Processing math: 100%
Research article

Fixed point theorems of contractive mappings on soft parametric metric space

  • Received: 20 December 2023 Revised: 01 February 2024 Accepted: 05 February 2024 Published: 26 February 2024
  • MSC : 32H50, 47H10, 54H25

  • The purpose of this study was to introduce soft topology generated by soft parametric metric space and prove Banach's fixed point theorem as an extension of soft complete parametric metric space. An illustrative example was given by using this fixed point theorem.

    Citation: Çiğdem Aras Gündüz, Sadi Bayramov, Arzu Erdem Coşkun. Fixed point theorems of contractive mappings on soft parametric metric space[J]. AIMS Mathematics, 2024, 9(4): 7945-7954. doi: 10.3934/math.2024386

    Related Papers:

    [1] Mohammed Shehu Shagari, Akbar Azam . Integral type contractions of soft set-valued maps with application to neutral differential equations. AIMS Mathematics, 2020, 5(1): 342-358. doi: 10.3934/math.2020023
    [2] Yan Han, Shaoyuan Xu, Jin Chen, Huijuan Yang . Fixed point theorems for $ b $-generalized contractive mappings with weak continuity conditions. AIMS Mathematics, 2024, 9(6): 15024-15039. doi: 10.3934/math.2024728
    [3] Gültekin Soylu, Müge Çerçi . Metrization of soft metric spaces and its application to fixed point theory. AIMS Mathematics, 2024, 9(3): 6904-6915. doi: 10.3934/math.2024336
    [4] Qing Yang, Chuanzhi Bai . Fixed point theorem for orthogonal contraction of Hardy-Rogers-type mapping on $O$-complete metric spaces. AIMS Mathematics, 2020, 5(6): 5734-5742. doi: 10.3934/math.2020368
    [5] Xun Ge, Songlin Yang . Some fixed point results on generalized metric spaces. AIMS Mathematics, 2021, 6(2): 1769-1780. doi: 10.3934/math.2021106
    [6] Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817
    [7] Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma . Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial $b$-metric space. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103
    [8] Huaping Huang, Bessem Samet . Two fixed point theorems in complete metric spaces. AIMS Mathematics, 2024, 9(11): 30612-30637. doi: 10.3934/math.20241478
    [9] Erdal Karapınar, Marija Cvetković . An inevitable note on bipolar metric spaces. AIMS Mathematics, 2024, 9(2): 3320-3331. doi: 10.3934/math.2024162
    [10] Ahmed Alamer, Faizan Ahmad Khan . Boyd-Wong type functional contractions under locally transitive binary relation with applications to boundary value problems. AIMS Mathematics, 2024, 9(3): 6266-6280. doi: 10.3934/math.2024305
  • The purpose of this study was to introduce soft topology generated by soft parametric metric space and prove Banach's fixed point theorem as an extension of soft complete parametric metric space. An illustrative example was given by using this fixed point theorem.



    Functional analysis is a significant branch of science that can be used to solve different kinds of problems including both linear and nonlinear types. It has a great deal of applications in physics, chemistry, biology, economics, etc. [3,4,11,12,18]. A difficulty arises in that one must establish existing proof by frequently applying the contractivity method, monotonicity theory, etc. This absolutely enhances the importance and significance of fixed point theory as a valuable topic in functional analysis. Fixed point theorems establish an important part for proving the existence of solutions of the different types of linear and nonlinear problems such as deformation of rod, melting process, heat radiation, diffusion processes in physics, chemistry, biology, quantum field theory and game theory in economics. Additionally, sophisticated problems could not be analyzed utilizing general methods because of incomplete information or uncertainty data that occurred in the soft set theory [19]. The literature has produced many results on soft sets, actively. Soft set theory's properties, operations and applications were studied by [17].

    Some researchers obtained fixed point theorems by using soft set theory on different soft metric spaces, which are complete soft usual metric spaces [8], soft cone metric spaces [16], dislocated soft metric spaces [5], soft G-metric spaces [13], soft S-metric spaces [14], soft rectangular B-metric spaces [21], soft metric spaces [1,2,9,15,23,24], soft parametric metric space [7] and parametric soft b-metric spaces [22].

    In this paper, we introduce soft topology generated by soft parametric metric space after giving some preliminary results, then we extend Banach's fixed point theorem in a soft complete parametric metric space.

    We give a start with the most necessary basic definitions and concepts to follow up the results obtained in this manuscript. Additional explanations are contained in the cited references.

    Definition 2.1. [19] A pair (˜ρ,Ω) is claimed to be soft set on the universe set U if and only if ˜ρ is a set valued mapping on Ω taking values in P(U), where P(U) is the power set of U. A soft set (˜ρ,Ω) can be accepted as a parametrized family of subsets of the universe set U. The set ˜ρ(a) in U is called an-approximate element of the soft set (˜ρ,Ω), for each a in Ω.

    Definition 2.2. [17] A soft set (˜ρ,Ω) over U is called a null soft set if ˜ρ(a)= for all aΩ and is denoted by ˜, an absolute soft set if ˜ρ(a)=U for all aΩ and is denoted by ˜U.

    Definition 2.3. [20] A collection ˜τ of soft sets over U is a soft topology on U if

    (1) ˜, ˜U are included in ˜τ;

    (2) the union of any number of soft sets in ˜τ is included in ˜τ;

    (3) the intersection of any two soft sets in ˜τ is included in ˜τ.

    The triplet (U,˜τ,Ω) is claimed to be a soft topological space over U. Members of ˜τ are said to be soft open sets in U. A soft set (˜ρ,Ω) over U is a soft closed set whenever its complement (˜ρ,Ω)c is included in ˜τ.

    Proposition 2.4. [20] For each aΩ, the collection ~τa={˜ρ(a):(˜ρ,Ω)˜τ} defines a topology on U, where (U,˜τ,Ω) is a soft topological space over U.

    Definition 2.5. [6,10] ˜ua is called a soft point on the soft set (˜ρ,Ω) over U if (˜ρ,Ω) is defined as

    ˜ρ:ΩP(U),˜ρ(a)={{u},ifaΩ,,ifaΩ{a}.

    It is clear that each soft set can be denoted as a union of soft points. Therefore, when we have the family of all soft sets on U, it is suitable to give only soft points on U.

    Definition 2.6. [10] A soft set (˜ρ,Ω) defined by ˜ρ:ΩB(R) is said to be a soft real set, where R is the set of all real numbers and B(R) is the collection of all nonempty bounded subsets of R. When a soft real set (˜ρ,Ω) is a singleton soft set, it is called a soft real number and denoted by ˜r,˜s,˜t. It is clear that ¯0(a)=0, ¯1(a)=1, for all aΩ.

    Definition 2.7. [10] The collection of nonnegative soft real numbers is denoted by R(Ω) and the pair (R(Ω),) is a partially ordered set, such that for ˜r,˜s as two soft real numbers,

    (i) ˜r˜˜s if ˜r(a)˜s(a) for all aΩ,

    (ii) ˜r˜˜s if ˜r(a)˜s(a) for all aΩ,

    (iii) ˜r˜<˜s if ˜r(a)<˜s(a) for all aΩ,

    (iv) ˜r˜>˜s if ˜r(a)>˜s(a) for all aΩ.

    Definition 2.8. [6,10] Two soft points ˜ua,˜va are called equal when a=a and u=v. Thus, ˜ua˜va if and only if uv or aa.

    The family of all soft points of the set ˜U is denoted by SP(˜U).

    Definition 2.9. [7] Let ˜d:SP(˜U)×SP(˜U)×(0,)R(Ω) be a function satisfying the following conditions for all ˜ua1,˜va2,˜za3˜U,t>0,

    (1) ˜d(˜ua1,˜va2,t)=¯0 if and only if ˜ua1=˜va2 for all t>0,

    (2) ˜d(˜ua1,˜va2,t)=˜d(˜va2,˜ua1,t) for all ˜ua1,˜va2˜U,t>0,

    (3) ˜d(˜ua1,˜za3,t) ˜< ˜d(˜ua1,˜va2,t)+˜d(˜va2,˜za3,t) for all ˜ua1,˜va2,˜za3˜U,t>0.

    Therefore, ˜d is called a soft parametric metric on ˜U and the pair (˜U,˜d,Ω) is called a soft parametric metric space.

    Example 2.10. Let U=R+{0} be a universe set, Ω=N{0} be a parameter set, g:(0,)(0,) be a continous positive function. Let ˜d:SP(˜U)×SP(˜U)×(0,)R(Ω) be denoted by

    ˜d(˜ua1,˜va2,t)={¯0,if˜ua1=˜va2,g(t)(max{u,v}+max{a1,a2}),if˜ua1˜va2,

    for all ˜ua1,˜va2˜U, then ˜d is a soft parametric metric on ˜U and (˜U,˜d,Ω) is a soft parametric metric space.

    Definition 2.11. [7] A sequence {˜unan} in soft parametric metric space (˜U,˜d,Ω) is convergent if there is a soft point ˜u0a0 in ˜U, such that limn˜d(˜unan,˜u0a0,t)=¯0 denoted by limn˜unan=˜u0a0 for all t>0.

    Definition 2.12. [7] A sequence {˜unan} in soft parametric metric space (˜U,˜d,Ω) is a Cauchy sequence if limn,m˜d(˜unan,˜umam,t)=¯0 for all t>0.

    Definition 2.13. [7] If every Cauchy sequence is a convergent in soft parametric metric space (˜U,˜d,Ω), then (˜U,˜d,Ω) is called a soft complete parametric metric space.

    This section confidently presents the significant findings of soft parametric metric spaces.

    Let {(U,τt)}tT,TR be a family of a topological space corresponding to tparameter. A mapping between {(U,τt)}tT and {(V,˜τt)}tT consists of the mappings f:UV and ψ:TT such that f:(U,τt)(V,˜τψ(t)) is a mapping of topological spaces.

    f:(U,τt)(V,˜τψ(t)) is a mapping on family of topological spaces generated by f:UV and ψ:TT.

    Definition 3.1. Let {(U,τt)}tT and {(V,˜τt)}tT be two families of topological spaces. If for each tT, f:(U,τt)(V,˜τψ(t)) is a continuous mapping on topological spaces, then (f,ψ):{(U,τt)}tT {(V,˜τt)}tT is continuous as a mapping of families of soft topological spaces.

    These concepts will be extended in a confident way to soft topological spaces. Let {(˜U,˜τt,Ω)}tT be a family of a soft topological space corresponding to tparameter. A mapping between soft topological spaces (f,ψ,φ):{(˜U,˜τt,Ω)}tT{(˜V,˜τt,Ω)}tT consists of the mappings f:UV, ψ:TT, and φ:ΩΩ such that (f,φ):(˜U,˜τt,Ω)(˜V,˜τψ(t),Ω) is a mapping of soft topological spaces for each tT.

    Definition 3.2. If for each tT, (f,φ):(˜U,˜τt,Ω)(˜V,˜τψ(t),Ω) is a soft continuous mapping on soft topological spaces, then (f,ψ,φ):{(˜U,˜τt,Ω)}tT{(˜V,˜τt,Ω)}tT is a continuous mapping of families of soft topological spaces.

    Note 3.3. Let (U,d,t) be a parametric metric space. Corresponding to each parameter t, we have a metric space (U,dt). If τdt induced by dt is a topology, then (U,τdt) is a topological space. Thus, (U,d,t) is a parametric metric space, which gives a parameterized family of metric space {(U,dt)}tT. Similarly, (˜U,˜d,Ω,T) is a soft parametric metric space, which gives a parameterized family of soft metric space {(˜U,˜dt,Ω)}tT.

    Let (˜U,˜d,Ω,T) and (˜V,˜d,Ω,T) be two soft parametric metric spaces. A mapping on soft parametric metric spaces is given by (f,φ,ψ):(˜U,˜d,Ω,T)(˜V,˜d,Ω,T), where f:UV, φ:ΩΩ, and ψ:TT. Assuming T=T and ψ=IT, we can confidently define a mapping on soft parametric metric spaces as (f,φ):(˜U,˜d,Ω)(˜V,˜d,Ω).

    Definition 3.4. [7] Let (f,φ):(˜U,˜d,Ω)(˜V,˜d,Ω) be a soft mapping on soft parametric metric spaces. If limn(f,φ)(˜unan)=(f,φ)(˜ua) for any sequence of soft points {˜unan} in (˜U,˜d,Ω) and all t>0 satisfying limn˜unan=˜ua, then (f,φ) is said to be a soft continuous mapping at ˜ua.

    Definition 3.5. Let (˜U,˜d,Ω) be a soft parametric metric space. A mapping (f,φ):(˜U,˜d,Ω)(˜U,˜d,Ω) is called a soft contraction mapping if there exists a soft real number ¯0˜˜α˜<¯1 such that

    ˜d((f,φ)(˜ua),(f,φ)(˜va),t)˜˜α˜d(˜ua,˜va,t)

    for all t>0,˜ua,˜vaSP(˜U).

    Proposition 3.6. [24] (f,φ)(˜ua) is a soft point ˜V, for all soft points ˜ua in ˜U.

    Theorem 3.7. Let (˜U,˜d,Ω) be a soft complete parametric metric space. If (f,φ):(˜U,˜d,Ω)(˜U,˜d,Ω) is a soft contraction mapping, then there exists a unique soft point ˜uaSP(˜U) such that (f,φ)(˜ua)=˜ua.

    Proof. Let ˜u0a be an arbitrary soft point in SP(˜U). Let us set

    ˜u1a1=(f,φ)(˜u0a)=(f(˜u0a))φ(a),˜u2a2=(f,φ)(˜u1a1)=(f2(˜u0a))φ2(a),˜un+1an+1=(f,φ)(˜unan)=(fn+1(˜u0a))φn+1(a).

    We have

    ˜d(˜un+1an+1,˜unan,t)=˜d((f,φ)(˜unan),(f,φ)(˜un1an1),t)˜˜α˜d(˜unan,˜un1an1,t)˜˜α2˜d(˜un1an1,˜un2an2,t)˜˜˜αn˜d(˜u1a1,˜u0a0,t).

    So, for n>m,

    ˜d(˜unan,˜umam,t)˜˜d(˜unan,˜un1an1,t)+˜d(˜un1an1,˜un2an2,t)++˜d(˜um+1am+1,˜umam,t)˜(˜αn1+˜αn2++˜αm)˜d(˜u1a1,˜u0a0,t)˜˜αm(1˜αnm)1˜α˜d(˜u1a1,˜u0a0,t).

    Hence, we get ˜d(˜unan,˜umam,t)˜(˜αm1˜α˜αn1˜α)˜d(˜u1a1,˜u0a0,t). This implies ˜d(˜unan,˜umam,t)¯0 as n,m. Hence, {˜unan} is a soft Cauchy sequence. By the completeness of ˜U, there is a soft point ˜uaSP(˜U) such that ˜unan˜ua as n. Since ˜unan˜ua as n,

    ˜d((f,φ)(˜ua),˜ua,t)˜˜d((f,φ)(˜ua),(f,φ)(˜unan),t)+˜d((f,φ)(˜unan),˜ua,t)˜˜α˜d(˜ua,˜unan,t)+˜d(˜un+1an+1,˜ua,t)¯0,n.

    Thus, we have (f,φ)(˜ua)=˜ua, which is the proof that the mapping (f,φ) has a fixed soft point. For the uniqueness, we suppose the converse, which means there could be two different fixed points ˜ua,˜va of the mapping (f,φ), then

    ˜d(˜ua,˜va,t)=˜d((f,φ)(˜ua),(f,φ)(˜va),t)˜˜α˜d(˜ua,˜va,t)

    for ¯0˜˜α˜<¯1. This contradicts the soft real number of ˜α, that is, ˜ua is a unique soft fixed point of the mapping (f,φ).

    Theorem 3.8. Let (˜U,˜d,Ω) be a soft complete parametric metric space. If a mapping (f,φ):(˜U,˜d,Ω)(˜U,˜d,Ω) satisfies the following soft contractive condition

    ˜d((f,φ)(˜ua),(f,φ)(˜va),t)˜˜α[˜d((f,φ)(˜ua),˜ua,t)+˜d((f,φ)(˜va),˜va,t)]

    for all t>0,˜ua,˜vaSP(˜U),¯0˜˜α˜<~(12), then there exists a unique soft point ˜uaSP(˜U) such that (f,φ)(˜ua)=˜ua.

    Proof. Let ˜u0a be an arbitrary soft point in SP(˜U). Let us set

    ˜u1a1=(f,φ)(˜u0a)=(f(˜u0a))φ(a),˜u2a2=(f,φ)(˜u1a1)=(f2(˜u0a))φ2(a),˜un+1an+1=(f,φ)(˜unan)=(fn+1(˜u0a))φn+1(a).

    We have

    ˜d(˜un+1an+1,˜unan,t)=˜d((f,φ)(˜unan),(f,φ)(˜un1an1),t)˜˜α[˜d((f,φ)(˜unan),˜unan,t)+˜d((f,φ)(˜un1an1),˜un1an1,t)]˜˜α[˜d(˜un+1an+1,˜unan,t)+˜d(˜unan,˜un1an1,t)],

    which gives

    ˜d(˜un+1an+1,˜unan,t)˜˜β˜d(˜unan,˜un1an1,t),

    where ˜β=˜α1˜α. So, for n>m,

    ˜d(˜unan,˜umam,t)˜˜d(˜unan,˜un1an1,t)+˜d(˜un1an1,˜un2an2,t)++˜d(˜um+1am+1,˜umam,t)˜(˜βn1+˜βn2++˜βm)˜d(˜u1a1,˜u0a0,t)˜˜βm(1˜βnm)1˜β˜d(˜u1a1,˜u0a0,t),

    We get ˜d(˜unan,˜umam,t)˜(˜βm1˜β˜βn1˜β)˜d(˜u1a1,˜u0a0,t). This implies ˜d(˜unan,˜umam,t)¯0 as n,m. Hence, {˜unan} is a soft Cauchy sequence. By the completeness of ˜U, there is a soft point ˜uaSP(˜U) such that ˜unan˜ua as n. Since ˜unan˜ua as n,

    ˜d((f,φ)(˜ua),˜ua,t)˜˜d((f,φ)(˜ua),(f,φ)(˜unan),t)+˜d((f,φ)(˜unan),˜ua,t)˜˜α[˜d((f,φ)(˜ua),˜ua,t)+˜d((f,φ)(˜unan),˜unan,t)]+˜d(˜un+1an+1,˜ua,t)=˜α˜d((f,φ)(˜ua),˜ua,t)+˜α˜d(˜un+1an+1,˜unan,t)+˜d(˜un+1an+1,˜ua,t),

    which gives

    ˜d((f,φ)(˜ua),˜ua,t)˜˜α1˜α˜d(˜un+1an+1,˜unan,t)+¯11˜α˜d(˜un+1an+1,˜ua,t)¯0, as n.

    Thus, we have (f,φ)(˜ua)=˜ua, which is the proof that the mapping (f,φ) has a fixed soft point. For the uniqueness, we suppose the converse, which means there could be two different fixed points ˜ua,˜va of the mapping (f,φ), then

    ˜d(˜ua,˜va,t)=˜d((f,φ)(˜ua),(f,φ)(˜va),t)˜˜α[˜d((f,φ)(˜ua),˜ua,t)+˜d((f,φ)(˜va),˜va,t)]=¯0 ,

    for ¯0˜˜α˜<~(12). That is, ˜ua is a unique soft fixed point of the mapping (f,φ).

    Theorem 3.9. Let (˜U,˜d,Ω) be a soft complete parametric metric space. If a mapping (f,φ):(˜U,˜d,Ω)(˜U,˜d,Ω) satisfies the following soft contractive condition

    ˜d((f,φ)(˜ua),(f,φ)(˜va),t)˜˜α[˜d((f,φ)(˜ua),˜va,t)+˜d((f,φ)(˜va),˜ua,t)]

    for all t>0,˜ua,˜vaSP(˜U),¯0˜˜α˜<~(12), then there exists a unique soft point ˜uaSP(˜U) such that (f,φ)(˜ua)=˜ua.

    Proof. Let ˜u0a be an arbitrary soft point in SP(˜U). Let us set

    ˜u1a1=(f,φ)(˜u0a)=(f(˜u0a))φ(a),˜u2a2=(f,φ)(˜u1a1)=(f2(˜u0a))φ2(a),˜un+1an+1=(f,φ)(˜unan)=(fn+1(˜u0a))φn+1(a).

    We have

    ˜d(˜un+1an+1,˜unan,t)=˜d((f,φ)(˜unan),(f,φ)(˜un1an1),t)˜˜α[˜d((f,φ)(˜unan),˜un1an1,t)+˜d((f,φ)(˜un1an1),˜unan,t)]˜˜α[˜d(˜un+1an+1,˜un1an1,t)+˜d(˜unan,˜unan,t)],

    which gives

    ˜d(˜un+1an+1,˜unan,t)˜˜β˜d(˜unan,˜un1an1,t),

    where ˜β=˜α1˜α. So, for n>m,

    ˜d(˜unan,˜umam,t)˜˜d(˜unan,˜un1an1,t)+˜d(˜un1an1,˜un2an2,t)++˜d(˜um+1am+1,˜umam,t)˜(˜βn1+˜βn2++˜βm)˜d(˜u1a1,˜u0a0,t)˜˜βm(1˜βnm)1˜β˜d(˜u1a1,˜u0a0,t).

    This implies ˜d(˜unan,˜umam,t)¯0 as n,m. Hence, {˜unan} is a soft Cauchy sequence. By the completeness of ˜U, there is a soft point ˜uaSP(˜U) such that ˜unan˜ua as n. Since ˜unan˜ua as n,

    ˜d((f,φ)(˜ua),˜ua,t)˜˜d((f,φ)(˜ua),(f,φ)(˜unan),t)+˜d((f,φ)(˜unan),˜ua,t)˜˜α[˜d((f,φ)(˜ua),˜unan,t)+˜d((f,φ)(˜unan),˜ua,t)]+˜d(˜un+1an+1,˜ua,t)˜˜α[˜d((f,φ)(˜ua),˜ua,t)+˜d(˜ua,˜unan,t)+˜d((f,φ)(˜unan),˜ua,t)]+˜d(˜un+1an+1,˜ua,t),

    which gives

    ˜d((f,φ)(˜ua),˜ua,t)˜˜α1˜α˜d(˜ua,˜unan,t)+˜α+¯11˜α˜d(˜un+1an+1,˜ua,t)¯0, as n.

    Thus, we have (f,φ)(˜ua)=˜ua, which is the proof that the mapping (f,φ) has a fixed soft point. For the uniqueness, we suppose the converse, which means there could be two different fixed points ˜ua,˜va of the mapping (f,φ), then

    ˜d(˜ua,˜va,t)=˜d((f,φ)(˜ua),(f,φ)(˜va),t)˜˜α[˜d((f,φ)(˜ua),˜va,t)+˜d((f,φ)(˜va),˜ua,t)]=¯0,

    for ¯0˜˜α˜<~(12). That is, ˜ua is a unique soft fixed point of the mapping (f,φ).

    Example 3.10. Let U=R,Ω=R+,t>0, and ˜d:SP(˜U)×SP(˜U)×(0,)R(Ω) be a soft parametric metric space on ˜U defined by

    ˜d(˜ua,˜va,t)=t2(|uv|+|aa|).

    Thus, (˜U,˜d,Ω) is a soft complete parametric metric space. Consider (f,φ):(˜U,˜d,Ω)(˜U,˜d,Ω) as a soft continuous mapping where f:UU,φ:ΩΩ is defined by f(u)=14sinu, φ(a)=a3, then

    ˜d((f,φ)(˜ua),(f,φ)(˜va),t)=˜d((14sinu)a3,(14sinv)a3,t)=t2(|14sinu14sinv|+|a3a3|)t2(14|uv|+13|aa|)13t2(|uv|+|aa|)=13˜d(˜ua,˜va,t).

    Since ˜α=~(13), we conclude that (f,φ):(˜U,˜d,Ω)(˜U,˜d,Ω) is a soft contraction mapping. Using the Theorem 3.7, we have a unique soft point ˜uaSP(˜U) such that (f,φ)(˜ua)=˜ua.

    The role of fixed point theory is considered crucial in surveys conducted in both metric and topological spaces. As this theory has been applied by numerous authors in various metric spaces and applied sciences, this study has been conducted on fixed point theorems in parametric soft metric spaces. The article confidently introduces the soft topology generated by a parametric soft metric space. It has been shown that Banach's fixed point theorem can be extended to a soft complete parametric metric space. Moreover, an illustrative example has been provided using this fixed point theorem.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare no conflict of interest.



    [1] M. Abbas, G. Murtaza, S. Romaguera, On the fixed point theory of soft metric spaces, Fixed Point Theory Appl., 2016 (2016), 17. https://doi.org/10.1186/s13663-016-0502-y doi: 10.1186/s13663-016-0502-y
    [2] M. Abbas, Soft set theory: generalizations, fixed point theorems, and applications, España: Universitat Politecnica de Valencia, 2014.
    [3] M. Aslantas, H. Sahin, D. Turkoglu, Some Caristi type fixed point theorems, J. Anal., 29 (2021), 89–103. https://doi.org/10.1007/s41478-020-00248-8 doi: 10.1007/s41478-020-00248-8
    [4] M. Aslantas, H. Sahin, U. Sadullah, Some generalizations for mixed multivalued mappings, Appl. Gen. Topol., 23 (2022), 169–178.
    [5] S. K. Barve, Q. Kabir, M. Mohamaad, Soft fixed point theorem for contraction conditions in dislocated soft metric space, International Journal of Scientific Research and Reviews, 8 (2019), 785–791.
    [6] S. Bayramov, C. Gunduz, Soft locally compact spaces and soft paracompact spaces, Journal of Mathematics and System Science, 3 (2013), 122–130.
    [7] R. Bhardwaj, H. G. S. Kumar, B. K. Singh, Q. A. Kabir, P. Konar, Fixed point theorems in soft parametric metric spaces, Adv. Math., 9 (2020), 1857–8365. https://doi.org/10.37418/amsj.9.12.11 doi: 10.37418/amsj.9.12.11
    [8] R. Bhardwaj, Fixed point results on a complete soft usual metric space, Turkish Journal of Computer and Mathematics Education, 11 (2020), 1035–1040. https://doi.org/10.17762/turcomat.v11i3.10220 doi: 10.17762/turcomat.v11i3.10220
    [9] C. M. Chen, Z. H. Xu, E. Karapinar, Soft fixed point theorems for the soft comparable contractions, Journal of Function Spaces, 2021 (2021), 5554510. https://doi.org/10.1155/2021/5554510 doi: 10.1155/2021/5554510
    [10] S. Das, S. K. Samant, Soft real sets, soft real numbers and their properties, Journal of Fuzzy Mathematics, 20 (2012), 551–576.
    [11] S. Georgiev, K. Zennir, Multiple fixed-point theorems and applications in the theory of ODEs, FDEs and PDEs, 1 Eds., New York: Chapman and Hall/CRC, 2020. https://doi.org/10.1201/9781003028727
    [12] S. G. Georgiev, K. Zennir, Classical solutions for a class of IVP for nonlinear two-dimensional wave equations via new fixed point approach, Partial Differential Equations in Applied Mathematics, 2 (2020), 100014. https://doi.org/10.1016/j.padiff.2020.100014 doi: 10.1016/j.padiff.2020.100014
    [13] A. C. Guler, E. D. Yildirim, O. Ozbakir, A fixed point theorem on soft G-metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 885–894. https://doi.org/10.22436/JNSA.009.03.18 doi: 10.22436/JNSA.009.03.18
    [14] C. Aras, S. Bayramov, V. Cafarli, Fixed point theorems on soft S-metric spaces, Commun. Math. Appl., 9 (2018), 725–735. https://doi.org/10.26713/CMA.V9I4.1047 doi: 10.26713/CMA.V9I4.1047
    [15] H. Hosseinzadeh, Fixed point theorems on soft metric spaces, J. Fixed Point Theory Appl., 19 (2017), 1625–1647. https://doi.org/10.1007/s11784-016-0390-0 doi: 10.1007/s11784-016-0390-0
    [16] S. A. Khandait, R. Bhardwaj, C. Singh, Fixed point result with soft cone metric space with examples, Mathematical Theory and Modeling, 9 (2019), 62–79. https://doi.org/10.7176/MTM/9-4-07 doi: 10.7176/MTM/9-4-07
    [17] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6
    [18] K. Mebarki, S. G. Georgiev, S. Djebali, K. Zennir, Fixed point theorems with applications, 1 Eds., New York: Chapman and Hall/CRC, 2023. https://doi.org/10.1201/9781003381969
    [19] D. A. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [20] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006
    [21] S. Sonam, C. S. Chauhan, R. Bhardwaj, S. Narayan, Fixed point results in soft rectangular B-metric space, Nonlinear Functional Analysis and Applications, 28 (2023), 753–774. https://doi.org/10.22771/nfaa.2023.28.03.11 doi: 10.22771/nfaa.2023.28.03.11
    [22] K. Veliyeva, C. G. Aras, S. Bayramov, Some fixed-point type theorems on parametric soft b-metric spaces, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 44 (2024), 1–12.
    [23] D. Wardowski, On a soft mapping and its fixed points, Fixed Point Theory Appl., 2013 (2013), 182. https://doi.org/10.1186/1687-1812-2013-182 doi: 10.1186/1687-1812-2013-182
    [24] M. I. Yazar, C. G. Aras, S. Bayramov, Fixed point theorems of soft contractive mappings, Filomat, 30 (2013), 269–279. https://doi.org/10.2298/FIL1602269Y doi: 10.2298/FIL1602269Y
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1252) PDF downloads(123) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog