Processing math: 62%
Research article Special Issues

Quasi-projective and finite-time synchronization of fractional-order memristive complex-valued delay neural networks via hybrid control

  • We focused on the quasi-projective synchronization (QPS) and finite-time synchronization (FNTS) for a class of fractional-order memristive complex-valued delay neural networks (FOMCVDNNs). Rather than decomposing the complex-valued system into its real and imaginary components, we adopted a more streamlined approach by introducing a lemma associated with the complex-valued sign function. This innovative technique enabled us to design a simpler discontinuous controller. Then, based on the finite-time Lemma, measurable selection theorem, Lyapunov function theory, properties of the Mittag-Leffler function, and the fractional-order Razumikhin theorem, various substantial results were derived using a novel hybrid control scheme. In conclusion, we presented numerical simulations to illustrate the practical effectiveness of our theoretical findings.

    Citation: Jiaqing Zhu, Guodong Zhang, Leimin Wang. Quasi-projective and finite-time synchronization of fractional-order memristive complex-valued delay neural networks via hybrid control[J]. AIMS Mathematics, 2024, 9(3): 7627-7644. doi: 10.3934/math.2024370

    Related Papers:

    [1] E. Bonyah, C. W. Chukwu, M. L. Juga, Fatmawati . Modeling fractional-order dynamics of Syphilis via Mittag-Leffler law. AIMS Mathematics, 2021, 6(8): 8367-8389. doi: 10.3934/math.2021485
    [2] Saima Rashid, Fahd Jarad, Fatimah S. Bayones . On new computations of the fractional epidemic childhood disease model pertaining to the generalized fractional derivative with nonsingular kernel. AIMS Mathematics, 2022, 7(3): 4552-4573. doi: 10.3934/math.2022254
    [3] Muhammad Altaf Khan, Muhammad Ismail, Saif Ullah, Muhammad Farhan . Fractional order SIR model with generalized incidence rate. AIMS Mathematics, 2020, 5(3): 1856-1880. doi: 10.3934/math.2020124
    [4] Rahat Zarin, Abdur Raouf, Amir Khan, Aeshah A. Raezah, Usa Wannasingha Humphries . Computational modeling of financial crime population dynamics under different fractional operators. AIMS Mathematics, 2023, 8(9): 20755-20789. doi: 10.3934/math.20231058
    [5] Ahu Ercan . Comparative analysis for fractional nonlinear Sturm-Liouville equations with singular and non-singular kernels. AIMS Mathematics, 2022, 7(7): 13325-13343. doi: 10.3934/math.2022736
    [6] Gulalai, Shabir Ahmad, Fathalla Ali Rihan, Aman Ullah, Qasem M. Al-Mdallal, Ali Akgül . Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative. AIMS Mathematics, 2022, 7(5): 7847-7865. doi: 10.3934/math.2022439
    [7] Sabri T. M. Thabet, Reem M. Alraimy, Imed Kedim, Aiman Mukheimer, Thabet Abdeljawad . Exploring the solutions of a financial bubble model via a new fractional derivative. AIMS Mathematics, 2025, 10(4): 8587-8614. doi: 10.3934/math.2025394
    [8] Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876
    [9] Fatmawati, Muhammad Altaf Khan, Ebenezer Bonyah, Zakia Hammouch, Endrik Mifta Shaiful . A mathematical model of tuberculosis (TB) transmission with children and adults groups: A fractional model. AIMS Mathematics, 2020, 5(4): 2813-2842. doi: 10.3934/math.2020181
    [10] M. Mossa Al-Sawalha, Osama Y. Ababneh, Rasool Shah, Amjad khan, Kamsing Nonlaopon . Numerical analysis of fractional-order Whitham-Broer-Kaup equations with non-singular kernel operators. AIMS Mathematics, 2023, 8(1): 2308-2336. doi: 10.3934/math.2023120
  • We focused on the quasi-projective synchronization (QPS) and finite-time synchronization (FNTS) for a class of fractional-order memristive complex-valued delay neural networks (FOMCVDNNs). Rather than decomposing the complex-valued system into its real and imaginary components, we adopted a more streamlined approach by introducing a lemma associated with the complex-valued sign function. This innovative technique enabled us to design a simpler discontinuous controller. Then, based on the finite-time Lemma, measurable selection theorem, Lyapunov function theory, properties of the Mittag-Leffler function, and the fractional-order Razumikhin theorem, various substantial results were derived using a novel hybrid control scheme. In conclusion, we presented numerical simulations to illustrate the practical effectiveness of our theoretical findings.



    To show the dynamics of an epidemic, the susceptible-infected-recovered (SIR) fractional model was proposed. Despite the fact that the SIR model is approaching its centenary and its wholly analytical solutions have just been computed, the ADM represents one of them. The SIR model gives details and predictions on the spread of a virus in societies that recorded data alone cannot. This model is a system of FDEs. FDEs have numerous applications in science and engineering: for example, electrical networks [1,2], control theory, fluid flow, fractal theory [3,4], electromagnetic theory [5,6,7], chemistry, optical and neural network systems, potential theory, and biology. The ADM [8,9] was used in this study to solve a critical model of arbitrary orders: the SIR epidemic model. This technique has several benefits: It efficiently solves various classes of equations, whether they are linear or nonlinear, in stochastic and deterministic areas, and provides an analytical solution with no discretization or linearization [10,11,12,13].

    In recent works, the SIR model involving the Riemann-Liouville derivative and CD for childhood disease has been proposed [14]. There, the authors used the homotopy analysis method to derive a numerical solution for their model. In [15], the solution for the SIR model involving time fractional CD by utilizing the Laplace ADM (LADM) was illustrated graphically for unequal values of order α, which showed that the recovered population increases with a decreasing rate of infection in the population. In [13], the author proposed an epidemic model and used the fractional interpolated variation iteration method to find an efficient approximate solution. In [16], numerical solutions for the SIR model involving CD were obtained by using the Adams-type predictor-corrector method. In [17], the authors considered the fractional-order SIR epidemic model involving conformable FDs and used the conformable differential transform method (CFDTM) to calculate an approximate solution that is in the form of a rapidly convergent series. In [18], they found the numerical solutions for the epidemic model involving fractional CD using the Euler method. In [19], the author considered the time fractional epidemic model of childhood disease involving fractional CD and presented the numerical results by using the Adams-type implicit fractional linear multistep method. In [20], the author presented an epidemic model of non-fatal disease involving fractional CD and computed the analytical solution for the corresponding system of nonlinear FDEs by applying the LADM. The SIR model in CD was solved using the residual power series in [21]. In [22], the SIR epidemic model with the Mittag-Leffler fractional derivative was discussed. In [23], a fractional SIR model with delay in the context of the generalized Liouville-Caputo fractional derivative was given. The stability and equilibrium points of this model when containing CD were discussed before in many works, such as [24,25,26,27,28].

    In this research, the SIR model was used to solve problems involving three different FDs: CFD, ABD, and CD derivatives. A comparison between the solutions of the SIR system, containing these three derivatives, is given. Important applications of ABD and CFD can be found in [29,30].

    This research is organized as follows: In Section 2, the main definitions are given. In Section 3, the first definition (CFD) is discussed. Then, in Section 4, the second definition (CD) is given. In Section 5, the third definition (ABD) is discussed. In Section 6, a comparison between these three different definitions is discussed. Finally, in Section 7, a conclusive summary to this research is given. All the results of the SIR model are obtained and compared to all of these using the fourth order Runge-Kutta 4 (RK4) solution from the Mathematica 5.2 package.

    The definitions of the three fractional derivatives used in this research and the main properties and advantages of using each definition are given here.

    (1) The definition of the CD of order υ is [31]

    C0Dυtf(t)=1Γ(nυ)t0f (n)(τ)dτ(tτ)υn+1,n1<υ<n. (2.1)

    Its corresponding fractional integral (FI) is [31]

    CIυϝ(t)=1Γ(υ)t0ϝ(τ)(tτ)υ1dτ,  0<υ<1. (2.2)

    Moreover,

    (CIυ)(CDυ)ϝ(t)=ϝ(t)ϝ(a). (2.3)

    This definition is considered one of the classical FDs and is one of the most well known and famous FDs, as follows [31]:

    ⅰ) Its main advantage is that the initial conditions for FDEs containing CD take an identical form as for integer-order DEs, such as

    f (a),f (a),, (2.4)

    and they have well-known physical meaning.

    ⅱ) The derivative of a constant by using the Caputo definition is equal to zero, whereas the Riemann-Liouville derivative of a constant is not equal to zero, as follows:

    RL0Dυt(C)=CtυΓ(1υ). (2.5)

    So, the properties of this definition coincide with the properties of the integer-order derivative definition.

    (2) The definition of the CFD of order υ is [30]

    CFDυaϝ(t)=B(υ)1υtaexp(υ(tτ)1υ)ϝ(s)ds, (2.6)

    where the normalization function B(υ) >0 satisfies B(0)=B(1)=1. Its corresponding FI is [32]

    CFIυaϝ(t)=1υB(υ)ϝ(t)+υB(υ)taϝ(s)ds,   υ(0,1), (2.7)

    where

    (CFIυa)(CFDυa)ϝ(t)=ϝ(t)ϝ(a). (2.8)

    The main advantage of using this definition is that there is no singularity in the definition, as shown in (2.6) and (2.7).

    (3) The ABD of order υ of ϝ(t) is [32]

    ABDυϝ(t)=B(υ)1υt0Eυ(υ(ts)1υ)υϝ(s)ds, (2.9)

    where Eυ is the Mittag-Leffler function of one variable, and its reduced FI is [9]

    ABIυϝ(t)=1υB(υ)ϝ(t)+υB(υ)Γ(υ)t0ϝ(s)(ts)υ1ds,   0<υ<1. (2.10)

    Also,

    (ABIυ)(ABDυ)ϝ(t)=ϝ(t)ϝ(a). (2.11)

    In this research, we aim to see which one of the two new FDs (CFD and ABD) is closer to the classical fractional CD because we can deduce the properties of the integer derivatives from the properties of the CD, as we can see from the relations (2.4) and (2.5).

    The general form of the nonlinear FDE system with the CFD takes the following form:

    CFDυtyk(t)+hk(t) fk(¯y)=χk(t), (3.1)

    subject to

    y(j1)k(0)=ck,  k,j=1,2,,n, (3.2)

    and

    ¯y={y1(t),y2(t),,yn(t)},  0<υ<1.

    The SIR epidemic model is a special case of this system. Now, taking the FI (2.7) of order υ, and letting a=0 with the system (3.1)-(3.2), we get

    yk(t)=ck+1υB(υ)χk(t)+υB(υ)t0χk(s)ds1υB(υ)hk(t)fk(¯y)υB(υ)t0hk(s)fk(¯y)ds. (3.3)

    Let χk(t) be bounded tJ=[0,T],TR+, |hk(τ)|Mk for all 0τtT, Mk be finite constants, and fk(¯y) satisfy the Lipschitz condition, having Lipschitz constants Lk as

    |fk(¯y)fk(¯z)|Lk|¯y¯z|. (3.4)

    Furthermore, it has Adomian polynomials (APs) presented as

    fk(¯y)=m=0Akm(yk0,yk1,,ykn), (3.5)

    where

    Akm=1m!dmdλm[fk(j=0λjyj)]λ=0. (3.6)

    Substituting (3.5) into (3.3), we get

    yk(t)=ck+1υB(υ)χk(t)+υB(υ)t0χk(s)ds1υB(υ)hi(t)i=0AkiυB(υ)t0hk(s)i=0Akids. (3.7)

    Let yk(t)=i=0yki(t) in (3.7). Then,

    yk0(t)=ck+1υB(υ)χk(t)+υB(υ)t0χk(s)ds, (3.8)
    yki(t)=1υB(υ)hk(t)Ak(i1)υB(υ)t0hi(s)Ak(i1)ds,k1. (3.9)

    The final solution will be

    yk(t)=i=0yki(t). (3.10)

    Take the mapping Ψ:ΩΩ, where Ω is the Banach space (C(n)(J),). C(n)(J) is a class of continuous column vectors Y=(¯y) taking norm Y=nk=1maxtJ|yk(t)|, and (.) is the matrix transpose.

    Theorem 3.1. There exists a unique solution to the system (3.1)-(3.2) at 0<ϕ<1, ϕ=LMTB(υ), where L=nm=1Lm, M=max{M1,M2,,Mn}.

    Proof. Rewrite Eq (3.7) as

    Y(t)=C+1υB(υ)χ(t)+υB(υ)t0χ(s)ds1υB(υ)H(t)F(¯y)υB(υ)t0H(s)F(¯y)ds,

    where

    C=(c1,c2,,cn),χ(t)=(χ1,χ2,,χn),H(t)=diag{h1,h2,,hn},F(¯y(t))=(f1(¯y),f2(¯y),,fn(¯y)).

    The mapping Ψ:ΩΩ is defined as

    ΨY(t)=C+1υB(υ)χ(t)+υB(υ)t0χ(s) ds1υB(υ)H(t)F(¯y)υB(υ)t0H(s)F(¯y)ds.

    Let Y,ZΩ.

    ΨY(t)ΨZ(t)=1υB(υ)H(t)(F(¯y)F(¯z))υB(υ)t0H(s)(F(¯y)F(¯z))ds1υB(υ)H(t)(F(¯y)F(¯z))+υB(υ)t0H(s)(F(¯y)F(¯z))ds1υB(υ)H(t)F(¯y)F(¯z)+υB(υ)t0H(s)F(¯y)F(¯z)ds(1υ)MB(υ)(nm=1maxtJ|fm(¯y)fm(¯z)|)+υMB(υ)t0(nm=1maxtJ|fm(¯y)fm(¯z)|)dsMB(υ)(nm=1maxtJ|fm(¯y)fm(¯z)|)[(1υ)+υt0ds]MB(υ)[1υ+υT]nm=1LmYZM[1+υ(T1)]B(υ)nm=1LmYZMTB(υ)nm=1LmYZLMTB(υ)YZϕYZ.

    If 0<ϕ<1, the mapping Ψ will be a contraction, so, there is a unique solution to the system (3.1)-(3.2).

    Theorem 3.2. The series solution (3.10) will be convergent if |yk1|< and 0<ϕ<1,ϕ=LMTB(υ), as L=nk=1Lk, M=max{M1,M2,,Mn}.

    Proof. Take a sequence {Skr} such that Skr=ri=0yki(t) is partial sums sequence of i=0yki(t). We have

     f(Skr)=ri=0Aki(yk0,yk1,,ykr).

    If Skr and Skw are two partial sums where r>w, our goal is to prove that {Sir} is a Cauchy sequence in this Banach space.

    SkrSkw=ni=1maxtJ|SirSiw|=ni=1maxtJ|rj=w+1yij(t)|ni=1maxtJ|rj=w+11υB(υ)hk(t)Ak(i1)+υB(υ)t0hk(s)Ak(i1)ds|ni=1maxtJ|1υB(υ)hk(t)rj=w+1Ai(j1)+υB(υ)t0hk(s)rj=w+1Ai(j1)ds|ni=1maxtJ|1υB(υ)hk(t)r1j=wAij+υB(υ)t0hk(s)r1j=wAijds|ni=1maxtJ|1υB(υ)hk(t)[f(Si(r1))f(Si(w1))]+υB(υ)t0hk(s)[f(Si(r1))f(Si(w1))]ds]ni=1maxtJ[|1υB(υ)hk(t)[f(Si(r1))f(Si(w1))]|+|υB(υ)t0hk(s)[f(Si(r1))f(Si(w1))]ds|]ni=1maxtJ[1υB(υ)|hk(t)||f(Si(r1))f(Si(w1))|+υB(υ)t0|hk(s)||f(Si(r1))f(Si(w1))|]ds]ni=1maxtJ[1υB(υ)|hk(t)|(Linj=1|Sj(r1)Sj(w1)|)+γB(γ)t0|hk(s)|(Linj=1|Sj(r1)Sj(w1)|)ds]nk=1maxtJ(Linj=1|Sj(r1)Sj(w1)|)[1υB(υ)M+υMB(υ)t0ds]nk=1maxtJ(Linj=1|Sj(r1)Sj(w1)|)[1υB(υ)M+υMB(υ)t0ds]LMTB(υ)Sk(r1)Sk(w1)ϕSk(r1)Sk(w1).

    Let r=w+1. Then,

    Sk(w+1)SkwϕSkwSk(w1)ϕ2Sk(w1)Sk(w2)ϕwSk1Sk0.

    From the triangle inequality, we get

    SkrSkwSk(w+1)Skw+Sk(w+2)Sk(w+1)++SkrSk(r1) [ϕw+ϕw+1++ϕr1]Sk1Sk0ϕw[1+ϕ++ϕrw1]Sk1Sk0 ϕq[1ϕrw1ϕ]yk1(t).

    Since 0<ϕ<1 and r>w, (1ϕrw)1. Hence,

    SkrSkwϕw1βyk1(t)ϕw1ϕmaxtJ|yk1(t)|.

    If |yk1(t)|< and q, then SkrSkw0. So, {Skr} will be a Cauchy sequence in this Banach space, and the series i=0yki(t) will converge.

    Theorem 3.3. For the series solution (3.10), the maximum absolute error can be estimated as

    maxtJ|yk(t)wi=0yki(t)|ϕw1ϕmaxtJ|yk1(t)|.

    Proof. Using Theorem 3.2, we get

     SkrSkwϕw1ϕmaxtJ|yk1(t)|.

    However, Sir= ri=0yki(t) as r. Then, Skryk(t) and we get

    yk(t)Skwϕw1ϕmaxtJ|yk1(t)|.

    So, the maximum absolute error will be

    maxtJ|yk(t)wi=0yki(t)|ϕw1ϕmaxtJ|yk1(t)|.

    The simple epidemic model of arbitrary orders of a dangerous sickness in a wide range of populations, known as the SIR model, was presented in [14,33,34,35,36,37], by considering that the populace consists of three types of individuals: susceptible (S), referring to individuals who are not infected although they can be severely affected in an easy way; infected (I), the individual individuals who carry the diseases and are able to transmit the sickness to the susceptible; and recovered (R). The formal SIR model is presented as

    dSdt=(1η)πφSIπS,dIdt=φSI(γ+π)I,dRdt=ηπ+γIπR. (3.11)

    This model assumes that immunization is completely effective. Individuals are added to the population with a constant birth rate, and there is an extremely low youth sickness death rate. Every year, the proportion of citizens immunized at childbirth is expressed as η. Infected individuals are approximated by constant rate φ and recover at a rate γ from infection.

    The SIR epidemic model of arbitrary orders containing CFDs is

    CFDα0S(t)=(1p)πβSIπS,CFDα0I(t)=βSI(γ+π)I,CFDα0R(t)=pπ+γIπR, (3.12)

    subject to

    S(0)=N1, I(0)=N2, R(0)=N3.

    Using the ADM on system (3.11), we get the ADM recurrence relation as

    S0=N1+ CFIα(1p)π,Sj+1=β CFIα(Aj)π CFIα(Sj), (3.13)
    I0=N2,Ij+1=β CFIα(Aj) CFIα[(γ+π)Ij], (3.14)
    R0=N3+ CFIα(pπ)+,Rj+1=γ CFIα(Ij)π CFIα(Rj). (3.15)

    The series solution is

    S(t)=nk=0Sk(t),I(t)= nk=0Ik(t), and R(t)= nk=0Rk(t). (3.16)

    Figures 13 show the ADM solution of the SIR system when α=1,0.95,0.85,0.75 and n=5.

    Figure 1.  ADM solution of S(t) with CFD.
    Figure 2.  ADM solution of I(t) with CFD.
    Figure 3.  ADM solution of R(t) with CFD.

    Tables 13 show the absolute differences (ADs) between the ADM and RK4 solutions for the SIR system at α=1, respectively.

    Table 1.  ADM and RK4 solutions of S(t).
    t Solution of ADM Solution of RK4 AD
    0 1 1 0
    0.1 0.949 0.949 0.00004
    0.2 0.901 0.901 4×106
    0.3 0.854 0.854 0.00001
    0.4 0.810 0.810 0.00004
    0.5 0.768 0.768 0.00003
    0.6 0.729 0.729 0.00006
    0.7 0.691 0.691 4×106
    0.8 0.655 0.655 0.00008
    0.9 0.621 0.621 0.0003

     | Show Table
    DownLoad: CSV
    Table 2.  ADM and RK4 solutions of I(t).
    t Solution of ADM Solution of RK4 AD
    0 0.2 0.2 0
    0.1 0.207 0.207 0.00001
    0.2 0.214 0.214 0.00003
    0.3 0.2195 0.2195 0.00002
    0.4 0.225 0.225 0.00005
    0.5 0.22933 0.229 0.00003
    0.6 0.233 0.233 0.00004
    0.7 0.237 0.237 4×106
    0.8 0.239 0.244 0.005
    0.9 0.241 0.239 0.002

     | Show Table
    DownLoad: CSV
    Table 3.  ADM and RK4 solutions of R(t).
    t Solution of ADM Solution of RK4 AD
    0 0 0 0
    0.1 0.03589 0.0359 0.00001
    0.2 0.0704 0.0704 0.00001
    0.3 0.1036 0.1036 0.00004
    0.4 0.1354 0.1354 0.00004
    0.5 0.1661 0.1661 0.00002
    0.6 0.1955 0.1955 0.00004
    0.7 0.2239 0.2229 0.00096
    0.8 0.2511 0.2511 0.00003
    0.9 0.2772 0.2772 0.00002

     | Show Table
    DownLoad: CSV

    From Tables 13, for α=1, ADM and RK4 have close values as shown from the values of ADs between them.

    Figure 4 shows the ADM solution of the SIR system at α=0.5 and n=5.

    Figure 4.  ADM solution of the SIR Model with CFD.

    Figure 4 shows that the susceptible population decreases, whereas the infected population and the recovered population increase for a long time. In Figures 13, we see the effect of using different values of α on the SIR system.

    The general form of the nonlinear FDE system with a CD is

    cDυtyk(t)+hk(t)fk(¯y)=χk(t), (4.1)

    with

    y(j1)k(0)=ckj, k,j=1,2,,n, (4.2)

    as

    ¯y={y1(t),y2(t),,yn(t)}, 0<υ<1. (4.3)

    The SIR epidemic model is a special case of this system. Applying fractional integration of order υ, this minimizes (4.1)-(4.2) in the system of fractional integral equations (FIEs).

    yk(t)=mj=1ckjΓ(υ)tυ1+1Γ(υ)t0(tτ)υ1χk(τ)dτ1Γ(υ)t0(tτ)υ1hk(τ)fk(¯y)dτ. (4.4)

    Assume that χk(t) is bounded,  tJ=[0,T],TR+, |hk(τ)|Kk,  0τtT, Kk are finite constants, and fk(¯y) satisfy the Lipschitz condition with Lipschitz constants Lk as

    |fk(¯y)fk(¯z)|Lk|¯y¯z|. (4.5)

    Substituting (3.5) into (4.4), we have

    yk(t)=mj=1ckjΓ(υ)tυ1+1Γ(υ)t0(tτ)υ1χk(τ)dτ1Γ(υ)t0(tτ)υ1hk(τ)m=0Akmdτ.       (4.6)

    Let yk(t)=m=0xkm(t) substitute in (4.6) and we get

    yk0(t)=mj=1ckjΓ(υ)tυ1+1Γ(β)t0(tτ)υ1χk(τ)dτ,ykm(t)=1Γ(υ)t0(tτ)υ1hk(τ)m=0Ak(m1)dτ,m1.       (4.7)

    The final solution will be

    yk(t)=m=0ykm(t). (4.8)

    Take the mapping Ψ:ΩΩ. Ω is the Banach space (C(n)(J),), where C(n)(J) is the class of continuous column vectors Y=(¯y) with Y=nm=1maxtJ|ym(t)|, and (.) denotes the matrix transpose.

    Theorem 5.1. The system (4.1)-(4.2) has a unique solution when 0<ϕ<1, ϕ=KLTυυΓ(υ), {where }L=nm=1Lm, K=max{K1,K2,,Kn}.

    Proof. Equation (4.4) can be described as

    Y(t)=A+1Γ(υ)t0(tτ)υ1G(τ)dτ1Γ(υ)t0(tτ)υ1H(τ)F(¯y)dτ,

    where

    A=(a1,a2,,an),Y(t)=(y1,y2,,yn),H(t)=diag{h1,h2,,hn},F(¯y(t))=(f1(¯y),f2(¯y),,fn(¯y)).

    Let X,ZΩ.

    ΨY(t)ΨZ(t)=1Γ(υ)t0(tτ)υ1H(τ)(F(¯y)F(¯z))dτ1Γ(υ)t0(tτ)υ1H(τ)(F(¯y)F(¯z))dτ1Γ(υ)t0(tτ)υ1H(τ)F(¯y)F(¯z)dτKΓ(υ)t0(tτ)υ1(nm=1maxtJ|fm(¯y)fm(¯z)|)dτKΓ(υ)(nm=1maxtJ|fm(¯y)fm(¯z)|)t0(tτ)υ1dτKTυΓ(υ)nm=1LmYZKLTυυΓ(υ)YZϕYZ.

    With the condition 0<ϕ<1, the mapping Ψ is a contraction, and then there exists a unique solution Y C(n)(J).

    Theorem 5.2. The series solution of the system (4.1)-(4.2) using ADM converges if |yi1|<, 0<ϕ<1, and ϕ=LKTυυΓ(υ), where L=nm=1Lm, K=max{K1,K2,,Kn}.

    Proof. Take a sequence {Skr} such that Skr=rm=0ykm(t) is the partial sums sequence from the series solution m=0ykm(t). We get

     f(Skr)=rm=0Akm(yk0,yk1,,ykr).

    Let Skr and Skw be two partial sums where r>w. Our goal is to show that {Skr} is a Cauchy sequence in this Banach space.

    SkpSkq=nm=1maxtJ|SmrSmw|=nm=1maxtJ|rj=w+1ymj(t)|nm=1maxtJ|1Γ(υ)t0(tτ)υ1hk(τ)Am(j1)dτ|nm=1maxtJ|1Γ(υ)t0(tτ)υ1hk(τ)rj=w+1Am(j1)dτ|nm=1maxtJ|1Γ(υ)t0(tτ)υ1hk(τ)r1j=wAmjdτ|nm=1maxtJ|1Γ(υ)t0(tτ)υ1hk(τ)[f(Sm(r1))f(Sm(w1))]dτ|nm=1maxtJ1Γ(υ)t0(tτ)υ1|hk(τ)||(f(Sm(r1))f(Sm(w1)))|dτnm=1maxtJ1Γ(υ)t0(tτ)υ1|hi(τ)|(Lmnj=1|Sj(r1)Sj(w1)|)dτnm=1maxtJLKΓ(υ)t0(tτ)υ1dτSj(r1)Sj(w1)LKTυΓ(υ)Sj(r1)Sj(w1)ϕSj(r1)Sj(w1).

    Let p=q+1. Then,

    Sk(q+1)SkqϕSkqSk(q1)ϕ2Sk(q1)Sk(q2)ϕqSk1Sk0.

    Using the triangle inequality,

    SkrSkwSk(w+1)Skw+Sk(w+2)Sk(w+1)++SkrSk(r1) [ϕw+ϕw+1++ϕr1]Sk1Sk0ϕw[1+ϕ++ϕrw1]Sk1Sk0 ϕw[1ϕrw1ϕ]yk1(t),

    where 0<ϕ<1, and r>w. Consequently, (1ϕrw)1. Then,

    SkrSkwϕw1ϕyk1(t)ϕw1ϕmaxtJ|yk1(t)|. (5.1)

    However, |yk1(t)|<, and as w, SkrSkw0. Therefore, {Skr} is a Cauchy sequence in this Banach space.

    Theorem 5.3. The maximum absolute error of system (4.1)-(4.2) can be estimated as

    maxtJ|yk(t)wm=0ykm(t)|ϕw1ϕmaxtJ|yk1(t)|.

    Proof. From the convergence theorem inequality (5.1), we have

     SkrSkwϕw1ϕmaxtJ|yk1(t)|.

    However, Skp= rm=0xkm(t) as r. Then, Skryk(t), so

    yk(t)Skqϕw1ϕmaxtJ|yk1(t)|.

    So, the maximum absolute error will be

    maxtJ|yk(t)wm=0ykm(t)|ϕw1ϕmaxtJ|yk1(t)|.

    The SIR epidemic model of arbitrary orders with CD is

    CDα0S(t)=(1η)πφSIπS,CDα0I(t)=φSI(γ+π)I,CDα0R(t)=ηπ+γIπR, (5.2)

    subject to

    S(0)=N1, I(0)=N2, R(0)=N3.

    Applying the ADM to the system (5.2), we get the following algorithm:

    S0=N1+ CIα(1η)π,  Sj+1=φ CIα(Aj)π CIα(Sj),I0=N2,   Ij+1=φ CIα(Aj) CIα[(γ+π)Ij],R0=N3+ CIα(ηπ),   Rj+1=γ CIα(Ij)π CIα(Rj). (5.3)

    From the relations (5.3), the solution of the system (5.2) will be

    S(t)=nm=0Sm(t),I(t)= nm=0Im(t), and R(t)= nm=0Rm(t).

    Figures 57 show ADM solutions of the SIR system with different values of α (α=1,0.9,0.8,0.7). It is essential here to note that all the Parameters depend on the fractional order α of the model. The model consists of three variables, subject to time and n=5. The parameters can be identified as follows: Parameters (N1, N2, and N3) are the initial conditions of the SIR system, taking N1=1, N2=0.2, N3=0. Also, η=0.9 is the therapy rate, π=0.4 is the birth rate φ=0.8 is the infected individual rate, and γ=0.03 is the recovery from infection rate.

    Figure 5.  ADM solution of S(t) with CD.
    Figure 6.  ADM solution of I(t) with CD.
    Figure 7.  ADM solution of R(t) with CD.

    Tables 46 give ADs between the ADM and RK4 solutions of the SIR system at α=1, respectively.

    Table 4.  ADM and RK4 solutions of S(t).
    t ADM solution RK4 solution AD
    0 1 1 0
    0.1 0.949 0.949 4.4×105
    0.2 0.901 0.901 4×106
    0.3 0.854 0.854 1.2×105
    0.4 0.810 0.810 3.7×105
    0.5 0.768 0.768 3.3×105
    0.6 0.729 0.729 5.9×105
    0.7 0.691 0.691 4×106
    0.8 0.655 0.655 0.00008
    0.9 0.621 0.621 0.0003

     | Show Table
    DownLoad: CSV
    Table 5.  ADM and RK4 solutions of I(t).
    t ADM solution RK4 solution AD
    0 0.2 0.2 0
    0.1 0.2071 0.207 0.00001
    0.2 0.2136 0.214 0.00003
    0.3 0.2195 0.2195 0.00002
    0.4 0.225 0.225 0.00005
    0.5 0.229 0.229 0.00003
    0.6 0.233 0.233 0.00004
    0.7 0.237 0.237 4×106
    0.8 0.239 0.244 0.005
    0.9 0.241 0.239 0.002

     | Show Table
    DownLoad: CSV
    Table 6.  ADM and RK4 solutions of R(t).
    t ADM solution RK4 solution AD
    0 0 0 0
    0.1 0.036 0.036 0.00001
    0.2 0.070 0.070 0.00001
    0.3 0.104 0.104 0.00004
    0.4 0.135 0.135 0.00004
    0.5 0.166 0.166 0.00002
    0.6 0.196 0.196 0.00004
    0.7 0.224 0.223 0.00096
    0.8 0.251 0.251 0.00003
    0.9 0.277 0.277 0.00002

     | Show Table
    DownLoad: CSV

    From Tables 46, for α=1, ADM and RK4 are given enclosed values, as shown by the values of ADs between them.

    Figure 8 shows the ADM solution of the SIR system at α=0.5 and n=5.

    Figure 8.  ADM Solution of the SIR model in the Caputo sense at α=0.5.

    Figure 8 shows that the susceptible population decreases, whereas the infected population and the recovered population increase for a long time. In Figures 57, we see the effect of using different values of α on the SIR system.

    The general form of the nonlinear FDE system with the ABD is

    ABDυtyk(t)+hk(t)fk(¯y)=χk(t), (6.1)

    subject to

    x(j1)k(0)=ck, k,j=1,2,,n, (6.2)

    as

    ¯y={y1(t),y2(t),,yn(t)}, 0<υ<1.

    The SIR epidemic model is a special case of this system. Now, applying the FI of order υ, this reduces the system (6.1)-(6.2) to the system of FIEs,

    xk(t)=ck+1υB(υ)χk(t)+υB(υ)Γ(υ)t0(ts)υ1χk(s)ds1υB(υ)hk(t)fk(¯y)υB(υ)Γ(υ)t0(ts)υ1hk(s)fk(¯y)ds. (6.3)

    Assume that χk(t) is bounded tJ=[0,T],TR+,|hk(τ)|Mk,0τtT, Mk are finite constants, and fk(¯y) satisfy Lipschitz condition with the Lipschitz constants Lk such as

    |fk(¯y)fk(¯z)|Lk|¯y¯z|. (6.4)

    Substituting Eq (3.5) into Eq (6.3), we get

    yk(t)=ck+1υB(υ)χk(t)+υB(υ)Γ(υ)t0(ts)υ1χk(s)ds1υB(υ)hk(t)i=0AkiυB(υ)Γ(υ)t0(ts)υ1hk(s)i=0Akids.       (6.5)

    Let xk(t)=i=0xki(t) in (6.5) and we get

    xk0(t)=ck+1υB(υ)χk(t)+υB(υ)Γ(υ)t0(ts)υ1χk(s)ds, (6.6)
    xki(t)=1υB(υ)hk(t)Ak(i1)υB(υ)Γ(υ)t0(ts)υ1hk(s)Ak(i1)ds,i1.       (6.7)

    The final solution will be

    xk(t)=i=0xki(t). (6.8)

    Define the mapping Ψ:ΩΩ. Ω is the Banach space (C(n)(J),), where C(n)(J) is the class of continuous column vectors Y=(¯y) with norm Y=nk=1maxtJ|yk(t)|, and (.) denotes the matrix transpose.

    Theorem 6.1. The system (6.1)-(6.2) has a unique solution if 0<ϕ<1, ϕ=LM[Γ(υ)+Tυ]B(υ)Γ(υ), {where }L=nm=1Lm, M=max{M1,M2,,Mn}.

    Proof. Equation (6.5) can be described as

    Y(t)=C+1υB(υ)χ(t)+υB(υ)Γ(υ)t0(ts)υ1χ(s)ds1υB(υ)H(t)F(¯y)υB(υ)Γ(υ)t0(ts)υ1H(s)F(¯y)ds,

    where

    C=(c1,c2,,cn),χ(t)=(χ1,χ2,,χn),H(t)=diag{h1,h2,,hn},F(¯y(t))=(f1(¯y),f2(¯y),,fn(¯y)).

    The mapping Ψ:ΩΩ is defined as

    ΨX(t)=C+1υB(υ)χ(t)+υB(υ)Γ(υ)t0(ts)υ1χ(s)ds1υB(υ)H(t)F(¯y)υB(υ)Γ(υ)t0(ts)υ1H(s)F(¯y)ds.

    Let X,ZΩ.

    ΨY(t)ΨZ(t)=1υB(υ)H(t)(F(¯y)F(¯z))υB(υ)Γ(υ)t0(ts)υ1H(s)(F(¯y)F(¯z))ds1υB(υ)H(t)(F(¯y)F(¯z))+υB(υ)Γ(υ)t0(ts)υ1H(s)(F(¯y)F(¯z))ds1υB(υ)H(t)F(¯x)F(¯z)+υB(υ)Γ(υ)t0(ts)υ1H(s)F(¯x)F(¯z)ds(1υ)MB(υ)(nm=1maxtJ|fm(¯x)fm(¯z)|)+υMB(υ)Γ(υ)t0(ts)υ1(nm=1maxtJ|fm(¯y)fm(¯z)|)dsMB(υ)(nm=1maxtJ|fm(¯y)fm(¯z)|)[(1υ)+υΓ(υ)t0(ts)υ1ds]MB(υ)[1υ+υTυΓ(υ)]nm=1LmYZMB(υ)[1+TυΓ(υ)]nm=1LmYZM[Γ(γ)+Tγ]B(γ)Γ(γ)nm=1LmYZM[Γ(γ)+Tγ]B(γ)Γ(γ)nm=1LmYZLM[Γ(υ)+Tυ]B(υ)Γ(υ)YZϕYZ.

    If 0<ϕ<1, the mapping Ψ will be a contraction, and then there exists a unique solution of the system (6.1)-(6.2).

    Theorem 6.2. The series solution (6.8) will converge if |yk1|< and 0<ϕ<1,ϕ=LM[Γ(υ)+Tυ]B(υ)Γ(υ), where L=nk=1Lk, M=max{M1,M2,,Mn}.

    Proof. Take a sequence {Skr} such that Skr=ri=0yki(t) is a partial sums sequence of i=0yki(t). We have

     f(Skr)=pi=0Aki(yk0,yk1,,ykr).

    Let Skr and Skw be two partial sums where r>w. Our goal is to prove that {Skr} is a Cauchy sequence in this Banach space.

    SkrSkw=ni=1maxtJ|SirSiw|=ni=1maxtJ|rj=w+1xij(t)|ni=1maxtJ|rj=w+11υB(υ)hk(t)Ak(i1)+υB(υ)Γ(υ)t0(ts)υ1hk(s)Ak(i1)ds|ni=1maxtJ|1υB(υ)hk(t)rj=w+1Ai(j1)+υB(υ)Γ(υ)t0(ts)γ1hk(s)rj=w+1Ai(j1)ds|ni=1maxtJ|1υB(υ)hk(t)r1j=wAij+υB(υ)Γ(υ)t0(ts)υ1hk(s)r1j=wAijds|ni=1maxtJ|1υB(υ)hk(t)[f(Si(r1))f(Si(w1))]+υB(υ)Γ(υ)t0(ts)υ1hk(s)[f(Si(r1))f(Si(w1))]ds]ni=1maxtJ[|1υB(υ)hk(t)[f(Si(r1))f(Si(w1))]|+|υB(υ)Γ(υ)t0(ts)υ1hk(s)[f(Si(r1))f(Si(w1))]ds|]ni=1maxtJ[1υB(υ)|hk(t)||f(Si(r1))f(Si(w1))|+υB(υ)Γ(υ)t0(ts)υ1|hk(s)||f(Si(r1))f(Si(w1))|]ds]ni=1maxtJ[1υB(υ)|hk(t)|(Linj=1|Sj(r1)Sj(w1)|)+υB(υ)Γ(υ)t0(ts)υ1|hk(s)|(Linj=1|Sj(r1)Sj(w1)|)ds]ni=1maxtJ(Linj=1|Sj(r1)Sj(w1)|)[1υB(υ)M+MυB(υ)Γ(υ)t0(ts)υ1ds]ni=1maxtJ(Lknj=1|Sj(r1)Sj(w1)|)[1υB(υ)M+MTυB(υ)Γ(υ)]LM[Γ(υ)+Tυ]B(υ)Γ(υ)Sk(r1)Sk(w1)ϕSk(r1)Sk(w1).

    Let r=w+1. Then,

    Sk(w+1)SkwϕSkwSk(w1)ϕ2Sk(w1)Sk(w2)ϕwSk1Sk0.

    From the triangle inequality,

    SkrSkwSk(w+1)Skw+Sk(w+2)Sk(w+1)++SkrSk(r1) [ϕw+ϕw+1++ϕr1]Sk1Sk0ϕw[1+ϕ++ϕrw1]Sk1Sk0 ϕw[1ϕrw1ϕ]yk1(t).

    Since 0<ϕ<1 and r>w, (1ϕrw)1. Consequently,

    SkrSkwϕw1ϕyk1(t)ϕw1ϕmaxtJ|yk1(t)|,

    but |yk1(t)|<. As w, then, SkrSkw0. Therefore, {Skr} is a Cauchy sequence in this Banach space, so the series i=0yki(t) will converge.

    Theorem 6.3. The maximum absolute error of the series solution (6.8) is estimated as

    maxtJ|yk(t)wi=0yki(t)|ϕw1ϕmaxtJ|yk1(t)|.

    Proof. From Theorem 6.2, we have

     SkrSkwϕw1ϕmaxtJ|yk1(t)|.

    However, Sir= ri=0yki(t) as r. Then, Skryk(t). So

    yk(t)Skwϕw1ϕmaxtJ|yk1(t)|.

    So, the maximum absolute error will be

    maxtJ|yk(t)wi=0yki(t)|ϕw1ϕmaxtJ|yk1(t)|.

    The SIR epidemic model of arbitrary orders involving the ABD is

    ABDα0S(t)=(1p)πβSIπS,ABDα0I(t)=βSI(γ+π)I,ABDα0R(t)=pπ+γIπR, (6.9)

    subject to

    S(0)=N1, I(0)=N2, R(0)=N3.

    Applying the ADM to the system (6.9), we get the following solution algorithm:

    S0=N1+ ABIα(1p)π,Sj+1=β ABIα(Aj)π ABIα(Sj), (6.10)
    I0=N2,Ij+1=β ABIα(Aj) ABIα[(γ+π)Ij], (6.11)
    R0=N3+ ABIα(pπ),Rj+1=γ ABIα(Ij)π ABIα(Rj). (6.12)

    Using the relations (6.10)–(6.12), the series solution of the system (6.9) will be

    S(t)=nk=0Sk(t),I(t)= nk=0Ik(t),R(t)=  nk=0Rk(t).

    Figures 911 show the ADM solution of the SIR system at different values of α (α=1,0.95,0.85,0.75) and n=5, respectively.

    Figure 9.  ADM solution of S(t) in the Atangana-Baleanu sense at different values of α.
    Figure 10.  ADM solution of I(t) in the Atangana-Baleanu sense at different values of α.
    Figure 11.  ADM solution of R(t) in the Atangana-Baleanu sense at different values of α.

    Tables 79 show ADs between the ADM and RK4 solutions of the SIR system at α=1, respectively.

    Table 7.  ADM and RK4 solutions of S(t).
    t ADM solution RK4 solution AD
    0 1 1 0
    0.1 0.949 0.949 0.00004
    0.2 0.901 0.901 4×106
    0.3 0.854 0.854 0.00001
    0.4 0.810 0.810 0.00004
    0.5 0.768 0.768 0.00003
    0.6 0.729 0.729 0.00006
    0.7 0.691 0.691 4×106
    0.8 0.655 0.655 0.00008
    0.9 0.621 0.621 0.00027

     | Show Table
    DownLoad: CSV
    Table 8.  ADM and RK4 solutions of I(t).
    t ADM solution RK4 solution AD
    0 0.2 0.2 0
    0.1 0.207 0.207 0.00001
    0.2 0.214 0.214 0.00003
    0.3 0.2195 0.2195 0.00002
    0.4 0.225 0.225 0.00005
    0.5 0.229 0.229 0.00003
    0.6 0.233 0.233 0.00004
    0.7 0.237 0.237 4×106
    0.8 0.239 0.244 0.005
    0.9 0.241 0.239 0.002

     | Show Table
    DownLoad: CSV
    Table 9.  ADM and RK4 solutions of R(t).
    t ADM solution RK4 solution ADs
    0 0 0 0
    0.1 0.036 0.0359 0.00001
    0.2 0.070 0.0704 0.00001
    0.3 0.104 0.1036 0.00004
    0.4 0.135 0.1354 0.00004
    0.5 0.166 0.1661 0.00002
    0.6 0.196 0.1955 0.00004
    0.7 0.224 0.2229 0.00096
    0.8 0.251 0.2511 0.00003
    0.9 0.277 0.2772 0.00002

     | Show Table
    DownLoad: CSV

    From Tables 79, for α=1, ADM and RK4 are given enclosed values, as shown from the values of ADs between them.

    Figure 12 shows the ADM solution of the SIR system at α=0.5 and n=5.

    Figure 12.  ADM solution of the SIR model in the Atangana-Baleanu sense at α=0.5.

    From Figure 12, we see that the susceptible population reduces, whereas the infected population and the recovered population increase for a long time. In Figures 911, we see the effect of using different values of α on the SIR system.

    In this section, we aim to give a comparison between the previous three different FDs, as shown in the following figures. In Figures 1323, we show the solution of the SIR system at multiple values of α (α=1,0.95,0.85,0.75) and n=5, as follows:

    Figure 13.  S(t) solution of CFD, CD, ABD at α=0.95.
    Figure 14.  S(t) solution of CFD, CD, ABD at α=0.85.
    Figure 15.  S(t) solution of CFD, CD, ABD at α=0.75.
    Figure 16.  I(t) solution of CFD, CD, ABD at α=1.
    Figure 17.  I(t) solution of CFD, CD, ABD at α=0.95.
    Figure 18.  I(t) solution of CFD, CD, ABD at α=0.85.
    Figure 19.  I(t) solution of CFD, CD, ABD at α=0.75.
    Figure 20.  R(t) solution of CFD, CD, ABD at α=1.
    Figure 21.  R(t) solution of CFD, CD, ABD at α=0.95.
    Figure 22.  R(t) solution of CFD, CD, ABD at \alpha = 0.85 .
    Figure 23.  R(t) solution of CFD, CD, ABD at \alpha = 0.75 .

    (1) The solution of S(t) is given in Figures 1315.

    (2) The solution of I(t) is given in Figures 1619.

    (3) The solution of R(t) is given in Figures 2023.

    From Figures 1323, we see the following:

    ⅰ) In the integer case ( \alpha = 1 ), the three FDs give the same solution (see Figures 13, 16 and 20).

    ⅱ) For fractional orders, we see that the ABD is closer to the CD than the CFD.

    This research considered analytical and numerical solutions of an important fractional order model of epidemic childhood diseases (the SIR model) with three different definitions of fractional derivatives: CD, CFD, and ABD. The analytical solution was obtained using the ADM, while the numerical solution was obtained using the RK4 method. By calculating the absolute differences between these two methods, we see that the two solutions coincide (see Tables 19). A comparison is made between the solutions obtained with the three different definitions, and we see that, for integer order ( \alpha = 1 ), the three different FDs give the same solution (see Figures 13, 16 and 20). Meanwhile, for fractional orders, we see that the ABD is closer to the CD than the CFD (see Figures 1415, 1719 and 2123).

    Eman A. A. Ziada and Osama Moaaz: Conceptualization, Methodology, Formal analysis; Salwa El-Morsy and Ahmad M. Alshamrani: Investigation, Writing-original draft; Sameh S. Askar and Monica Botros: Software, Writing-review & editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research was supported by the Researchers Supporting Project number (RSPD2024R533), King Saud University, Riyadh, Saudi Arabia.

    The authors declare no competing interests.



    [1] W. Xu, J. Cao, M. Xiao, D. W. Ho, G. Wen, A new framework for analysis on stability and bifurcation in a class of neural networks with discrete and distributed delays, IEEE Trans. Cybern., 45 (2015), 2224–2236. https://doi.org/10.1109/TCYB.2014.2367591 doi: 10.1109/TCYB.2014.2367591
    [2] L. Wang, T. Dong, M. F. Ge, Finite-time synchronization of memristor chaotic systems and its application in image encryption, Appl. Math. Comput., 347 (2019), 293–305. https://doi.org/10.1016/j.amc.2018.11.017 doi: 10.1016/j.amc.2018.11.017
    [3] F. C. Hoppensteadt, E. M. Izhikevich, Pattern recognition via synchronization in phase-locked loop neural networks, IEEE Trans. Neural Netw., 11 (2000), 734–738. https://doi.org/10.1109/72.846744 doi: 10.1109/72.846744
    [4] H. Shen, Y. Zhu, L. Zhang, J. H. Park, Extended dissipative state estimation for markov jump neural networks with unreliable links, IEEE Trans. Neural Netw. Learn. Syst., 28 (2016), 346–358. https://doi.org/10.1109/TNNLS.2015.2511196 doi: 10.1109/TNNLS.2015.2511196
    [5] C. Xu, M. Liao, P. Li, Y. Guo, Q. Xiao, S. Yuan, Influence of multiple time delays on bifurcation of fractional-order neural networks, Appl. Math. Comput., 361 (2019), 565–582. https://doi.org/10.1016/j.amc.2019.05.057 doi: 10.1016/j.amc.2019.05.057
    [6] P. Liu, Z. Zeng, J. Wang, Asymptotic and finite-time cluster synchronization of coupled fractional-order neural networks with time delay, IEEE Trans. Neural Netw. Learn. Syst., 31 (2020), 4956–4967. https://doi.org/10.1109/TNNLS.2019.2962006 doi: 10.1109/TNNLS.2019.2962006
    [7] A. Pratap, R. Raja, J. Alzabut, J. Cao, G. Rajchakit, C. Huang, Mittag-leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field, Math. Methods Appl. Sci., 43 (2020), 6223–6253. https://doi.org/10.1002/mma.6367 doi: 10.1002/mma.6367
    [8] L. Chua, Memristor-the missing circuit element, IEEE Trans. Circuit Theory, 18 (1971), 507–519. https://doi.org/10.1109/TCT.1971.1083337 doi: 10.1109/TCT.1971.1083337
    [9] J. Zhou, X. Ma, Z. Yan, S. Arik, Non-fragile output-feedback control for time-delay neural networks with persistent dwell time switching: A system mode and time scheduler dual-dependent design, Neural Netw., 169 (2024), 733–743. https://doi.org/10.1016/j.neunet.2023.11.007 doi: 10.1016/j.neunet.2023.11.007
    [10] J. W. Smith, Complex-valued neural networks for data-driven signal processing and signal understanding, arXiv: 2309.07948, 2023. https://doi.org/10.48550/arXiv.2309.07948
    [11] R. Trabelsi, I. Jabri, F. Melgani, F. Smach, N. Conci, A. Bouallegue, Indoor object recognition in rgbd images with complex-valued neural networks for visually-impaired people, Neurocomputing, 330 (2019), 94–103. https://doi.org/10.1016/j.neucom.2018.11.032 doi: 10.1016/j.neucom.2018.11.032
    [12] M. Z. Khan, A. Sarkar, A. Noorwali, Memristive hyperchaotic system-based complex-valued artificial neural synchronization for secured communication in industrial internet of things, Eng. Appl. Artif. Intell., 123 (2023), 106357. https://doi.org/10.1016/j.engappai.2023.106357 doi: 10.1016/j.engappai.2023.106357
    [13] H. Zhang, J. Cheng, H. Zhang, W. Zhang, J. Cao, Quasi-uniform synchronization of caputo type fractional neural networks with leakage and discrete delays, Chaos Solitons Fractals, 152 (2021), 111432. https://doi.org/10.1016/j.chaos.2021.111432 doi: 10.1016/j.chaos.2021.111432
    [14] S. Yang, J. Yu, C. Hu, H. Jiang, Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks, Neural Netw., 104 (2018), 104–113. https://doi.org/10.1016/j.neunet.2018.04.007 doi: 10.1016/j.neunet.2018.04.007
    [15] H. Zhang, Y. Cheng, H. Zhang, W. Zhang, J. Cao, Hybrid control design for mittag-leffler projective synchronization on foqvnns with multiple mixed delays and impulsive effects, Math. Comput. Simul., 197 (2022), 341–357. https://doi.org/10.1016/j.matcom.2022.02.022 doi: 10.1016/j.matcom.2022.02.022
    [16] H. L. Li, J. Cao, H. Jiang, A. Alsaedi, Finite-time synchronization of fractional-order complex networks via hybrid feedback control, Neurocomputing, 320 (2018), 69–75. https://doi.org/10.1016/j.neucom.2018.09.021 doi: 10.1016/j.neucom.2018.09.021
    [17] H. L. Li, J. Cao, H. Jiang, A. Alsaedi, Finite-time synchronization and parameter identification of uncertain fractional-order complex networks, Physica A, 533 (2019), 122027. https://doi.org/10.1016/j.physa.2019.122027 doi: 10.1016/j.physa.2019.122027
    [18] H. Yan, Y. Qiao, L. Duan, J. Miao, New results of quasi-projective synchronization for fractional-order complex-valued neural networks with leakage and discrete delays, Chaos Solitons Fractals, 159 (2022), 112121. https://doi.org/10.1016/j.chaos.2022.112121 doi: 10.1016/j.chaos.2022.112121
    [19] H. L. Li, C. Hu, J. Cao, H. Jiang, A. Alsaedi, Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays, Neural Netw., 118 (2019), 102–109. https://doi.org/10.1016/j.neunet.2019.06.008 doi: 10.1016/j.neunet.2019.06.008
    [20] X. Li, X. Liu, F. Wang, Anti-synchronization of fractional-order complex-valued neural networks with a leakage delay and time-varying delays, Chaos Solitons Fractals, 174 (2023), 113754. https://doi.org/10.1016/j.chaos.2023.113754 doi: 10.1016/j.chaos.2023.113754
    [21] Y. Cheng, T. Hu, W. Xu, X. Zhang, S. Zhong, Fixed-time synchronization of fractional-order complex-valued neural networks with time-varying delay via sliding mode control, Neurocomputing, 505 (2022), 339–352. https://doi.org/10.1016/j.neucom.2022.07.015 doi: 10.1016/j.neucom.2022.07.015
    [22] X. Song, X. Sun, J. Man, S. Song, Q. Wu, Synchronization of fractional-order spatiotemporal complex-valued neural networks in finite-time interval and its application, J. Franklin Inst., 358 (2021), 8207–8225. https://doi.org/10.1016/j.jfranklin.2021.08.016 doi: 10.1016/j.jfranklin.2021.08.016
    [23] K. Udhayakumar, R. Rakkiyappan, F. A. Rihan, S. Banerjee, Projective multi-synchronization of fractional-order complex-valued coupled multi-stable neural networks with impulsive control, Neurocomputing, 467 (2022), 392–405. https://doi.org/10.1016/j.neucom.2021.10.003 doi: 10.1016/j.neucom.2021.10.003
    [24] J. Yang, H. L. Li, L. Zhang, C. Hu, H. Jiang, Quasi-projective and finite-time synchronization of delayed fractional-order bam neural networks via quantized control, Math. Methods Appl. Sci., 46 (2023), 197–214. https://doi.org/10.1002/mma.8504 doi: 10.1002/mma.8504
    [25] N. Yao, M. Hui, J. Zhang, J. Yan, W. Wu, Complete synchronization of delayed fractional-order complex-valued neural networks via adaptive control, In: 2022 5th International conference on artificial intelligence and big data, 2022, 173–178. https://doi.org/10.1109/ICAIBD55127.2022.9820317
    [26] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, New York: Elsevier, 2006.
    [27] X. Yang, J. Cao, Finite-time stochastic synchronization of complex networks, Appl. Math. Model., 34 (2010), 3631–3641. https://doi.org/10.1016/j.apm.2010.03.012 doi: 10.1016/j.apm.2010.03.012
    [28] L. Feng, J. Yu, C. Hu, C. Yang, H. Jiang, Nonseparation method-based finite/fixed-time synchronization of fully complex-valued discontinuous neural networks, IEEE Trans. Cybern., 51 (2020), 3212–3223. https://doi.org/10.1109/TCYB.2020.2980684 doi: 10.1109/TCYB.2020.2980684
    [29] Q. Gan, L. Li, J. Yang, Y. Qin, M. Meng, Improved results on fixed-/preassigned-time synchronization for memristive complex-valued neural networks, IEEE Trans. Neural Netw. Learn. Syst., 33 (2021), 5542–5556. https://doi.org/10.1109/TNNLS.2021.3070966 doi: 10.1109/TNNLS.2021.3070966
    [30] B. Zheng, C. Hu, J. Yu, H. Jiang, Finite-time synchronization of fully complex-valued neural networks with fractional-order, Neurocomputing, 373 (2020), 70–80. https://doi.org/10.1016/j.neucom.2019.09.048 doi: 10.1016/j.neucom.2019.09.048
    [31] A. A. Kilbas, M. Saigo, R. K. Saxena, Generalized mittag-leffler function and generalized fractional calculus operators, Integral Transform. Spec. Funct., 15 (2004), 31–49. https://doi.org/10.1080/10652460310001600717 doi: 10.1080/10652460310001600717
    [32] J. P. Aubin, A. Cellina, Differential inclusions: Set-valued maps and viability theory, Berlin, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-69512-4
    [33] A. F. Filippov, Differential equations with discontinuous righthand sides: Control systems, Dordrecht: Springer, 2013. https://doi.org/10.1007/978-94-015-7793-9
    [34] G. Zhang, Z. Zeng, D. Ning, Novel results on synchronization for a class of switched inertial neural networks with distributed delays, Inf. Sci., 511 (2020), 114–126. https://doi.org/10.1016/j.ins.2019.09.048 doi: 10.1016/j.ins.2019.09.048
    [35] D. Baleanu, S. Sadati, R. Ghaderi, A. Ranjbar, T. Abdeljawad, F. Jarad, Razumikhin stability theorem for fractional systems with delay, Abstr. Appl. Anal., 2010 (2010), 124812. https://doi.org/10.1155/2010/124812 doi: 10.1155/2010/124812
    [36] J. Jia, Z. Zeng, Lmi-based criterion for global mittag-leffler lag quasi-synchronization of fractional-order memristor-based neural networks via linear feedback pinning control, Neurocomputing, 412 (2020), 226–243. https://doi.org/10.1016/j.neucom.2020.05.074 doi: 10.1016/j.neucom.2020.05.074
    [37] Y. Fan, X. Huang, Z. Wang, Y. Li, Improved quasi-synchronization criteria for delayed fractional-order memristor-based neural networks via linear feedback control, Neurocomputing, 306 (2018), 68–79. https://doi.org/10.1016/j.neucom.2018.03.060 doi: 10.1016/j.neucom.2018.03.060
    [38] Y. Shen, S. Zhu, X. Liu, S. Wen, Multiple mittag-leffler stability of fractional-order complex-valued memristive neural networks with delays, IEEE Trans. Cybern., 53 (2022), 5815–5825. https://doi.org/10.1109/TCYB.2022.3194059 doi: 10.1109/TCYB.2022.3194059
    [39] M. Syed Ali, G. Narayanan, Z. Orman, V. Shekher, S. Arik, Finite time stability analysis of fractional-order complex-valued memristive neural networks with proportional delays, Neural Process. Lett., 51 (2020), 407–426. https://doi.org/10.1007/s11063-019-10097-7 doi: 10.1007/s11063-019-10097-7
    [40] J. Zhou, J. Dong, S. Xu, Asynchronous dissipative control of discrete-time fuzzy markov jump systems with dynamic state and input quantization, IEEE Trans. Fuzzy Syst., 31 (2023), 3906–3920. https://doi.org/10.1109/TFUZZ.2023.3271348 doi: 10.1109/TFUZZ.2023.3271348
  • This article has been cited by:

    1. Manish Goyal, Haci Mehmet Baskonus, Amit Prakash, Regarding new positive, bounded and convergent numerical solution of nonlinear time fractional HIV/AIDS transmission model, 2020, 139, 09600779, 110096, 10.1016/j.chaos.2020.110096
    2. Majid Bagheri, Ali Khani, Soheil Salahshour, Analytical Method for Solving the Fractional Order Generalized KdV Equation by a Beta-Fractional Derivative, 2020, 2020, 1687-9139, 1, 10.1155/2020/8819183
    3. Mehvish Fazal Ur Rehman, Yongyi Gu, Wenjun Yuan, Soheil Salahshour, Exact Analytical Solutions of Nonlinear Fractional Liouville Equation by Extended Complex Method, 2020, 2020, 1687-9139, 1, 10.1155/2020/8815363
    4. Dumitru Baleanu, Amin Jajarmi, Hakimeh Mohammadi, Shahram Rezapour, A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative, 2020, 134, 09600779, 109705, 10.1016/j.chaos.2020.109705
    5. Amit Prakash, Vijay Verma, Two efficient computational technique for fractional nonlinear Hirota–Satsuma coupled KdV equations, 2020, 38, 0264-4401, 791, 10.1108/EC-02-2020-0091
    6. Harendra Singh, Numerical simulation for fractional delay differential equations, 2020, 2195-268X, 10.1007/s40435-020-00671-6
    7. Wei Gao, Hatıra Günerhan, Haci Mehmet Baskonus, Analytical and approximate solutions of an epidemic system of HIV/AIDS transmission, 2020, 59, 11100168, 3197, 10.1016/j.aej.2020.07.043
    8. D.G. Prakasha, P. Veeresha, Analysis of Lakes pollution model with Mittag-Leffler kernel, 2020, 5, 24680133, 310, 10.1016/j.joes.2020.01.004
    9. Amit Prakash, Ajay Kumar, Haci Mehmet Baskonus, Ashok Kumar, Numerical analysis of nonlinear fractional Klein–Fock–Gordon equation arising in quantum field theory via Caputo–Fabrizio fractional operator, 2021, 2008-1359, 10.1007/s40096-020-00365-2
    10. Mutaz Mohammad, Carlo Cattani, A collocation method via the quasi-affine biorthogonal systems for solving weakly singular type of Volterra-Fredholm integral equations, 2020, 59, 11100168, 2181, 10.1016/j.aej.2020.01.046
    11. V. Padmavathi, A. Prakash, K. Alagesan, N. Magesh, Analysis and numerical simulation of novel coronavirus (COVID‐19) model with Mittag‐Leffler Kernel, 2021, 44, 0170-4214, 1863, 10.1002/mma.6886
    12. Manish Goyal, Vinod Kumar Bhardwaj, Amit Prakash, Investigating new positive, bounded, and convergent numerical solution for the nonlinear time‐dependent breast cancer dynamic competition model, 2021, 44, 0170-4214, 4636, 10.1002/mma.7057
    13. Hülya Durur, Asif Yokuş, Exact solutions of (2 + 1)-Ablowitz-Kaup-Newell-Segur equation, 2020, 0, 2444-8656, 10.2478/amns.2020.2.00074
    14. Uttam Ghosh, Susmita Sarkar, Bapin Mondal, Study of Stability and Bifurcation of Three Species Food Chain Model with Non-monotone Functional Response, 2021, 7, 2349-5103, 10.1007/s40819-021-01017-2
    15. Shao-Wen Yao, Muhammad Farman, Maryam Amin, Mustafa Inc, Ali Akgül, Aqeel Ahmad, Fractional order COVID-19 model with transmission rout infected through environment, 2022, 7, 2473-6988, 5156, 10.3934/math.2022288
    16. Amit Kumar Saraswat, Manish Goyal, Numerical simulation of time-dependent influenza model with Atangana–Baleanu non-integer order derivative in Liouville–Caputo sense, 2022, 96, 0973-7111, 10.1007/s12043-022-02335-w
    17. V. Padmavathi, N. Magesh, K. Alagesan, M. Ijaz Khan, Samia Elattar, Mamdooh Alwetaishi, Ahmed M. Galal, Numerical Modeling and Symmetry Analysis of a Pine Wilt Disease Model Using the Mittag–Leffler Kernel, 2022, 14, 2073-8994, 1067, 10.3390/sym14051067
    18. Amit Prakash, Numerical simulation of SIR childhood diseases model with fractional Adams–Bashforth method, 2022, 0170-4214, 10.1002/mma.8785
    19. Amit Prakash, Hardish Kaur, 2022, Chapter 38, 978-981-16-7663-5, 465, 10.1007/978-981-16-7664-2_38
    20. Manish Goyal, Amit Prakash, Shivangi Gupta, An Efficient Perturbation Sumudu Transform Technique for the Time-Fractional Vibration Equation with a Memory Dependent Fractional Derivative in Liouville–Caputo Sense, 2021, 7, 2349-5103, 10.1007/s40819-021-01068-5
    21. Amit Prakash, Hardish Kaur, Manish Goyal, 2022, Chapter 31, 978-981-16-7663-5, 383, 10.1007/978-981-16-7664-2_31
    22. Manish Goyal, Haci Mehmet Baskonus, A Reliable Solution of Arbitrary Order Nonlinear Hunter–Saxton Equation with Time Dependent Derivative in Liouville–Caputo Sense, 2021, 7, 2349-5103, 10.1007/s40819-021-01065-8
    23. Manish Goyal, Amit Prakash, Dumitru Baleanu, An efficient hybrid computational technique for the time dependent Lane-Emden equation of arbitrary order, 2022, 7, 24680133, 131, 10.1016/j.joes.2021.07.004
    24. Rania Saadeh, Aliaa Burqan, Ahmad El-Ajou, Reliable solutions to fractional Lane-Emden equations via Laplace transform and residual error function, 2022, 61, 11100168, 10551, 10.1016/j.aej.2022.04.004
    25. Viswanathan Padmavathi, Kandaswami Alagesan, Awatif Alhowaity, Muhammad Ijaz Khan, Haneen Hamam, Manivelu Angayarkanni, Vediyappan Govindan, Analysis and numerical simulation of fractional order pine wilt disease model, 2022, 36, 0217-9792, 10.1142/S0217979222502046
    26. Shivangi Gupta, Manish Goyal, Amit Prakash, A Hybrid Computational Scheme with Convergence Analysis for the Dependent Rosenau-Hyman Equation of Arbitrary Order Via Caputo-Fabrizio Operator, 2021, 7, 2349-5103, 10.1007/s40819-021-01182-4
    27. Hamadou Halidou, Alphonse Houwe, Souleymanou Abbagari, Mustafa Inc, Serge Y. Doka, Thomas Bouetou Bouetou, Optical and W-shaped bright solitons of the conformable derivative nonlinear differential equation, 2021, 20, 1569-8025, 1739, 10.1007/s10825-021-01758-9
    28. Manish Goyal, Amit Kumar Saraswat, Amit Prakash, Numerical analysis of fractional coronavirus model with Atangana-Baleanu derivative in Liouville-Caputo sense, 2023, 97, 0973-1458, 147, 10.1007/s12648-022-02409-w
    29. Kazem Nouri, Hassan Ranjbar, Dumitru Baleanu, Leila Torkzadeh, Investigation on Ginzburg-Landau equation via a tested approach to benchmark stochastic Davis-Skodje system, 2021, 60, 11100168, 5521, 10.1016/j.aej.2021.04.040
    30. Vinod Kumar Bhardwaj, Manish Goyal, A Reliable Solution of Nonlinear Time Dependent Fractional Model of Ebola Virus Disease with Arbitrary Order Derivative in Liouville–Caputo Sense, 2021, 7, 2349-5103, 10.1007/s40819-021-01200-5
    31. A. DLAMINI, EMILE F. DOUNGMO GOUFO, M. KHUMALO, CHAOTIC BEHAVIOR OF MODIFIED STRETCH–TWIST–FOLD FLOW UNDER FRACTAL-FRACTIONAL DERIVATIVES, 2022, 30, 0218-348X, 10.1142/S0218348X22402071
    32. Amit Prakash, Hardish Kaur, Numerical simulation of coupled fractional‐order Whitham‐Broer‐Kaup equations arising in shallow water with Atangana‐Baleanu derivative, 2022, 0170-4214, 10.1002/mma.8238
    33. Ajay Kumar, Haci Mehmet Baskonus, Amit Prakash, 2023, Chapter 14, 978-3-031-29958-2, 232, 10.1007/978-3-031-29959-9_14
    34. MUHAMMAD AZEEM, MUHAMMAD FARMAN, MARWAN ABUKHALED, KOTTAKKARAN SOOPPY NISAR, ALI AKGÜL, EPIDEMIOLOGICAL ANALYSIS OF HUMAN LIVER MODEL WITH FRACTIONAL OPERATOR, 2023, 31, 0218-348X, 10.1142/S0218348X23400479
    35. Amit Prakash, Vijay Verma, Dumitru Baleanu, Two Novel Methods for Fractional Nonlinear Whitham–Broer–Kaup Equations Arising in Shallow Water, 2023, 9, 2349-5103, 10.1007/s40819-023-01497-4
    36. Viswanathan Padmavathi, Kandaswami Alagesan, Samad Noeiaghdam, Unai Fernandez-Gamiz, Manivelu Angayarkanni, Vediyappan Govindan, Tobacco smoking model containing snuffing class, 2023, 9, 24058440, e20792, 10.1016/j.heliyon.2023.e20792
    37. A. Dlamini, E. F. Doungmo Goufo, M. Khumalo, Strongly perturbed bondorbital attractors for generalized systems, 2025, 35, 1054-1500, 10.1063/5.0249237
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1291) PDF downloads(108) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog