positive definite kernel (PDK) if ni,j=1cicjK(xi,xj)0 for any nN, x1,x2,,xnE,c1,c2,,cnR.

    Theorem 2.1. [36] The RKF of an RKHS is positive definite. Besides, every PDK can define a unique RKHS, of which it is the RKF.

    Definition 2.3. Let q>0. The one parameter Mittag-Leffler function of order q is defined by

    Eq(z)=j=0zjΓ(jq+1). (2.1)

    Definition 2.4. Let q1,q2>0. The two-parameter Mittag-Leffler function is defined by

    Eq1,q2(z)=j=0zjΓ(jq1+q2). (2.2)

    For the domains of convergence of the Mittag-Leffler functions, please refer to the following theorem.

    Theorem 2.2. [37] For q1,q2>0, the two-parameter Mittag-Leffler function Eq1,q2(z) is convergent for all zC.

    Definition 2.5. The Sobolev space H1(0,T) is defined as follows

    H1(0,T)={u|uL2(0,T),uL2(0,T)}.

    Definition 2.6. The α(0,1) order Atangana- Baleanu fractional derivative of a function uH1(a,b) is defined

    ABCDαu(x)=M(α)1αx0Eα(α1α(xt)α)u(t)dt, (2.3)

    where M(α) is the normalization term satisfying M(0)=M(1)=1.

    Theorem 2.3. [38] The function k(x,y)=(xy+c)m for c>0,mN is a PDK.

    According to Theorem 2.1, there exists an associated RKHS Qm with k as an RKF.

    To solve (1.1), we will construct the RKF which satisfies the homogenous boundary condition.

    Definition 3.1.

    Qm,0={w(t)w(t)Qm,B(w)=0}.

    Theorem 3.1. The space Qm,0 is an RKHS and its RKF is expressed by

    K(x,y)=k(x,y)Bxk(x,y)Byk(x,y)BxByk(x,y).

    Proof. If Byk(x,y)=0 or Bxk(x,y)=0, then

    K(x,y)=k(x,y).

    If Byk(x,y)0, then

    BxK(x,y)=Bxk(x,y)Bxk(x,y)BxByk(x,y)BxByk(x,y),=0,

    and naturally K(x,y)Qm,0.

    For all u(y)Qm,0, we have u(y)Qm and Byu(y)=0.

    We have

    (u(y),K(x,y))=(u(y),k(x,y))(u(y),Bxk(x,y)Byk(x,y)BxByk(x,y)=u(x)Byk(x,y)BxByk(x,y)(u(y),Bxk(x,y))=u(x)Byk(x,y)BxByk(x,y)Bx(u(y),k(x,y))=u(x)Byk(x,y)BxByk(x,y)Bxu(x)=u(x)0=0.

    Thus, K(x,y) is the RKF of space Qm,0 and the proof is complete.

    Suppose that L:Qm,0H1 is a bounded linear operator. It is easy to proved that its inverse operator L1 is also bounded since both Qm,0 and H1 are Banach spaces.

    Choose N distinct scattered points in [0,1], such as {x1,x2,,xN}. Put ψi(x)=K(x,xi),i=1,2,,N. By using RKF basis, the RKF collocation solution uN(x) for (1.1) can be written as follows

    uN(x)=Ni=1ciψi(x), (3.1)

    where {ci}Ni=1 are undetermined constants.

    Collocating (1.1) at N nodes x1,x2,,xN provides N equations:

    LuN(xk)=Ni=1ciLψi(xk)=f(xk,uN(xk)),k=1,2,,N. (3.2)

    System (3.3) of equations is simplified to the matrix form:

    Ac=f, (3.3)

    where Aik=Lxψk(x)|x=xi,i,k=1,2,,N, f=(f(x1,uN(x1)),f(x2,uN(x2)),,f(xN,uN(xN)).

    Theorem 3.2. If γ>0, then

    ABCDα(x)xγ=M(α(x))1α(x)Γ(γ+1)xγEα(x),γ+1(α(x)1α(x)xα(x)),

    and therefore matrix A can be computed exactly.

    Proof. It is noticed that

    ABCDα(x)xγ=M(α(x))1α(x)x0Eα(x)(α(x)1α(x)(xt)α(x))γtγ1dt=M(α(x))1α(x)x0j=0(α(x)1α(x)(xt)α(x))jΓ(jα(x)+1)γtγ1dt=M(α(x))1α(x)γj=0(α(x)1α(x))jΓ(jα(x)+1)x0(xt)α(x)tγ1dt=M(α(x))1α(x)γj=0(α(x)1α(x))jΓ(jα(x)+1)Γ(jα(x)+1)Γ(γ)Γ(jα(x)+γ+1)xjα(x)+γ=M(α(x))1α(x)Γ(γ+1)xγj=0(α(x)1α(x)xα(x))jΓ(jα(x)+γ+1)=M(α(x))1α(x)Γ(γ+1)xγEα(x),γ+1(α(x)1α(x)xα(x)).

    Since RKF K(x,y) is a polynomials, matrix A in (3.3) can be calculated exactly. The proof is complete.

    If f(x,u) is linear, then (3.3) is a system of linear equations and it is convenient to determine the value of the unknowns {ci}Ni=1. If f(x,u) is nonlinear, then (3.3) is a system of nonlinear equations, we solve it by using the tool "FindRoot" in soft Mathematica 11.0.

    The residual function is defined as

    RN(x)=LuN(x)f(x,uN(x)).

    Theorem 3.3. If a(x) and f(x,u)C4[0,1], then

    RN(x)maxx[x1,xN]RN(x)∣≤ch4,

    where c>0 is a real number, h=max1iNxi+1xi.

    Proof. For the proof, please refer to [22].

    Three experiments are illustrated in this section to show the applicability and effectiveness of the mentioned approach. We take M(α)=1 in the following experiments.

    Problem 4.1

    Solve fractional linear initial value problems (IVPs) as follows:

    {ABCDαu(x)+exu(x)=f(x),x(0,1],u(0)=1,

    where α(x)=0.5x+0.1, f(x)=ex(x2+x3+1)+M(α(x))1α(x)2x2Eα(x),3(α(x)1α(x)xα(x))++M(α(x))1α(x)6x3Eα(x),4(α(x)1α(x)xα(x)). The true solution of this equation is u(x)=x2+x3+1.

    Selecting m=8,N=8, xi=iN,i=1,2,,N, we apply our new method to Problem 4.1. The obtained numerical results are shown in Tables 1. The Mathematica codes for Problem 4.1 is provided as follows:

    tru[x_]=x2+x3+1;p[x_]=Ex;α[x_]=0.5x+0.1;B[x_]=1;a[x_]=1Gamma[2α[x]];K[x_,y_]=(xy+1)8;R[x_,y_]=K[x,y]K[x,0]K[0,y]/K[0,0];w[x_,y_]=p[x]R[x,y];v[x_,d_]=B[α[x]]Gamma[d+1]xdMittagLefflerE[2,d+1,α[x]xα[x]/(1α[x])];fu[x_,y_]=8yv[x,1]+28y2v[x,2]+56y3v[x,3]+70y4v[x,4]+56y5v[x,5]+28y6v[x,6]+8y7v[x,7]+y8v[x,8];m=8;xx=Table[0,{i,1,m}];A=Table[0,{i,1,m},{j,1,m}];For[i=1,im,i++,xx[[i]]=i/m];For[i=1,im,i++,For[j=1,jm,j++,A[[i,j]]=w[xx[[i]],xx[[j]]]+fu[xx[[i]]+xx[[j]]]]];v[x_]=tru[0];f0[x]=p[x]tru[x]+v[x,2]+v[x,3];f[x]=f0[x]p[x]v[x];b=Table[f[xx[[k]]],{i,1,m}];c=LinearSolve[A,b];u[x_]=mi=1c[[i]]R[x,xx[[i]]];u[x_]=u[x]+v[x];
    Table 1.  Errors of numerical results for Problem 4.1.
    Nodes x Exact solution Absolute error Relative error
    0.10 1.011 1.88×1013 1.86×1013
    0.20 1.048 2.57×1013 2.45×1013
    0.30 1.117 9.50×1014 8.50×1014
    0.40 1.224 6.35×1013 5.19×1013
    0.50 1.375 0 0
    0.60 1.576 2.17×1014 1.38×1014
    0.70 1.833 7.65×1013 4.17×1013
    0.80 2.152 8.65×1013 4.02×1013
    0.90 2.539 2.40×1013 9.46×1014
    1.00 3.000 9.09×1013 3.03×1013

     | Show Table
    DownLoad: CSV

    Problem 4.2

    Solve the variable order fractional linear terminal value problems

    {ABCDαu(x)+2u(x)=f(x),x[0,1),u(1)=3,

    where α(x)=sinx, f(x)=2(x4+2)+M(α(x))1α(x)24x4Eα(x),5(α(x)1α(x)xα(x)). The exact solution is u(x)=x4+2.

    Selecting m=8,N=8, xi=i1N,i=1,2,,N, the obtained absolute and relative errors of numerical results using our method are listed in Tables 2.

    Table 2.  Errors of numerical results for Problem 4.2.
    Nodes x Exact solution Absolute error Relative error
    0.00 2.0000 2.75×1010 1.37×1010
    0.10 2.0001 1.02×1010 5.14×1011
    0.20 2.0016 9.96×1011 4.97×1011
    0.30 2.0081 1.08×1010 5.39×1011
    0.40 2.0256 1.12×1010 5.56×1011
    0.50 2.0625 1.10×1010 5.37×1011
    0.60 2.1296 1.05×1010 4.96×1011
    0.70 2.2401 1.08×1010 4.83×1011
    0.80 2.4096 9.36×1011 3.88×1011
    0.90 2.6561 4.38×1011 1.64×1011

     | Show Table
    DownLoad: CSV

    Problem 4.3

    We apply our method to the nonlinear variable order fractional IVPs as follows

    {ABCDαu(x)+sinhxu(x)+sin(u)=f(x),x(0,1],u(0)=1,

    where α(x)=0.5x+0.1, f(x)=sinhx(x+x3+1)+M(α(x))1α(x)xEα(x),2(α(x)1α(x)xα(x))+M(α(x))1α(x)6x3Eα(x),4(α(x)1α(x)xα(x)). Its true solution is u(x)=x+x3+1.

    Choosing m=8,N=8, xi=iN,i=1,2,,N, we plot the absolute and relative errors in Figure 1.

    Figure 1.  Absolute errors (left) and relative errors (right) for Problem 4.3.

    In this work, a new RKF based collocation technique is developed for Atangana-Baleanu variable order fractional problems. The proposed scheme is meshless and therefore it does not require any background meshes. From the numerical results, it is found that the accuracy of obtained approximate solutions is high and can reach to O(1010). Also, for nonlinear fractional problems, our method can yield highly accurate numerical solutions. Hence, our new method is very effective and easy to implement for the considered problems.

    The work was supported by the National Natural Science Foundation of China (No.11801044, No.11326237).

    All authors declare no conflicts of interest in this paper.



    [1] H. Brunner, Collocation methods for Volterra integral and related functional equations, Cambridge: Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511543234
    [2] K. Ikeda, Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system, Opt. Commun., 30 (1979), 257–261. https://doi.org/10.1016/0030-4018(79)90090-7 doi: 10.1016/0030-4018(79)90090-7
    [3] K. Ikeda, H. Daido, O. Akimoto, Optical turbulence: Chaotic behavior of transmitted light from a ring cavity, Phys. Rev. Lett., 45 (1980), 709. https://doi.org/10.1103/PhysRevLett.45.709 doi: 10.1103/PhysRevLett.45.709
    [4] M. Peil, M. Jacquot, Y. K. Chembo, L. Larger, T. Erneux, Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators, Phys. Rev. E., 79 (2009), 026208. https://doi.org/10.1103/PhysRevE.79.026208 doi: 10.1103/PhysRevE.79.026208
    [5] L. Weicker, G. Friart, T. Erneux, Two distinct bifurcation routes for delayed optoelectronic oscillators, Phys. Rev. E., 96 (2017), 032206. https://doi.org/10.1103/PhysRevE.96.032206 doi: 10.1103/PhysRevE.96.032206
    [6] J. Belair, Population models with state-dependent delays, In: Mathematical population dynamics, New York: Marcel Dekker, 1991,165–176. https://doi.org/10.1201/9781003072706-13
    [7] K. L. Cooke, An epidemic equation with immigration, Math. Biosci., 29 (1976), 135–158. https://doi.org/10.1016/0025-5564(76)90033-X doi: 10.1016/0025-5564(76)90033-X
    [8] H. W. Hethcote, P. van den Driesschew, Two SIS epidemiologic models with delays, J. Math. Biol., 40 (2000), 3–26. https://doi.org/10.1007/s002850050003 doi: 10.1007/s002850050003
    [9] A. Bellour, M. Bousselsal, A Taylor collocation method for solving delay integral equations, Numer. Algor., 65 (2014), 843–857. https://doi.org/10.1007/s11075-013-9717-8 doi: 10.1007/s11075-013-9717-8
    [10] H. Brunner, Iterated collocation methods for Volterra integral equations with delay arguments, Math. Comp., 62 (1994), 581–599. https://doi.org/10.2307/2153525 doi: 10.2307/2153525
    [11] H. Brunner, Y. Yatsenko, Spline collocation methods for nonlinear Volterra integral equations with unknown delay, J. Comput. Appl. Math., 71 (1996), 67–81. https://doi.org/10.1016/0377-0427(95)00228-6 doi: 10.1016/0377-0427(95)00228-6
    [12] F. Calio, E. Marchetti, R. Pavani, About the deficient spline collocation method for particular differential and integral equations with delay, Rend. Sem. Mat. Univ. Pol. Torino, 61 (2003), 287–300.
    [13] I. Ali, H. Brunner, T. Tang, Spectral methods for pantograph-type differential and integral equations with multiple delays, Front. Math. China, 4 (2009), 49–61. https://doi.org/10.1007/s11464-009-0010-z doi: 10.1007/s11464-009-0010-z
    [14] V. Horvat, On collocation methods for Volterra integral equations with delay arguments, Math. Commun., 4 (1999), 93–109.
    [15] Q. Y. Hu, Multilevel correction for discrete collocation solutions of Volterra integral equations with delay arguments, Appl. Numer. Math., 31 (1999), 159–171. https://doi.org/10.1016/S0168-9274(98)00127-5 doi: 10.1016/S0168-9274(98)00127-5
    [16] M. Khasi, F. Ghoreishi, M. Hadizadeh, Numerical analysis of a high order method for state-dependent delay integral equations, Numer. Algor., 66 (2014), 177–201. https://doi.org/10.1007/s11075-013-9729-4 doi: 10.1007/s11075-013-9729-4
    [17] P. K. Lamm, Full convergence of sequential local regularization methods for Volterra inverse problems, Inverse Probl., 21 (2005), 785. https://doi.org/10.1088/0266-5611/21/3/001 doi: 10.1088/0266-5611/21/3/001
    [18] T. T. Zhang, H. Liang, Multistep collocation approximations to solutions of first-kind Volterra integral equations, Appl. Numer. Math., 130 (2018), 171–183. https://doi.org/10.1016/j.apnum.2018.04.005 doi: 10.1016/j.apnum.2018.04.005
    [19] S. N. Elaydi, An introduction to difference equations, New York: Springer, 2005. https://doi.org/10.1007/0-387-27602-5
    [20] E. Hairer, C. Lubich, S. P. Nørset, Order of convergence of one-step methods for Volterra integral equations of the second kind, SIAM J. Numer. Anal., 20 (1983), 569–579. https://doi.org/10.1137/0720037 doi: 10.1137/0720037
  • This article has been cited by:

    1. Huafeng Xia, Yan Ji, Yongqing Yang, Feng Ding, Tasawar Hayat, Improved least‐squares identification for multiple‐output non‐linear stochastic systems, 2020, 14, 1751-8652, 964, 10.1049/iet-cta.2019.0915
    2. Shujun Fan, Feng Ding, Tasawar Hayat, Recursive Identification of Errors-in-Variables Systems Based on the Correlation Analysis, 2020, 39, 0278-081X, 5951, 10.1007/s00034-020-01441-7
    3. Xiuying Li, Boying Wu, Reproducing kernel functions-based meshless method for variable order fractional advection-diffusion-reaction equations, 2020, 59, 11100168, 3181, 10.1016/j.aej.2020.07.034
    4. Longjin Wang, Yan Ji, Hualin Yang, Ling Xu, Decomposition‐based multiinnovation gradient identification algorithms for a special bilinear system based on its input‐output representation, 2020, 30, 1049-8923, 3607, 10.1002/rnc.4959
    5. Fazhan Geng, Xinyuan Wu, Kernel functions‐based approach for distributed order diffusion equations, 2021, 37, 0749-159X, 1269, 10.1002/num.22578
    6. F. Z. Geng, Piecewise reproducing kernel-based symmetric collocation approach for linear stationary singularly perturbed problems, 2020, 5, 2473-6988, 6020, 10.3934/math.2020385
    7. Yan Ji, Chen Zhang, Zhen Kang, Tao Yu, Parameter estimation for block‐oriented nonlinear systems using the key term separation, 2020, 30, 1049-8923, 3727, 10.1002/rnc.4961
    8. Junaid Akhtar, Aly R. Seadawy, Kalim U. Tariq, Dumitru Baleanu, On some novel exact solutions to the time fractional (2 + 1) dimensional Konopelchenko–Dubrovsky system arising in physical science, 2020, 18, 2391-5471, 806, 10.1515/phys-2020-0188
    9. Ting Cui, Feiyan Chen, Feng Ding, Jie Sheng, Combined estimation of the parameters and states for a multivariable state‐space system in presence of colored noise, 2020, 34, 0890-6327, 590, 10.1002/acs.3101
    10. Chang Phang, Yoke Teng Toh, Farah Suraya Md Nasrudin, An Operational Matrix Method Based on Poly-Bernoulli Polynomials for Solving Fractional Delay Differential Equations, 2020, 8, 2079-3197, 82, 10.3390/computation8030082
    11. Mohammed K. A. Kaabar, Ahmed Refice, Mohammed Said Souid, Francisco Martínez, Sina Etemad, Zailan Siri, Shahram Rezapour, Existence and U-H-R Stability of Solutions to the Implicit Nonlinear FBVP in the Variable Order Settings, 2021, 9, 2227-7390, 1693, 10.3390/math9141693
    12. Yumei Chen, Jiajie Zhang, Chao Pan, Numerical approximation of a variable-order time fractional advection-reaction-diffusion model via shifted Gegenbauer polynomials, 2022, 7, 2473-6988, 15612, 10.3934/math.2022855
    13. Yahong Wang, Wenmin Wang, Liangcai Mei, Yingzhen Lin, Hongbo Sun, An ε-Approximate Approach for Solving Variable-Order Fractional Differential Equations, 2023, 7, 2504-3110, 90, 10.3390/fractalfract7010090
    14. MAYS BASIM, NORAZAK SENU, ZARINA BIBI IBRAHIM, ALI AHMADIAN, SOHEIL SALAHSHOUR, A ROBUST OPERATIONAL MATRIX OF NONSINGULAR DERIVATIVE TO SOLVE FRACTIONAL VARIABLE-ORDER DIFFERENTIAL EQUATIONS, 2022, 30, 0218-348X, 10.1142/S0218348X22400412
    15. Mdi Begum Jeelani, Abeer S. Alnahdi, Mohammed A. Almalahi, Mohammed S. Abdo, Hanan A. Wahash, Nadiyah Hussain Alharthi, Tianqing An, Qualitative Analyses of Fractional Integrodifferential Equations with a Variable Order under the Mittag-Leffler Power Law, 2022, 2022, 2314-8888, 1, 10.1155/2022/6387351
    16. M. Basim, Z. B. Ibrahim, S. Salahshour, Solving fractional variable-order differential equations of the non-singular derivative using Jacobi operational matrix, 2023, 2714-4704, 1221, 10.46481/jnsps.2023.1221
    17. Saleh S. Redhwan, Maoan Han, Mohammed A. Almalahi, Maryam Ahmed Alyami, Mona Alsulami, Najla Alghamdi, Piecewise implicit coupled system under ABC fractional differential equations with variable order, 2024, 9, 2473-6988, 15303, 10.3934/math.2024743
    18. Yihui Xu, Benoumran Telli, Mohammed Said Souid, Sina Etemad, Jiafa Xu, Shahram Rezapour, Stability on a boundary problem with RL-Fractional derivative in the sense of Atangana-Baleanu of variable-order, 2024, 32, 2688-1594, 134, 10.3934/era.2024007
    19. Mays Basim, Ali Ahmadian, Norazak Senu, Zarina Bibi Ibrahim, Numerical simulation of variable-order fractal-fractional delay differential equations with nonsingular derivative, 2023, 42, 22150986, 101412, 10.1016/j.jestch.2023.101412
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(968) PDF downloads(38) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog