1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
1 | 1 | 1 | ||||||
2 | 0 | 1 | 1 | |||||
3 | 0 | 1 | 1 | 2 | ||||
4 | 0 | 1 | 2 | 2 | 5 | |||
5 | 0 | 2 | 4 | 5 | 5 | 16 | ||
6 | 0 | 5 | 10 | 14 | 16 | 16 | 61 | |
7 | 0 | 16 | 32 | 46 | 56 | 61 | 61 | 271 |
A nonautonomous logistic population model with a feature of an Allee threshold has been investigated in a periodically fluctuating environment. A slow periodicity of the harvesting effort was considered and may arise in response to relatively slow fluctuations of the environment. This assumption permits obtaining the analytical approximate solutions of such model using the perturbation approach based on the slow variation. Thus, the analytical expressions of the population evolution in the situation of subcritical and the supercritical harvesting were obtained and discussed in the framework of the Allee effect. Since the exact solution was not available due to the nonlinearity of the system, the numerical computation was considered to validate our analytical approximation. The comparison between the two methods showed a remarkable agreement as the time progressed, while such agreement fell off when the time was close to the initial density. Moreover, in the absence of the periodicity of the harvesting term, the expressions of the population evolution reduced to the exact solutions but in implicit forms. The finding results were appropriate for a wide range of parameter values, which lead to avoiding extensive recalculations while displaying the population behavior.
Citation: Fahad M. Alharbi. Harvesting a population model with Allee effect in a periodically varying environment[J]. AIMS Mathematics, 2024, 9(4): 8834-8847. doi: 10.3934/math.2024430
[1] | Heesung Shin, Jiang Zeng . More bijections for Entringer and Arnold families. Electronic Research Archive, 2021, 29(2): 2167-2185. doi: 10.3934/era.2020111 |
[2] | Bin Han . Some multivariate polynomials for doubled permutations. Electronic Research Archive, 2021, 29(2): 1925-1944. doi: 10.3934/era.2020098 |
[3] | Shishuo Fu, Zhicong Lin, Yaling Wang . Refined Wilf-equivalences by Comtet statistics. Electronic Research Archive, 2021, 29(5): 2877-2913. doi: 10.3934/era.2021018 |
[4] | Jiafan Zhang . On the distribution of primitive roots and Lehmer numbers. Electronic Research Archive, 2023, 31(11): 6913-6927. doi: 10.3934/era.2023350 |
[5] | Dmitry Krachun, Zhi-Wei Sun . On sums of four pentagonal numbers with coefficients. Electronic Research Archive, 2020, 28(1): 559-566. doi: 10.3934/era.2020029 |
[6] | Massimo Grossi . On the number of critical points of solutions of semilinear elliptic equations. Electronic Research Archive, 2021, 29(6): 4215-4228. doi: 10.3934/era.2021080 |
[7] | Ji-Cai Liu . Proof of Sun's conjectural supercongruence involving Catalan numbers. Electronic Research Archive, 2020, 28(2): 1023-1030. doi: 10.3934/era.2020054 |
[8] | Hongjian Li, Kaili Yang, Pingzhi Yuan . The asymptotic behavior of the reciprocal sum of generalized Fibonacci numbers. Electronic Research Archive, 2025, 33(1): 409-432. doi: 10.3934/era.2025020 |
[9] | Hanpeng Gao, Yunlong Zhou, Yuanfeng Zhang . Sincere wide τ-tilting modules. Electronic Research Archive, 2025, 33(4): 2275-2284. doi: 10.3934/era.2025099 |
[10] | Taboka Prince Chalebgwa, Sidney A. Morris . Number theoretic subsets of the real line of full or null measure. Electronic Research Archive, 2025, 33(2): 1037-1044. doi: 10.3934/era.2025046 |
A nonautonomous logistic population model with a feature of an Allee threshold has been investigated in a periodically fluctuating environment. A slow periodicity of the harvesting effort was considered and may arise in response to relatively slow fluctuations of the environment. This assumption permits obtaining the analytical approximate solutions of such model using the perturbation approach based on the slow variation. Thus, the analytical expressions of the population evolution in the situation of subcritical and the supercritical harvesting were obtained and discussed in the framework of the Allee effect. Since the exact solution was not available due to the nonlinearity of the system, the numerical computation was considered to validate our analytical approximation. The comparison between the two methods showed a remarkable agreement as the time progressed, while such agreement fell off when the time was close to the initial density. Moreover, in the absence of the periodicity of the harvesting term, the expressions of the population evolution reduced to the exact solutions but in implicit forms. The finding results were appropriate for a wide range of parameter values, which lead to avoiding extensive recalculations while displaying the population behavior.
The Euler numbers
1+∑n≥1Enxnn!=tanx+secx. |
This is the sequence A000111 in [20]. In 1877 Seidel [19] defined the triangular array
En,k=En,k−1+En−1,n+1−k(n≥k≥2) | (1) |
with
E1,1E2,1→E2,2E3,3←E3,2←E3,1E4,1→E4,2→E4,3→E4,4⋯=10→11←1←00→1→2→2⋯ | (2) |
The first few values of
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
1 | 1 | 1 | ||||||
2 | 0 | 1 | 1 | |||||
3 | 0 | 1 | 1 | 2 | ||||
4 | 0 | 1 | 2 | 2 | 5 | |||
5 | 0 | 2 | 4 | 5 | 5 | 16 | ||
6 | 0 | 5 | 10 | 14 | 16 | 16 | 61 | |
7 | 0 | 16 | 32 | 46 | 56 | 61 | 61 | 271 |
André [1] showed in 1879 that the Euler number
DU4={2143,3142,3241,4132,4231}. |
In 1933 Kempener [14] used the boustrophedon algorithm (2) to enumerate alternating permutations without refering to Euler numbers. Since Entringer [7] first found the combinatorial interpretation of Kempener's table
Theorem 1 (Entringer). The number of the (down-up) alternating permutations of
DUn,k:={σ∈DUn:σ1=k}. |
According to Foata-Schützenberger [9] a sequence of sets
The Springer numbers
1+∑n≥1Snxnn!=1cosx−sinx. |
Arnold [2,p.11] showed in 1992 that
1ˉ23,1ˉ32,1ˉ3ˉ2,213,2ˉ13,2ˉ31,2ˉ3ˉ1,312,3ˉ12,3ˉ21,3ˉ2ˉ1, |
where we write
S1,−1S2,2←S2,1S3,−3→S3,−2→S3,−1S4,4←S4,3←S4,2←S4,1⋯⇕12←10→2→316←16←14←11⋯S1,1S2,−1←S2,−2S3,1→S3,2→S3,3S4,−1←S4,−2←S4,−3←S4,−4⋯⇕11←03→4→411←8←4←0⋯ |
where
Sn,k={Sn,k−1+Sn−1,−k+1if n≥k>1,Sn,−1if n>k=1,Sn,k−1+Sn−1,−kif −1≥k>−n. | (3) |
Theorem 2 (Arnold). For all integers
Sn,k:={σ∈Sn:σ1=k}. |
Moreover, for all integers
Sn,k=#{σ∈DUn(B):σ1=k}. |
Similarly, the numbers
-6 | -5 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 | 6 | ||
1 | 1 | 1 | |||||||||||
2 | 0 | 1 | 1 | 2 | |||||||||
3 | 0 | 2 | 3 | 3 | 4 | 4 | |||||||
4 | 0 | 4 | 8 | 11 | 11 | 14 | 16 | 16 | |||||
5 | 0 | 16 | 32 | 46 | 57 | 57 | 68 | 76 | 80 | 80 | |||
6 | 0 | 80 | 160 | 236 | 304 | 361 | 361 | 418 | 464 | 496 | 512 | 512 |
This paper is organized as follows. In Section 2, we shall give the necessary definitions and present our main results. The proof of our theorems will be given in Sections 3-4. In Section 5, we shall give more insightful description of two important bijections. More precisely, Chuang et al.'s constructed a
Let
For each vertex
Definition 3. Given an increasing 1-2 tree
Let
Tn,k={T∈Tn:Leaf(T)=k}. |
Donaghey [5] (see also [3]) proved bijectively that the Euler number
Theorem 4 (Gelineau-Shin-Zeng). There is an explicit bijection
Leaf(ψ(σ))=First(σ) |
for all
Let
Hetyei [12,Definition 4] defined recursively André permutation of second kind if it is empty or satisfies the following:
(ⅰ)
(ⅱ)
(ⅲ) For all
It is known that the above definition for André permutation of second kind is simply equivalent to the following definition. Let
Definition 5. A permutation
For example, the permutation
τ[1]=1,τ[2]=12,τ[3]=312,τ[4]=3124,τ[5]=31245. |
Foata and Schützenberger [10] proved that the Euler number
A4={1234,1423,3124,3412,4123}. |
Remark. Foata and Schützenberger in [10] introduced augmented André permutation is a permutation
σj−1=max{σj−1,σj,σk−1,σk}andσk=min{σj−1,σj,σk−1,σk}, |
there exists
Definition 6. A permutation
By definition, an André permutations is always a Simsun permutation, but the reverse is not true. For example, the permutation
τ[1]=1,τ[2]=21,τ[3]=213,τ[4]=2134,τ[5]=25134. |
Let
RS3={123,132,213,231,312}. |
As for
An,k:={σ∈An:σn=k},RSn,k:={σ∈RSn:σn=k}. |
Some examples are shown in Table 3.
Foata and Han [8,Theorem 1 (ⅲ)] proved that
Theorem 7. For positive integer
Leaf(T)=Last(ω(T)) | (4) |
for all
Whereas one can easily show that the cardinality
Stanley [22,Conjecture 3.1] conjectured a refinement of Purtill's result [18,Theorem 6.1] about the
Theorem 8 (Hetyei).
For all
#An,k=#RSn−1,k−1. | (5) |
In the next theorem, we give a bijective proof of the conjecture of Stanley by constructing an explicit bijection.
Theorem 9. For positive integer
Last(σ)−1=Last(φ(σ)) | (6) |
for all
Given a permutation
σ[1]=ˉ4,σ[2]=ˉ4ˉ1,σ[3]=2ˉ4ˉ1,σ[4]=2ˉ4ˉ13,σ[5]=2ˉ4ˉ135. |
Some examples of
Definition 10. A type
For example, all type
Our second aim is to show that these two refinements are new Arnold families. Recall that the sequence
Sn,k:={σ∈DUn(B):σ1=k}. |
Theorem 11. For all
ψB:Sn,k→T(B)n,k, | (7) |
ωB:T(B)n,k→A(B)n,k. | (8) |
Thus, for all
Sn,k=#A(B)n,k=#T(B)n,k. | (9) |
In particular, the two sequences
Hetyei[12,Definition 8] defined another class of signed André permutations.
Definition 12 (Hetyei). A signed André permutation is a pair
We write
Conjecture 13. For all
Sn,k=#A(H)n+1,n+2−k. |
Since the last entry of any permutation in the family
Definition 14. A permutation
Let
Theorem 15. For positive integer
Last(σ)−1=Last(φ(B)(σ)) | (10) |
for all
Remark. Ehrenborg and Readdy [6,Section 7] gave a different definition of signed Simsun permutation as follows: A signed permutation
12,21,ˉ12,2ˉ1,1ˉ2,ˉ21,ˉ1ˉ2,ˉ2ˉ1 |
are Simsun permutations, we note that it is not an Arnold family.
First of all, we prove Theorem 7, in order to show that
Given
For example, if the tree
12,21,ˉ12,2ˉ1,1ˉ2,ˉ21,ˉ1ˉ2,ˉ2ˉ1 |
then
Given
πi={σi−1ifi∉{i1,…,iℓ},σik−1ifi=ik−1fork=2,…,ℓ. | (11) |
We show that
σa=πa+1,σa+1=πa+1+1,…,σc−1=πc−1+1, and σc≤πc+1. |
Hence a triple
Consider the running example
Remark. Considering the bijection
ψ(τ)=T∈T9,7,ω(T)=σ=684512937∈A9,7,φ(σ)=π=57341286∈RS8,6, |
where
One can extend the above mapping
Remark. This bijection preserves the
ababaaba=cddcd. |
For the cd-index of a Simsun permutation
aababaab=cddcd. |
Given a
ψB(σ)=π−1(ψ(πσ)) |
through the unique order-preserving map
For example, in the case of
π=(ˉ8ˉ4ˉ3ˉ125679123456789). |
So we have
π=(ˉ8ˉ4ˉ3ˉ125679123456789). |
In Subsection 3.1, we define the bijection
ωB(T)=π−1(ω(π(T))) |
through the unique order-preserving map
For example, in the case of
ωB(T)=π−1(ω(π(T))) |
we obtain
We summarize four interpretations for Entringer numbers
![]() |
||||
![]() |
||||
![]() |
||||
![]() |
||||
![]() |
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
In 2012, Chuang et al. [4] construct a bijection
Algorithm A.
(A1) If
(A2) Otherwise, the word
ρ(T)=ω⋅ρ(T′), |
where the subword
(a) If the root of
(b) If the root of
As deleted only
Remark. Originally, in [4], the increasing 1-2 trees on
Theorem 16. The bijection
Proof. Suppose that we let
The root of
To record the left-child
It is clear that all vertices in the minimal path in a tree become the right-to-left minimums in a permutation under
The bijection
Given an increasing 1-2 tree
Algorithm B. Gelineau et al. described the bijection
|DUn|=|Tn|=1, |
we can define trivially
(B1) If
π′j={πj+2,if πj+2<k−1,πj+2−2,if πj+2>k. |
We get
\pi'_{j} = \begin{cases} \pi_{j+2}, &\text{if $\pi_{j+2} < k-1$,}\\ \pi_{j+2}-2, &\text{if $\pi_{j+2} > k$.} \end{cases} |
We get the tree
(B2) If
(a) If
\pi'_{j} = \begin{cases} \pi_{j+2}, &\text{if $\pi_{j+2} < k-1$,}\\ \pi_{j+2}-2, &\text{if $\pi_{j+2} > k$.} \end{cases} |
(b) If
\pi'_{j} = \begin{cases} \pi_{j+2}, &\text{if $\pi_{j+2} < k-1$,}\\ \pi_{j+2}-2, &\text{if $\pi_{j+2} > k$.} \end{cases} |
Algorithm C. We define another bijection
If
For
(C1)
\begin{align*} v_1 < u_1 < v_2 < u_2 < \dots < v_{j-1} < u_{j-1} < v_j \end{align*} |
Decomposing by the maximal path from
● Graft
● Flip the tree at vertex
● Transplant the trees
● Graft
We can illustrate the above transformation by
\begin{align*} v_1 < u_1 < v_2 < u_2 < \dots < v_{j-1} < u_{j-1} < v_j \end{align*} |
(C2) If
● Graft
● Transplant the trees
● Graft
We can illustrate this transformation by the following
\begin{align*} v_1 < u_1 < v_2 < u_2 < \dots < v_{j-1} < u_{j-1} < v_j \end{align*} |
We note that the vertex
Example. We run the new algorithm to the examples
\begin{align*} d_5(\sigma) & = (3),& d_4(\sigma) & = (6,2),& d_3(\sigma) & = (9,1),& d_2(\sigma) & = (8,5),& d_1(\sigma) & = (7,4). \end{align*} |
By Algorithm C, we get five trees sequentially
\begin{align*} d_5(\sigma) & = (3),& d_4(\sigma) & = (6,2),& d_3(\sigma) & = (9,1),& d_2(\sigma) & = (8,5),& d_1(\sigma) & = (7,4). \end{align*} |
with
\begin{align*} a^{(4)}& = 3, & a^{(3)}& = 2, & a^{(2)}& = 9, & a^{(1)}& = 5,\\ b^{(4)}& = 3, & b^{(3)}& = 2, & b^{(2)}&\text{ does not exist}, & b^{(1)}& = 5. \end{align*} |
Thus, the increasing 1-2 tree
Theorem 17. The two bijections
Proof. It is clear that (C2) is equivalent to (B1). Since the rule (B2a) just exchange two labels, but does not change the tree-structure, it is enough to show that (C1) is produced recursively from (B1) and (B2b).
Assume that
\begin{align*} a^{(4)}& = 3, & a^{(3)}& = 2, & a^{(2)}& = 9, & a^{(1)}& = 5,\\ b^{(4)}& = 3, & b^{(3)}& = 2, & b^{(2)}&\text{ does not exist}, & b^{(1)}& = 5. \end{align*} |
Due to
\begin{align*} a^{(4)}& = 3, & a^{(3)}& = 2, & a^{(2)}& = 9, & a^{(1)}& = 5,\\ b^{(4)}& = 3, & b^{(3)}& = 2, & b^{(2)}&\text{ does not exist}, & b^{(1)}& = 5. \end{align*} |
Since
\begin{align*} a^{(4)}& = 3, & a^{(3)}& = 2, & a^{(2)}& = 9, & a^{(1)}& = 5,\\ b^{(4)}& = 3, & b^{(3)}& = 2, & b^{(2)}&\text{ does not exist}, & b^{(1)}& = 5. \end{align*} |
Since (C2a) is produced from the rule (B1) and (B2b), then Algorithm C follows Algorithm B.
The first author's work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2017R1C1B2008269).
[1] | R. B. Banks, Growth and diffusion phenomena: Mathematical frameworks and applications, Springer Science & Business Media, 14 (1993). |
[2] | M. Braun, M. Golubitsky, Differential equations and their applications, Springer, 1 (1983). https://doi.org/10.1007/978-1-4684-0164-6-1 |
[3] |
F. Courchamp, T. C. Brock, B. Grenfell, Inverse density dependence and the Allee effect, Trends Ecol. Evol., 14 (1999), 405–410. https://doi.org/10.1016/S0169-5347(99)01683-3 doi: 10.1016/S0169-5347(99)01683-3
![]() |
[4] |
P. A. Stephens, W. J. Sutherland, R. P. Freckleton, What is the Allee effect? Oikos, 1999,185–190. https://doi.org/10.2307/3547011 doi: 10.2307/3547011
![]() |
[5] | M. J. Panik, Stochastic differential equations: An introduction with applications in population dynamics modeling, John Wiley & Sons, 2017. https://doi.org/10.1002/9781119377399 |
[6] |
M. Krstić, M. Jovanović, On stochastic population model with the Allee effect, Math. Comput. Model., 52 (2010), 370–379. https://doi.org/10.1016/j.mcm.2010.02.051 doi: 10.1016/j.mcm.2010.02.051
![]() |
[7] |
Q. Yang, D. Jiang, A note on asymptotic behaviors of stochastic population model with Allee effect, Appl. Math. Model., 35 (2011), 4611–4619. https://doi.org/10.1016/j.apm.2011.03.034 doi: 10.1016/j.apm.2011.03.034
![]() |
[8] |
J. R. Graef, S. Padhi, S. Pati, Periodic solutions of some models with strong Allee effects, Nonlinear Anal.-Real, 13 (2012), 569–581. https://doi.org/10.1016/j.nonrwa.2011.07.044 doi: 10.1016/j.nonrwa.2011.07.044
![]() |
[9] |
B. F. Brockett, M. Hassall, The existence of an Allee effect in populations of porcellio scaber (isopoda: Oniscidea), Eur. J. Soil Biol., 41 (2005), 123–127. https://doi.org/10.1016/j.ejsobi.2005.09.004 doi: 10.1016/j.ejsobi.2005.09.004
![]() |
[10] |
F. Courchamp, T. C. Brock, B. Grenfell, Inverse density dependence and the Allee effect, Trends Ecol. Evol., 14 (1999), 405–410. https://doi.org/10.1016/S0169-5347(99)01683-3 doi: 10.1016/S0169-5347(99)01683-3
![]() |
[11] |
F. M. Hilker, M. Langlais, S. V. Petrovskii, H. Malchow, A diffusive si model with Allee effect and application to FIV, Math. Biol., 206 (2007), 61–80. https://doi.org/10.1016/j.mbs.2005.10.003 doi: 10.1016/j.mbs.2005.10.003
![]() |
[12] |
A. Hurford, M. Hebblewhite, M. A. Lewis, A spatially explicit model for an Allee effect: Why wolves recolonize so slowly in greater yellowstone, Theor. Popul. Biol., 70 (2006), 244–254. https://doi.org/10.1016/j.tpb.2006.06.009 doi: 10.1016/j.tpb.2006.06.009
![]() |
[13] |
P. Amarasekare, Allee effects in metapopulation dynamics, Am. Nat., 152 (1998), 298–302. https://doi.org/10.1086/286169 doi: 10.1086/286169
![]() |
[14] |
M. A. Idlango, J. J. Shepherd, J. A. Gear, Multiscaling analysis of a slowly varying single species population model displaying an Allee effect, Math. Method. Appl. Sci., 37 (2014), 1561–1569. https://doi.org/10.1002/mma.2911 doi: 10.1002/mma.2911
![]() |
[15] |
A. Tesfay, D. Tesfay, J. Brannan, J. Duan, A logistic-harvest model with Allee effect under multiplicative noise, Stoch. Dynam., 21 (2021), 2150044. https://doi.org/10.1142/S0219493721500441 doi: 10.1142/S0219493721500441
![]() |
[16] |
F. B. Rizaner, S. P. Rogovchenko, Dynamics of a single species under periodic habitat fluctuations and Allee effect, Nonlinear Anal.-Real, 13 (2012), 141–157. https://doi.org/10.1016/j.nonrwa.2011.07.021 doi: 10.1016/j.nonrwa.2011.07.021
![]() |
[17] |
S. Rosenblat, Population models in a periodically fluctuating environment, J. Math. Biol., 9 (1980) 23–36. https://doi.org/10.1007/BF00276033 doi: 10.1007/BF00276033
![]() |
[18] |
T. Legović, G. Perić, Harvesting population in a periodic environment, Ecol. Model., 24 (1984), 221–229. https://doi.org/10.1016/0304-3800(84)90042-5 doi: 10.1016/0304-3800(84)90042-5
![]() |
[19] |
F. M. Alharbi, A slow single-species model with non-symmetric variation of the coefficients, Fractal Fract., 6 (2022), 72. https://doi.org/10.3390/fractalfract6020072 doi: 10.3390/fractalfract6020072
![]() |
[20] |
F. M. Alharbi, The general analytic expression of a harvested logistic model with slowly varying coefficients, Axioms, 11 (2022), 585. https://doi.org/10.3390/axioms11110585 doi: 10.3390/axioms11110585
![]() |
[21] |
A. K. Alsharidi, A. A. Khan, J. J. Shepherd, A. J. Stacey, Multiscaling analysis of a slowly varying anaerobic digestion model, Math. Method. Appl. Sci., 43 (2020), 5729–5743. https://doi.org/10.1002/mma.6315 doi: 10.1002/mma.6315
![]() |
[22] |
M. A. Idlango, J. J. Shepherd, J. A. Gear, Multiscaling analysis of a slowly varying single species population model displaying an Allee effect, Math. Method. Appl. Sci., 37 (2014), 1561–1569. https://doi.org/10.1002/mma.2911 doi: 10.1002/mma.2911
![]() |
[23] |
M. A. Idlango, J. J. Shepherd, J. A. Gear, Logistic growth with a slowly varying holling type Ⅱ harvesting term, Commun. Nonlinear Sci., 49 (2017), 81–92. https://doi.org/10.1016/j.cnsns.2017.02.005 doi: 10.1016/j.cnsns.2017.02.005
![]() |
[24] |
T. Cromer, Harvesting in a seasonal environment, Math. Comput. Model., 10 (1988), 445–450. https://doi.org/10.1016/0895-7177(88)90034-9 doi: 10.1016/0895-7177(88)90034-9
![]() |
[25] |
P. S. Meyer, J. H. Ausubel, Carrying capacity: A model with logistically varying limits, Technol. Forecast. Soc., 61 (1999), 209–214. https://doi.org/10.1016/S0040-1625(99)00022-0 doi: 10.1016/S0040-1625(99)00022-0
![]() |
[26] |
D. Ludwig, D. D. Jones, C. S. Holling, Qualitative analysis of insect outbreak systems: The spruce budworm and forest, J. Anim. Ecol., 47 (1978), 315–332. https://doi.org/10.2307/3939 doi: 10.2307/3939
![]() |
[27] |
J. J. Shepherd, L. Stojkov, The logistic population model with slowly varying carrying capacity, Anziam J., 47 (2005), C492–C506. https://doi.org/10.21914/anziamj.v47i0.1058 doi: 10.21914/anziamj.v47i0.1058
![]() |
[28] |
T. Grozdanovski, J. J. Shepherd, A. Stacey, Multi-scaling analysis of a logistic model with slowly varying coefficients, Appl. Math. Lett., 22 (2009), 1091–1095. https://doi.org/10.1016/j.aml.2008.10.002 doi: 10.1016/j.aml.2008.10.002
![]() |
[29] |
R. M. May, Thresholds and breakpoints in ecosystems with a multiplicity of stable states, Nature, 269 (1977), 471–477. https://doi.org/10.1038/269471a0 doi: 10.1038/269471a0
![]() |
1. | Shishuo Fu, Jiaxi Lu, Yuanzhe Ding, A skeleton model to enumerate standard puzzle sequences, 2021, 30, 2688-1594, 179, 10.3934/era.2022010 | |
2. | Kanasottu Anil Naik, Rayappa David Amar Raj, Chepuri Venkateswara Rao, Thanikanti Sudhakar Babu, Generalized cryptographic image processing approaches using integer-series transformation for solar power optimization under partial shading, 2022, 272, 01968904, 116376, 10.1016/j.enconman.2022.116376 | |
3. | Sen-Peng Eu, Tung-Shan Fu, Springer Numbers and Arnold Families Revisited, 2024, 10, 2199-6792, 125, 10.1007/s40598-023-00230-9 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
1 | 1 | 1 | ||||||
2 | 0 | 1 | 1 | |||||
3 | 0 | 1 | 1 | 2 | ||||
4 | 0 | 1 | 2 | 2 | 5 | |||
5 | 0 | 2 | 4 | 5 | 5 | 16 | ||
6 | 0 | 5 | 10 | 14 | 16 | 16 | 61 | |
7 | 0 | 16 | 32 | 46 | 56 | 61 | 61 | 271 |
-6 | -5 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 | 6 | ||
1 | 1 | 1 | |||||||||||
2 | 0 | 1 | 1 | 2 | |||||||||
3 | 0 | 2 | 3 | 3 | 4 | 4 | |||||||
4 | 0 | 4 | 8 | 11 | 11 | 14 | 16 | 16 | |||||
5 | 0 | 16 | 32 | 46 | 57 | 57 | 68 | 76 | 80 | 80 | |||
6 | 0 | 80 | 160 | 236 | 304 | 361 | 361 | 418 | 464 | 496 | 512 | 512 |
![]() |
||||
![]() |
||||
![]() |
||||
![]() |
||||
![]() |
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
1 | 1 | 1 | ||||||
2 | 0 | 1 | 1 | |||||
3 | 0 | 1 | 1 | 2 | ||||
4 | 0 | 1 | 2 | 2 | 5 | |||
5 | 0 | 2 | 4 | 5 | 5 | 16 | ||
6 | 0 | 5 | 10 | 14 | 16 | 16 | 61 | |
7 | 0 | 16 | 32 | 46 | 56 | 61 | 61 | 271 |
-6 | -5 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 | 6 | ||
1 | 1 | 1 | |||||||||||
2 | 0 | 1 | 1 | 2 | |||||||||
3 | 0 | 2 | 3 | 3 | 4 | 4 | |||||||
4 | 0 | 4 | 8 | 11 | 11 | 14 | 16 | 16 | |||||
5 | 0 | 16 | 32 | 46 | 57 | 57 | 68 | 76 | 80 | 80 | |||
6 | 0 | 80 | 160 | 236 | 304 | 361 | 361 | 418 | 464 | 496 | 512 | 512 |
![]() |
||||
![]() |
||||
![]() |
||||
![]() |
||||
![]() |
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |