Processing math: 55%
Research article Special Issues

Analysis of a multi-server retrial queue with a varying finite number of sources

  • A multi-server retrial queue with a finite number of sources of requests was considered. In contrast to similar models studied in the literature, we assumed this number is not constant but changes its value in a finite range. During the stay in the system, each source generates the service requests. These requests are processed in a finite pool of servers. After service completion of a request, the source is granted the possibility to generate another request. If the source does not use this possibility during an exponentially distributed time, it is deleted from the system. If the request finds all servers busy, it can make repeated attempts to enter the service. If all servers are busy, the request may depart from the system without service. In this case, with a fixed probability, the source that generated this request is deleted from the system. Sources arrive according to a Markov arrival process. If the number of sources in the system at the arrival epoch has the maximum allowed number, the arriving source is lost. This system is a more adequate model of many real-world systems than the standard finite source queue. Analysis of the considered system required a four-dimensional continuous-time Markov chain. The generator of the chain was obtained as a block matrix with four levels of nesting. The stationary distribution of this Markov chain was found numerically as well as the values of the system's performance measures. The dependence of these measures on the maximum allowed number of sources and the number of servers was numerically clarified. An example of solving an optimization problem was presented.

    Citation: Ciro D'Apice, Alexander Dudin, Sergei Dudin, Rosanna Manzo. Analysis of a multi-server retrial queue with a varying finite number of sources[J]. AIMS Mathematics, 2024, 9(12): 33365-33385. doi: 10.3934/math.20241592

    Related Papers:

    [1] Sivajiganesan Sivasankar, Ramalingam Udhayakumar, Arumugam Deiveegan, Reny George, Ahmed M. Hassan, Sina Etemad . Approximate controllability of Hilfer fractional neutral stochastic systems of the Sobolev type by using almost sectorial operators. AIMS Mathematics, 2023, 8(12): 30374-30404. doi: 10.3934/math.20231551
    [2] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861
    [3] H. H. G. Hashem, Hessah O. Alrashidi . Qualitative analysis of nonlinear implicit neutral differential equation of fractional order. AIMS Mathematics, 2021, 6(4): 3703-3719. doi: 10.3934/math.2021220
    [4] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Suliman Alsaeed, Kottakkaran Sooppy Nisar . New interpretation of topological degree method of Hilfer fractional neutral functional integro-differential equation with nonlocal condition. AIMS Mathematics, 2023, 8(7): 17154-17170. doi: 10.3934/math.2023876
    [5] Krishnan Kavitha, Velusamy Vijayakumar, Kottakkaran Sooppy Nisar, Anurag Shukla, Wedad Albalawi, Abdel-Haleem Abdel-Aty . Existence and controllability of Hilfer fractional neutral differential equations with time delay via sequence method. AIMS Mathematics, 2022, 7(7): 12760-12780. doi: 10.3934/math.2022706
    [6] Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Hilfer fractional neutral stochastic differential equations with non-instantaneous impulses. AIMS Mathematics, 2021, 6(5): 4474-4491. doi: 10.3934/math.2021265
    [7] Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100
    [8] Wedad Albalawi, Muhammad Imran Liaqat, Fahim Ud Din, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Significant results in the pth moment for Hilfer fractional stochastic delay differential equations. AIMS Mathematics, 2025, 10(4): 9852-9881. doi: 10.3934/math.2025451
    [9] Qing Yang, Chuanzhi Bai, Dandan Yang . Finite-time stability of nonlinear stochastic ψ-Hilfer fractional systems with time delay. AIMS Mathematics, 2022, 7(10): 18837-18852. doi: 10.3934/math.20221037
    [10] Abdelkader Moumen, Ammar Alsinai, Ramsha Shafqat, Nafisa A. Albasheir, Mohammed Alhagyan, Ameni Gargouri, Mohammed M. A. Almazah . Controllability of fractional stochastic evolution inclusion via Hilfer derivative of fixed point theory. AIMS Mathematics, 2023, 8(9): 19892-19912. doi: 10.3934/math.20231014
  • A multi-server retrial queue with a finite number of sources of requests was considered. In contrast to similar models studied in the literature, we assumed this number is not constant but changes its value in a finite range. During the stay in the system, each source generates the service requests. These requests are processed in a finite pool of servers. After service completion of a request, the source is granted the possibility to generate another request. If the source does not use this possibility during an exponentially distributed time, it is deleted from the system. If the request finds all servers busy, it can make repeated attempts to enter the service. If all servers are busy, the request may depart from the system without service. In this case, with a fixed probability, the source that generated this request is deleted from the system. Sources arrive according to a Markov arrival process. If the number of sources in the system at the arrival epoch has the maximum allowed number, the arriving source is lost. This system is a more adequate model of many real-world systems than the standard finite source queue. Analysis of the considered system required a four-dimensional continuous-time Markov chain. The generator of the chain was obtained as a block matrix with four levels of nesting. The stationary distribution of this Markov chain was found numerically as well as the values of the system's performance measures. The dependence of these measures on the maximum allowed number of sources and the number of servers was numerically clarified. An example of solving an optimization problem was presented.



    The scientific world is now paying more and more attention to fractional calculus, which has an expanding variety of applications in fields including astronomy, electricity, life sciences, viscosity, medical science, control theory, data processing, etc. Due to the vast range of domains that fractional concepts are applied to, including physics, mechanics, chemistry, and engineering, fractional differential equations (FDEs), have become incredibly important. The study of ordinary and partial differential equations containing fractional derivatives has advanced significantly in recent years. We recommend the reader to read some books and articles published by Kilbas et al. [1], Diethelm [2], Zhou [3], Podulbny [4], Miller and Ross [5], Lakshmikantham et al. [6], and a series of papers [7,8,9,10] and the references cited therein.

    The Caputo and Riemann-Liouville (R-L) fractional derivatives were among the initial fractional order derivatives that Hilfer [11] presented in his new operator named the Hilfer fractional derivative (HFD). Additionally, conceptual simulations of dielectric relaxation in glass components, polymers, rheological permanent simulation, and other domains have revealed the significance and usefulness of the HFD. To study the existence of an integral solution related to an evolution boundary value problem (BVP) equipped with the HFD, Gu and Trujillo [12], recently, employed the measure of noncompactness technique. Along with this article, other numerous academic articles have addressed the HFD in their theorems; see [13,14,15,16]. According to the methods used in [17,18,19,20,21], some researchers used almost sectorial operators to find a mild solution for some BVPs in the framework of the HFD systems.

    Neutral differential equations have gained a lot of attention lately because of their many applications in a variety of domains, such as biological models, chemical kinetics, electronics, and fluid dynamics. We refer to the works on the theory and applications of neutral partial differential equations (PDEs) with non-local and classical situations as [21,22,23,24,25,26] and the references therein. We observe that there has been a recent surge in interest in neutral structures due to their prevalence in many applications of applied mathematics.

    Since the above differential equations were originally used to numerically mimic a variety of occurrences in the humanities and natural sciences [27], stochastic PDEs have also attracted a lot of interest. Rather than focusing on deterministic models, more research should be done on stochastic models, as unpredictability and uncontrollable fluctuations are intrinsic to both manmade and natural systems. Stochastic differential equations (SDEs) represent a specific event mathematically by including irrationality. The research community has recently shown a great deal of interest in the use of SDEs in finite and infinite dimensions to represent a variety of processes in population fluctuations, mathematics, mechanical engineering, physical location, behavioral science, life sciences, and several other science and technology domains. See [13,23,28,29] for a comprehensive introduction to SDEs and their applications.

    Almost sectorial operators are being used by researchers to advance the existence concepts in fractional calculus. In this direction, for a system under study, researchers have created a unique way of identifying mild solutions. In addition, a theory has been developed to predict different requirements of linked semigroups formed by almost sectorial operators using multivalued maps, the Wright function, fractional calculus, semigroup operators, the MNC, and the fixed-point approach. For more details, refer to [18,25,30,31,32,33]. Some researchers in [17,18,19] analyzed their results via the almost sectorial operators by employing the Schauder's fixed-point theorem. The authors in [34,35,36,37] conducted an analysis of fractional evolution equations (FEEs) via a similar method with the sectorial operators. Further, Zhou [38] established the attractivity for FEEs with almost sectorial operators by using the Ascoli-Arzela theorem. Later, Zhou et al. [39] discussed the existence theorems related to the attractive solutions of the Hilfer FEEs with almost sectorial operators. Very recently, Yang et al. [40] established the HF stochastic evolution equations on infinite intervals via the fixed-point method.

    To our knowledge, no work has been reported on the attractive solution for HF neutral stochastic evolution integro-differential equations on an infinite interval via almost sectorial operators. To fill this gap, by taking inspiration from the previous studies, this research intends to address this subject completely. In other words, the goal of this publication is to prove an attractive solution using the almost sectorial operators in the following form for HF neutral stochastic evolution integro-differential equations on an infinite interval:

    {HDλ,μ0+[g(s)ϖ(s,g(s))]=A[g(s)ϖ(s,g(s))]+F(s,g(s))+s0G(l,g(l))dW(l),I(1λ)(1μ)0+g(0)=g0,s(0,), (1.1)

    where HDλ,μ0+ is the HFD of order 0<μ<1 and type 0λ1, I(1λ)(1μ)0+ is a R-L integral of the fractional order (1λ)(1μ), and A denotes an almost sectorial operator in the Hilbert space Y. F:(0,)×YY, G:[0,)×YL02(K,Y), and ϖ:(0,)×YY are the given functions. {W(s)}s0 specifies a one-dimensional K-valued Wiener process along with a finite trace nuclear covariance operator Q0 formulated on a filtered complete probability space (Ξ,E,{Es}s0,P), and g0L02(Ξ,Y).

    The following is a summary of this article's primary contributions:

    (1) In this work, we investigate the attractive solution for HF neutral stochastic evolution integro-differential equations on an infinite interval via almost sectorial operators.

    (2) This work applies some concepts of functional analysis, like the Wright function, the Ascoli-Arzela theorem, Kuratowski's measure of noncompactness, and Schauder's fixed point theorem, to prove the main results.

    (3) The Ascoli-Arzela theorem, which is effectively employed to establish the new results, is the foundation of our method in the present research.

    (4) The proved theorems are validated via a theoretical example.

    The structure of this manuscript is as follows: Section 2 covers fractional calculus, MNC, and semigroup operators as a reminder. In Section 3, we establish the global existence and attractivity results of mild solutions for HF neutral stochastic evolution integro-differential equation (1.1). We present conceptual applications in Section 4 to assist us in making our discussion more successful.

    We present a few foundational definitions in this section. We require certain fundamental notations of fractional calculus and measures of noncompactness as a reminder.

    Denote by L2(Ξ,Y), the collection of all strongly measurable square-integrable Y-valued random variables, which is a Banach space for the norm g()L2(Ξ,Y)=(Eg(,W)2)12 for each gL2(Ξ,Y). Moreover, L02(Ξ,Y)={gL2(Ξ,Y): g is an subspace of L2(Ξ,Y) and is E0-measurable}.

    Let C((0,),L2(Ξ,Y)):(0,)L2(Ξ,Y) be a Banach space of all continuous functions. For each gC((0,),L2(Ξ,Y)), define

    gC((0,),L2(Ξ,Y))=(sups(0,)Eg(s)2)12<.

    Suppose that (Ξ,E,P) denotes the complete probability space defined with a complete family of right continuous increasing sub-σ-algebras {Es,s(0,)} fulfilling EsE, so that Y,K denote two real separable Hilbert spaces, and {W(s)}s0 denotes a Q-Wiener process defined on (Ξ,E,P) with values in K. Let L(K,Y):KY be the space of all operators with boundedness property, and LQ(K,Y):KY stands for the space of all Q-Hilbert-Schmidt operators.

    Furthermore, we suppose that O(s) is continuous in the uniform operator topology for s>0, and also, O(s) has uniform boundedness, i.e., there exists K>1 such that sups(0,)O(s)<K, throughout this paper.

    Definition 2.1. [31] For 0<κ<1,0<φ<π2, we define that Ψκφ is a family of all closed linear operators with the sector Sφ={vC{0}:|arg v|φ} and let A:D(A)YY be such that

    (a)σ(A)Sφ;

    (b) for all ω<λ<π, there exists a constant Rλ>0 such that (vIA)1Rλ|v|κ.

    Then, AΨκφ is called an almost sectorial operator on Y.

    Define the semigroup operator {T(s)}s0 as

    T(s)=esv(A)=12πiΓϱesvR(v;A)dv,sS0π2φ,

    where Γϱ={R+eiϱ}{R+eiϱ} with φ<ϱ<δ<π2|args| is oriented counter-clockwise.

    Proposition 2.2. [31] Let T(s) be the compact semigroup and AΨκφ for 0<κ<1 and 0<φ<π2. Then, we have the following:

    (1) T(s+ν)=T(s)T(ν), for all ν,sSπ2φ.

    (2) T(s)L(Y)K0sκ1, s>0 (K0>0 is a constant).

    (3) R(T(s)) belongs to T(s) for sSπ2φD(A), where R(T) is the range of T. Also, R(T(s))D(Aθ), for any θC with Re(θ)>0, and

    AθT(s)g=12πiΓμvθesvR(v;A)gdv, for all gY.

    Hence, there exists a constant C=C(γ,θ)>0 such that

    AθT(s)L(Y)CsγRe(θ)1, for all s>0.

    (4) If ΣT={gY:lims0+T(s)g=g}, then D(Aθ)ΣTfor θ>1+κ.

    (5) (vIA)1=0evνT(ν)dν, vC, and Re(v)>0.

    Definition 2.3. [41] The fractional integral of order μ for the function G:[0,)R is defined as

    Iμ0+G(s)=1Γ(μ)s0G(l)(sl)1μdl,s>0;μ>0,

    provided the R.H.S. is point-wise convergent.

    Definition 2.4. [11] Let 0<μ<1 and 0λ1. The HFD of order μ and type λ for G:[0,)R is

    HDλ,μ0+G(s)=[Iλ(1μ)0+D(I(1λ)(1μ)0+G)](s).

    For a Banach space Y, let P be a non-empty subset in Y. The Kuratowski's MNC α is introduced as

    α(P)=inf{c>0:Pnı=1Mı,  diam(Mı)c}.

    Here, the diameter of Mı is provided by diam(Mı)=sup{|xy|: x,yMı}, ı=1,2,,n.

    Lemma 2.5. [42] Let V1 and V2 be two bounded sets in the Banach space E. Then, we have the follwoing

    (i) α(V1)=0 if and only if V1 is relatively compact;

    (ii) α(V1)α(V2) if V1V2;

    (iii) α(V1+V2)α(V1)+α(V2), where V1+V2={g+v:gV1,vV2};

    (iv) α{{g}V}=α(V) for all gE and every non-empty subset VE;

    (v) α{V1V2}max{α(V1),α(V2)};

    (vi) α(γV)|γ|α(V).

    Lemma 2.6. [43] Assume that Y is a Hilbert space, and the sequence gn(s):[0,)Y, (n=1,2,) includes all continuous functions. If there exists ϱL1[0,) such that

    xn(s)ϱ(s),s[0,), n=1,2,,

    then α({xn}n=1) is integrable on [0,), and

    α({0xn(s)ds:n=1,2,})20α({xn(s):n=1,2,})ds.

    Definition 2.7. [44] The Wright function Mλ(ϑ) is formulated as

    Mλ(ϑ)=nN(ϑ)n1(n1)!Γ(1ϑn), ϑC,

    with

    0ϑιMλ(ϑ)dϑ=Γ(1+ι)Γ(1+λι),for ι0.

    Lemma 2.8. The system (1.1) has a solution in the form of the integral equation

    g(s)=[g0ϖ(0,g(0))]Γ(λ(1μ)+μ)s(λ1)(1μ)+ϖ(s,g(s))+1Γ(μ)s0(sl)μ1Ag(l)dl+1Γ(μ)s0(sl)μ1F(l,g(l))dl+1Γ(μ)s0(sl)μ1l0G(ω,g(ω))dW(ω)dl, s(0,). (2.1)

    Proof. This proof is similar to that of [14]; therefore, we do not repeat it.

    Lemma 2.9. Suppose that g(s) fulfills the integral equation (2.1). Then,

    g(s)=Oλ,μ[g0ϖ(0,g(0))]+ϖ(s,g(s))+s0Pμ(sl)F(l,g(l))dl+s0Pμ(sl)l0G(ω,g(ω))dW(ω)dl,s(0,),

    where Oλ,μ=Iλ(1μ)0+Pμ(s), Pμ(s)=sμ1Qμ(s), and Qμ(s)=0μϑMμ(ϑ)T(sμϑ)dϑ.

    Proof. This proof is similar to that of [14]; therefore, we do not repeat it.

    In relation to Lemma 2.8, we have a definition.

    Definition 2.10. An Es-adapted stochastic process g(s):(0,)Y is called a mild solution of the given system (1.1), if I(1λ)(1μ)0+g(0)=g0, g0L02(Ξ,Y), and for each s(0,), the function G(ω,g(ω)) is integrable, and the stochastic integral equation

    g(s)=Oλ,μ[g0ϖ(0,g(0))]+ϖ(s,g(s))+s0Pμ(sl)F(l,g(l))dl+s0Pμ(sl)l0G(ω,g(ω))dW(ω)dl,s(0,),

    holds.

    Definition 2.11. The mild solution g(s) of the system (1.1) is said to be attractive if g(s)0 as s.

    Lemma 2.12. [18] For any fixed s>0, {Qμ(s)}s>0, {Pμ(s)}s>0, and {Oλ,μ(s)}s>0 are linear operators, and for every gY,

    Qμ(s)gK1sμ(κ1)g, Pμ(s)gK1s1+μκg, and Oλ,μ(s)gK2s1+λλμ+μκg,

    where

    K1=μK0Γ(1+κ)Γ(1+μκ) and K2=K1Γ(μκ)Γ(λ(1μ)+μκ).

    Lemma 2.13. [18] Assume that O(s) is equicontinuous for s>0. Then, {Qμ(s)}s>0, {Pμ(s)}s>0 and {Oλ,μ(s)}s>0 are strongly continuous, i.e., for any gY and s>s>0, we have

    Qμ(s)gQμ(s)g0, Pμ(s)gPμ(s)g0, and Oλ,μ(s)gOλ,μ(s)g0,

    as ss.

    Let

    C([0,),L2(Ξ,Y))={x:xC([0,),L2(Ξ,Y)):limsEx(s)1+s2=0}.

    Clearly, (C([0,),L2(Ξ,Y)),) is a Banach space with

    x=(sups[0,)Ex(s)1+s2)12<,for any xC([0,),(Ξ,Y)).

    We provide the generalized Ascoli-Arzela theorem below.

    Lemma 2.14. [45] The set ΥC([0,),L2(Ξ,Y)) is relatively compact iff:

    (i) for any f>0, the set I={u:u(s)=y(s)1+s, yΥ} is equicontinuous on [0,f];

    (ii) limsEy(s)1+s2=0 uniformly for yΥ;

    (iii) for all s[0,), I(s)={u:u(s)=y(s)1+s, yΥ} is relatively compact in L2(Ξ,Y).

    Now, the main theorems will be proved in this section. Some assumptions are required to prove these theorems. We list them as follows:

    (H1) For any gY, F(,g) is measurable on (0,), and for any s(0,), F(s,) is continuous.

    (H2) There exists a function p:(0,)(0,) such that for all gY and all s(0,),

    (Iμ0+p)(s)C((0,),(0,)),EF(s,g)2p(s),

    and

    lims0s2(1λ+λμμκ)+μ(Iμ0+p)(s)=0,limss2(1λ+λμμκ)+μ(1+s2)(Iμ0+p)(s)=0.

    (H3) For every gY, G(,g) is Es-measurable on (0,), and for all s(0,), G(s,) is continuous.

    (H4) There exists a function q:(0,)(0,) such that for all gY and all s(0,),

    (I2μ10+q)(s)C((0,),(0,)),Es0G(l,g(l))dl2q(s),

    and

    lims0s2(1λ+λμμκ)(I2μ10+q)(s)=0,limss2(1λ+λμμκ)(1+s2)(I2μ10+q)(s)=0.

    (H5) ϖ:(0,)×YY is a continuous function, and there exists Kϖ>0 such that ϖ is a Y-valued function and satisfies

    Eϖ(s,g(s))2Kϖs1λ+λμμκ(1+g2), gY, s(0,).

    Define Cμ((0,),L2(Ξ,Y))={gC((0,),L2(Ξ,Y)):lims0+s(1λ)(1μ)g(s) exists and is finite, limsEs(1λ)(1μ)g(s)(1+s)2=0}, equipped with norm

    g(s)2μ=(sups[0,)Es1λ+λμμκg(s)1+s2)12.

    Thus, (Cμ((0,),L2(Ξ,Y)),2μ) is a Hilbert space. For each gCμ((0,),L2(Ξ,Y)) and for any s(0,), define the operator Σ by

    (Σg)(s)=(Σ1g)(s)+(Σ2g)(s),

    where

    (Σ1g)(s)=Oλ,μ[g0ϖ(0,g(0))]+ϖ(s,g(s)),(Σ2g)(s)=s0Pμ(sl)F(l,g(l))dl+s0Pμ(sl)l0G(ω,g(ω))dW(ω)dl.

    Clearly, the neutral stochastic HF-system (1.1) has a mild solution gCμ((0,),L2(Ξ,Y)) if and only if Σ has a fixed-point gCμ((0,),L2(Ξ,Y)).

    For each xCμ((0,),L2(Ξ,Y)), we set

    g(s)=s1λ+λμμκx(s),s(0,).

    Clearly, gCμ((0,),L2(Ξ,Y)).

    We now define the operator by

    (x)(s)=(1x)(s)+(2x)(s),

    where

    (1x)(s)={s1λ+λμμκ(Σ1g)(s),for s(0,),0,s=0,

    and

    (2x)(s)={s1λ+λμμκ(Σ2g)(s),for s(0,),0,s=0.

    By using (H2) and (H4), we claim that there exists r>0 such that the inequality

    sups(0,){8K22(1+s)2[Eg02+K2ϖ(1+g02)]+4K2ϖ(1+s)2s2(1λ+λμμκ)(1+g2)+4K21μκ(1+s)2s2(1λ+λμμκ)+μκs0(sl)μκ1p(l)dl+4Tr(Q)K21s2(1λ+λμμκ)(1+s)2s0(sl)2(μκ1)q(l)dl}r

    holds.

    Let g(s)=s1λ+λμμκx(s). Define

    Φ1={x:xC([0,),L2(Ξ,Y)), Ex2r},ˆΦ1={g:gCμ((0,),L2(Ξ,Y)), Eg2r}.

    It is clear that Φ1 is a non-empty, closed, and convex subset of C([0,),L2(Ξ,Y)). ˆΦ1 is a closed, convex and non-empty set of Cμ((0,),L2(Ξ,Y), and gˆΦ1 whenever xΦ1.

    Let

    D:={z:z(s)=(x)(s)1+s, xΦ1}.

    We must establish the next lemmas in order to establish the main theorems of this paper.

    Lemma 3.1. If (H1)(H5) are satisfied, then, D is equicontinuous.

    Proof. We follow some steps.

    Step 1: We prove D1:={z:z(s)=(1x)(s)1+s, xΦ1} is equicontinuous.

    We have,

    s1λ+λμμκOλ,μ(s)[g0ϖ(0,g(0))]+ϖ(s,g(s))=s1λ+λμμκΓ(λ(1μ))s0(sl)λ(1μ)1lμ1Qμ(l)[g0ϖ(0,g(0))]dl+ϖ(s,g(s))=10(1v)λ(1μ)1vμ1sμ(1κ)Qμ(sv)[g0ϖ(0,g(0))]dv+ϖ(s,g(s)).

    Noting that lims0+sμ(1κ)Qμ(sv)[g0ϖ(0,g(0))]+ϖ(s,g(s)) and 10(1v)λ(1μ)1vμ1dv are finite, we have

    lims0+s1λ+λμμκOλ,μ(s)[g0ϖ(0,g(0))]+ϖ(s,g(s))=0.

    Thus, from the aforesaid equality, when s1=0,s2(0,), it follows that

    E(1x)(s2)1+s2(1x)(0)2E11+s2s1λ+λμμκ2Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))020,

    as s20.

    Furthermore, for any 0<s1<s2<, using the elementary inequality, we get

    E(1x)(s2)1+s2(1x)(s1)1+s12Es1λ+λμμκ2Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))1+s2s1λ+λμμκ1Oλ,μ(s1)[g0ϖ(0,g(0))]+ϖ(s,g(s))1+s122Es1λ+λμμκ2Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))1+s2s1λ+λμμκ2Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))1+s12+2Es1λ+λμμκ2Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))1+s1s1λ+λμμκ2Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))1+s122Es1λ+λμμκ1Oλ,μ(s1)[g0ϖ(0,g(0))]+ϖ(s,g(s))2(s2s1(1+s2)(1+s1))2+2Es1λ+λμμκ2Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))s1λ+λμμκ1Oλ,μ(s1)[g0ϖ(0,g(0))]+ϖ(s,g(s))2(11+s1)22Es1λ+λμμκ2Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))2(s2s1(1+s2)(1+s1))2+4Es1λ+λμμκ2[Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))Oλ,μ(s1)[g0ϖ(0,g(0))]+ϖ(s,g(s))]2(s2s1(1+s2)(1+s1))2+4E[s1λ+λμμκ2s1λ+λμμκ1]Oλ,μ(s2)[g0ϖ(0,g(0))]+ϖ(s,g(s))2(s2s1(1+s2)(1+s1))20, as s2s1.

    Thus, D1:={z:z(s)=(1x)(s)1+s, xΦ1} is equicontinuous.

    Step 2: Next we prove that D2:={z:z(s)=(2x)(s)1+s, xΦ1} is equicontinuous.

    For every ϵ>0, one may write

    E(2x)(s2)1+s2(2x)(s1)1+s124Es1λ+λμμκ21+s2s20Pμ(s2l)F(l,g(l))dl2+4Es1λ+λμμκ21+s2s20Pμ(s2l)l0G(ω,g(ω))dW(ω)dl2+4Es1λ+λμμκ11+s1s10Pμ(s1l)F(l,g(l))dl2+4Es1λ+λμμκ11+s1s10Pμ(s1l)l0G(ω,g(ω))dW(ω)dl24(K1s1λ+λμμκ21+s2)2s20(s2l)2(μκ1)p(l)dl+4Tr(Q)(K1s1λ+λμμκ21+s2)2s20(s2l)2(μκ1)q(l)dl+4(K1s1λ+λμμκ11+s1)2s10(s1l)2(μκ1)p(l)dl+4Tr(Q)(K1s1λ+λμμκ11+s1)2s10(s1l)2(μκ1)q(l)dl<ϵ.

    When s1=0, 0<s2T, by using the hypotheses (H2) and (H4), we have

    E(2x)(s2)1+s2(2x)(0)22Es1λ+λμμκ21+s2s20Pμ(s2l)F(l,g(l))dl2+2Es1λ+λμμκ21+s2s20Pμ(s2l)l0G(ω,g(ω))dW(ω)dl24(K1s1λ+λμμκ21+s2)2s20(s2l)2(μκ1)p(l)dl+4Tr(Q)(K1s1λ+λμμκ21+s2)2s20(s2l)2(μκ1)q(l)dl0, as s20.

    When 0<s1<s2T, we obtain

    E(2x)(s2)1+s2(2x)(s1)1+s128Es1λ+λμμκ11+s1s2s1(s2l)μ1Qμ(s2l)F(l,g(l))dl2+8Es1λ+λμμκ11+s1s10[(s2l)μ1(s1l)μ1]Qμ(s2l)F(l,g(l))dl2+8Es1λ+λμμκ11+s1s10(s1l)μ1[Qμ(s2l)Qμ(s1l)]F(l,g(l))dl2+8E[s1λ+λμμκ21+s2s1λ+λμμκ11+s1]s20(s2l)μ1Qμ(s2l)F(l,g(l))dl2+8Es1λ+λμμκ11+s1s2s1(s2l)μ1Qμ(s2l)l0G(ω,g(ω))dW(ω)dl2+8Es1λ+λμμκ11+s1s10[(s2l)μ1(s1l)μ1]Qμ(s2l)l0G(ω,g(ω))dW(ω)dl2+8Es1λ+λμμκ11+s1s10(s1l)μ1[Qμ(s2l)Qμ(s1l)]l0G(ω,g(ω))dW(ω)dl2+8E[s1λ+λμμκ21+s2s1λ+λμμκ11+s1]s20(s2l)μ1Qμ(s2l)l0G(ω,g(ω))dW(ω)dl288j=1Sj,

    where

    S1=K21(s1λ+λμμκ11+s1)2s2s1(s2l)2(μκ1)p(l)dl,S2=K21(s1λ+λμμκ11+s1)2s20(s2l)μ1(s1l)μ12(s2l)2μ(κ1)p(l)dl,S3=(s1λ+λμμκ11+s1)2s10(s1l)μ1Qμ(s2l)Qμ(s1l)2EF(l,g(l))2dl,S4=K21[s1λ+λμμκ21+s2s1λ+λμμκ11+s1]2s20(s2l)2(μκ1)p(l)dl,S5=Tr(Q)K21(s1λ+λμμκ11+s1)2s2s1(s2l)2(μκ1)q(l)dl,S6=Tr(Q)K21(s1λ+λμμκ11+s1)2s20(s2l)μ1(s1l)μ12(s2l)2μ(κ1)q(l)dl,S7=Tr(Q)(s1λ+λμμκ11+s1)2s10(s1l)μ1Qμ(s2l)Qμ(s1l)2El0G(l,g(l))dω2dl,S8=Tr(Q)K21[s1λ+λμμκ21+s2s1λ+λμμκ11+s1]2s20(s2l)2(μκ1)q(l)dl.

    By a straightforward calculation, we obtain

    S10 as s2s1.

    Since, (s2l)μ1(s1l)μ12(s2l)2μ(κ1)(s2l)2(μκ1), by using the Lebesgue dominated convergence theorem (LDCT), we obtain

    s20(s2l)μ1(s1l)μ12p(l)dl0 as s2s1.

    Thus, S20 as s2s1.

    By (H2), for ϵ>0, we have

    S3(s1λ+λμμκ11+s1)2s1ϵ0(s1l)μ1Qμ(s2l)Qμ(s1l)2EF(l,g(l))2dl+(s1λ+λμμκ11+s1)2ϵμμs1s1ϵ(s1l)μ1Qμ(s2l)Qμ(s1l)2EF(l,g(l))2dl(s1λ+λμμκ11+s1)2sμ1ϵμμs1ϵ0(s1l)μ1p(l)dlsupl[0,s1ϵ]Qμ(s2l)Qμ(s1l)2+2K1(s1λ+λμμκ11+s1)2ϵμμs1s1ϵ(s1l)μκ1p(l)dl,S31+S32+S33,

    where

    S31=(s1λ+λμμκ11+s1)2sμ1ϵμμs1ϵ0(s1l)μ1p(l)dlsupl[0,s1ϵ]Qμ(s2l)Qμ(s1l)2S32=2K1(s1λ+λμμκ11+s1)2ϵμμs10(s1l)μκ1p(l)dls1ϵ0(s1ϵl)μκ1p(l)dl,S33=2K1(s1λ+λμμκ11+s1)2ϵμμs1ϵ0(s1ϵl)μκ1(s1l)μκ1p(l)dl.

    From Lemma 2.13, we conclude that S310 as s2s1. Using the corresponding deductions in relation to the proofs of S1,S20, we obtain S320 and S330 as ϵ0. Hence, S30 as s2s1. We can also derive that S40 as s2s1 by the continuity of (s1λ+λμμκ11+s1)2 with respect to s. For the terms S5,,S8, we can show that S5,,S80 as s2s1 by the similar proofs of S1,,S40 as s2s1, respectively.

    Let 0s1<T<s2. When s2s1, then s2T and s1T hold, simultaneously. So, for any xΦ1,

    E(2x)(s2)1+s2(2x)(s1)1+s122E(2x)(s2)1+s2(2x)(T)1+T2+E(2x)(T)1+T(2x)(s1)1+s12,

    holds. So we have,

    E(2x)(s2)1+s2(2x)(s1)1+s120, as s2s1.

    Hence, D2:={z:z(s)=(2x)(s)1+s, xΦ1} is equicontinuous. As a consequence, D=D1+D2 is equicontinuous. Hence, the proof is ended.

    Lemma 3.2. If (H1)(H5) are satisfied, then, for all xΦ1, limsE(x)(s)1+s2=0 uniformly.

    Proof. Indeed, for any xΦ1, by using Lemma 2.12 and the assumptions (H2), (H4), and (H5), we obtain

    E(x)(s)24Es1λ+λμμκOλ,μ[g0ϖ(0,g(0))]2+4Es(1λ)(1μ)ϖ(s,g(s))2+4Es(1λ)(1μ)s0Pμ(sl)F(l,g(l))dl2+4Es(1λ)(1μ)s0Pμ(sl)l0G(ω,g(ω))dW(ω)dl28K22[Eg02+K2ϖ(1+g02)]+4K2ϖs2(1λ+λμμκ)(1+g2)+4K21μκs2(1λ+λμμκ)+μκs0(sl)μκ1p(s)dl+4Tr(Q)K21s2(1λ+λμμκ)s0(sl)2(μκ1)q(s)dl.

    Dividing both sides of the above inequalities by (1+\mathfrak{s})^2 , we obtain

    \begin{align} E\bigg\|\frac{(\mho\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}\bigg\|^2& \leq \frac{8\mathcal{K}_2^2}{(1+\mathfrak{s})^2}[E\|\mathfrak{g}_0\|^2+\mathcal{K}_{\varpi}^2(1+\|\mathfrak{g}_0\|^2)]+\frac{4\mathcal{K}_\varpi^2}{(1+\mathfrak{s})^2}\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}(1+\|\mathfrak{g}\|^2)\\[0.3cm] & \quad +\frac{4\mathcal{K}_1^2}{\mu\kappa(1+\mathfrak{s})^2}\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)+\mu\kappa}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\\[0.3cm] & \quad +4Tr(Q)\mathcal{K}_1^2\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}\mathfrak{q}(\mathfrak{l})d\mathfrak{l}\rightarrow 0,\ \text{as}\ \mathfrak{s}\rightarrow \infty, \end{align} (3.1)

    which proves that for any \mathsf{x}\in \Phi_1 , \lim\limits_{\mathfrak{s}\rightarrow \infty}E\bigg\|\frac{(\mho\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}\bigg\|^2 = 0 holds uniformly.

    Lemma 3.3. If (H_1) (H_5) are satisfied, then \mho\Phi_1\subset \Phi_1 .

    Proof. For the case \mathfrak{s} > 0 , by Eq (3.1), we have

    \begin{align*} E\bigg\|\frac{(\mho\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}\bigg\|^2& \leq \frac{8\mathcal{K}_2^2}{(1+\mathfrak{s})^2}[E\|\mathfrak{g}_0\|^2+\mathcal{K}_{\varpi}^2(1+\|\mathfrak{g}_0\|^2)]+\frac{4\mathcal{K}_\varpi^2}{(1+\mathfrak{s})^2}\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}(1+\|\mathfrak{g}\|^2)\\[0.3cm] & \quad +\frac{4\mathcal{K}_1^2}{\mu\kappa(1+\mathfrak{s})^2}\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)+\mu\kappa}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{p}(\mathfrak{s})d\mathfrak{l}\\[0.3cm] & \quad +4Tr(Q)\mathcal{K}_1^2\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}\mathfrak{q}(\mathfrak{s})d\mathfrak{l}\leq \mathfrak{r}. \end{align*}

    For the case \mathfrak{s} = 0 , we have

    \begin{align*} E\bigg\|\frac{(\mho\mathsf{x})(0)}{1+0}\bigg\|^2 = E\|(\mho\mathsf{x})(0)\|^2\leq 8\mathcal{K}_2^2[E\|\mathfrak{g}_0\|^2+\mathcal{K}_{\varpi}^2(1+\|\mathfrak{g}_0\|^2)]\leq \mathfrak{r}. \end{align*}

    As a consequence, \mho\Phi_1\subset \Phi_1 .

    Lemma 3.4. If (H_1) (H_5) are satisfied, then \mho is continuous.

    Proof. Let the sequence \{\mathsf{x}_m\}_{m = 1}^{\infty} be in \Phi_1 and convergent to \mathsf{x}\in \Phi_1 . In this case, it follows that \lim\limits_{m\rightarrow \infty}E\|\mathsf{x}_m(\mathfrak{s})\|^2 = E\|\mathsf{x}(\mathfrak{s})\|^2 and \lim\limits_{m\rightarrow \infty}E\|\mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}_m(\mathfrak{s})\|^2 = E\|\mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}(\mathfrak{s})\|^2 , for \mathfrak{s}\in (0, \infty) .

    We assume \mathfrak{g}(\mathfrak{s}) = \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}(\mathfrak{s}), \ \mathfrak{g}_m(\mathfrak{s}) = \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}_m(\mathfrak{s}), \mathfrak{s}\in(0, \infty) . Then, clearly \mathfrak{g}, \mathfrak{g}_m\in \Phi_1 . According to (H_1) and (H_3) , we get \lim\limits_{m\rightarrow \infty} E\|\mathcal{F}(\mathfrak{s}, \mathfrak{g}_m(\mathfrak{s}))\|^2 = E\|\mathcal{F}(\mathfrak{s}, \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathfrak{g}_m(\mathfrak{s}))\|^2 = E\|\mathcal{F}(\mathfrak{s}, \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathfrak{g}(\mathfrak{s}))\|^2 = E\|\mathcal{F}(\mathfrak{s}, \mathfrak{g}_m(\mathfrak{s}))\|^2 and \lim\limits_{m\rightarrow \infty} E\|\mathit{G}(\mathfrak{s}, \mathfrak{g}_m(\mathfrak{s}))\|^2 = E\|\mathit{G}(\mathfrak{s}, \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathfrak{g}_m(\mathfrak{s}))\|^2 = E\|\mathit{G}(\mathfrak{s}, \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathfrak{g}(\mathfrak{s}))\|^2 = E\|\mathit{G} (\mathfrak{s}, \mathfrak{g}_m(\mathfrak{s}))\|^2 .

    From (H_2) , for all \mathfrak{s}\in (0, \infty) , we obtain

    \begin{align*} (\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}E\|\mathcal{F}(\mathfrak{l},\mathfrak{g}_m(\mathfrak{l}))-\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))\|^2\leq 2(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{p}(\mathfrak{l}),\ \text{a.e. in}\ [0,\mathfrak{s}). \end{align*}

    Moreover, since 2(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{p}(\mathfrak{l}) is integrable for \mathfrak{l} \in [0, \mathfrak{s}) and \mathfrak{s}\in [0, \infty) , the LDCT enables us to claim that

    \begin{equation*} \int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}E\|\mathcal{F}(\mathfrak{l},\mathfrak{g}_m(\mathfrak{l}))-\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))\|^2d\mathfrak{l}\rightarrow 0\ \text{as}\ m\rightarrow \infty. \end{equation*}

    Identically, by using (H_4) and LDCT, we obtain

    \begin{equation*} \int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}E\|[\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}_m(\omega))dW(\omega)-\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))dW(\omega)]\|^2d\mathfrak{l}\rightarrow 0\ \text{as}\ m\rightarrow \infty. \end{equation*}

    Thus, for \mathfrak{s}\in [0, \infty) , we have

    \begin{align*} &\quad E\bigg\|\frac{(\mho\mathsf{x}_m)(\mathfrak{s})}{1+\mathfrak{s}}-\frac{(\mho\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}\bigg\|^2\\[0.3cm] & \leq 2\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}E\bigg\|\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})[\mathcal{F}(\mathfrak{l},\mathfrak{g}_m(\mathfrak{l}))-\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))]d\mathfrak{l}\bigg\|^2\\[0.3cm] & \quad+2\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}E\bigg\|\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\bigg[\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}_m(\omega))dW(\omega)-\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))dW(\omega)\bigg]d\mathfrak{l}\bigg\|^2\\[0.3cm] & \leq 2\mathcal{K}_1\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}d\mathfrak{l}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}E\|\mathcal{F}(\mathfrak{l},\mathfrak{g}_m(\mathfrak{l}))-\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))\|^2d\mathfrak{l}\\[0.3cm] & \quad +2\mathcal{K}_1Tr(Q)\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}E\|\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}_m(\omega))d\omega-\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))d\omega\|^2d\mathfrak{l}\\[0.3cm] & \rightarrow 0\ \text{as}\ m\rightarrow \infty. \end{align*}

    Hence, \|\mho\mathsf{x}_m-\mho\mathsf{x}\|\rightarrow 0 as m\rightarrow \infty ; i.e., \mho is continuous.

    We are now prepared to present and support our first theorem about the mild solutions of the neutral stochastic HF-system (1.1).

    Theorem 3.5. Assume that the semigroup operator \mathscr{O}(\mathfrak{s}) is compact, for every \mathfrak{s} > 0 . If (H_1) (H_5) are satisfied, then (i) there exist some mild solutions in \widehat{\Phi}_1 for the given neutral stochastic HF-system (1.1) ; (ii) all mild solutions of (1.1) are attractive.

    Proof. (ⅰ) According to the properties of \mho and \Sigma , we know that the neutral stochastic HF-system (1.1) possesses a mild solution \mathfrak{g}\in \widehat{\Phi}_1 if \mho has a fixed-point \mathsf{x}\in \Phi_1 , where \mathsf{x}(\mathfrak{s}) = \mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}\mathfrak{g}(\mathfrak{s}) . We have to prove that \mho has a fixed-point in \Phi_1 . In fact, from Lemmas 3.3 and 3.4, we already have that \mho maps \Phi_1 into itself and \mho is continuous on \Phi_1 . To demonstrate that \mho is completely continuous, we have to show that the set \mho\Phi_1 is relatively compact. According to Lemmas 3.1 and 3.2, the set \mathcal{D}: = \{\mathrm{z}:\mathrm{z}(\mathfrak{s}) = \dfrac{(\mho\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}, \ \mathsf{x}\in \Phi_1\} is equicontinuous, and for any \mathsf{x}\in \Phi_1, \ \lim\limits_{\mathfrak{s}\rightarrow \infty}E\|\dfrac{(\mho\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}\|^2 = 0 satisfies uniformly. From Lemma 2.14, for each \mathfrak{s}\in [0, \infty) , we prove \mathcal{D}: = \{\mathrm{z}:\mathrm{z}(\mathfrak{s}) = \dfrac{(\mho\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}, \ \mathsf{x}\in \Phi_1\} is relatively compact in L_2(\Xi, \mathscr{Y}) . It is obvious that \mathcal{D}(0) is relatively compact in L_2(\Xi, \mathscr{Y}) . Therefore, we just need to investigate the case \mathfrak{s}\in (0, \infty) . For any \epsilon\in (0, \mathfrak{s}) and \gamma > 0 , we consider \mho_{\epsilon, \gamma} on \Phi_1 in the form:

    \begin{align*} (\mho_{\epsilon,\gamma}\mathsf{x})(\mathfrak{s}):& = \mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}(\Sigma_{\epsilon,\gamma}\mathfrak{g})(\mathfrak{s})\\[0.3cm] & = \mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}\bigg\{\mathscr{O}_{\lambda,\mu}[\mathfrak{g}_0-\varpi(0,\mathfrak{g}(0))]+\varpi(\mathfrak{s},\mathfrak{g}(\mathfrak{s}))\\[0.3cm] & \quad+\int_0^{\mathfrak{s}-\epsilon}\int_0^{\infty}\mu\vartheta(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathscr{M}_{\mu}(\vartheta)\mathscr{T}((\mathfrak{s}-\mathfrak{l})^{\mu}\vartheta)\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))d\vartheta d\mathfrak{l}\\[0.3cm] & \quad+\int_0^{\mathfrak{s}-\epsilon}\int_0^{\infty}\mu\vartheta(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathscr{M}_{\mu}(\vartheta)\mathscr{T}((\mathfrak{s}-\mathfrak{l})^{\mu}\vartheta)\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))dW(\omega)d\vartheta d\mathfrak{l}\bigg\}. \end{align*}

    Thus,

    \begin{align*} \frac{(\mho_{\epsilon,\gamma}\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}& = \frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\bigg\{\mathscr{O}_{\lambda,\mu}[\mathfrak{g}_0-\varpi(0,\mathfrak{g}(0))]+\varpi(\mathfrak{s},\mathfrak{g}(\mathfrak{s}))\\[0.3cm] & \quad+\mathscr{T}(\epsilon^{\mu}\gamma)\int_0^{\mathfrak{s}-\epsilon}\int_0^{\infty}\mu\vartheta(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathscr{M}_{\mu}(\vartheta)\mathscr{T}((\mathfrak{s}-\mathfrak{l})^{\mu}\vartheta-\epsilon^{\mu}\gamma)\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))d\vartheta d\mathfrak{l}\\[0.3cm] & \quad+\mathscr{T}(\epsilon^{\mu}\gamma)\int_0^{\mathfrak{s}-\epsilon}\int_0^{\infty}\mu\vartheta(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathscr{M}_{\mu}(\vartheta)\mathscr{T}((\mathfrak{s}-\mathfrak{l})^{\mu}\vartheta-\epsilon^{\mu}\gamma)\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))dW(\omega)d\vartheta d\mathfrak{l}\bigg\}. \end{align*}

    Since the semigroup \mathscr{O}(\mathfrak{s}) is compact for any \mathfrak{s} > 0 , so \mathscr{O}_{\lambda, \mu}(\mathfrak{s}) is also compact. Furthermore, \mathscr{T}(\epsilon^{\mu}\gamma) is compact. Then for all \epsilon\in (0, \mathfrak{s}) and for any \gamma > 0 , the set \{\dfrac{(\mho_{\epsilon, \gamma}\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}, \ \mathsf{x}\in \Phi_1\} is relatively compact in L_2(\Xi, \mathscr{Y}) . From (H_2) and (H_4) and Lemma 2.12, for each \mathsf{x}\in \Phi_1 , we derive that

    \begin{align*} &\quad E\bigg\|\frac{(\mho\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}-\frac{(\mho_{\epsilon,\gamma}\mathsf{x})(\mathfrak{s})}{1+\mathfrak{s}}\bigg\|^2\\[0.3cm] & \leq 4E\bigg\|\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}\int_0^{\gamma}\mu\vartheta(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathscr{M}_{\mu}(\vartheta)\mathscr{T}((\mathfrak{s}-\mathfrak{l})^{\mu}\vartheta)\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))d\vartheta d\mathfrak{l}\bigg\|^2\\[0.3cm] & \quad +4E\bigg\|\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}\int_0^{\gamma}\mu\vartheta(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathscr{M}_{\mu}(\vartheta)\mathscr{T}((\mathfrak{s}-\mathfrak{l})^{\mu}\vartheta)\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))dW(\omega)d\vartheta d\mathfrak{l}\bigg\|^2\\[0.3cm] & \quad +4E\bigg\|\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_{\mathfrak{s}-\epsilon}^{\mathfrak{s}}\int_{\gamma}^{\infty}\mu\vartheta(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathscr{M}_{\mu}(\vartheta)\mathscr{T}((\mathfrak{s}-\mathfrak{l})^{\mu}\vartheta)\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))d\vartheta d\mathfrak{l}\bigg\|^2\\[0.3cm] & \quad +4E\bigg\|\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_{\mathfrak{s}-\epsilon}^{\mathfrak{s}}\int_{\gamma}^{\infty}\mu\vartheta(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathscr{M}_{\mu}(\vartheta)\mathscr{T}((\mathfrak{s}-\mathfrak{l})^{\mu}\vartheta)\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))dW(\omega)d\vartheta d\mathfrak{l}\bigg\|^2\\[0.3cm] & \leq 4(\mu\mathcal{K})^2\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu-1}d\mathfrak{l}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\bigg(\int_0^{\gamma}\vartheta\mathscr{M}_{\mu}(\vartheta)d\vartheta\bigg)^2\\[0.3cm] & \quad +4(\mu\mathcal{K})^2Tr(Q)\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu-1)}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\bigg(\int_0^{\gamma}\vartheta\mathscr{M}_{\mu}(\vartheta)d\vartheta\bigg)^2\\[0.3cm] & \quad +4(\mu\mathcal{K})^2\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_{\mathfrak{s}-\epsilon}^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu-1}d\mathfrak{l}\int_{\mathfrak{s}-\epsilon}^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\bigg(\int_0^{\infty}\vartheta\mathscr{M}_{\mu}(\vartheta)d\vartheta\bigg)^2\\[0.3cm] & \quad +4(\mu\mathcal{K})^2Tr(Q)\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_{\mathfrak{s}-\epsilon}^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu-1)}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\bigg(\int_0^{\infty}\vartheta\mathscr{M}_{\mu}(\vartheta)d\vartheta\bigg)^2\\[0.3cm] & \leq 4\mu\mathcal{K}^2\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\bigg(\int_0^{\gamma}\vartheta\mathscr{M}_{\mu}(\vartheta)d\vartheta\bigg)^2\\[0.3cm] & \quad +4(\mu\mathcal{K})^2Tr(Q)\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu-1)}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\bigg(\int_0^{\gamma}\vartheta\mathscr{M}_{\mu}(\vartheta)d\vartheta\bigg)^2\\[0.3cm] & \quad +4\mu\mathcal{K}^2\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_{\mathfrak{s}-\epsilon}^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu-1}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\bigg(\frac{1}{\Gamma(\mu+1)}\bigg)^2\\[0.3cm] & \quad +4(\mu\mathcal{K})^2Tr(Q)\frac{\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}}{(1+\mathfrak{s})^2}\int_{\mathfrak{s}-\epsilon}^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu-1)}\mathfrak{p}(\mathfrak{l})d\mathfrak{l}\bigg(\frac{1}{\Gamma(\mu+1)}\bigg)^2\\[0.3cm] & \rightarrow 0\ \text{as}\ \epsilon\rightarrow 0, \gamma\rightarrow 0. \end{align*}

    Therefore, \mathcal{D}(\mathfrak{s}) is also a relatively compact set in L_2(\Xi, \mathscr{Y}) for \mathfrak{s}\in [0, \infty) . Now, the Schauder's fixed point theorem implies that \mho has at least a fixed-point \mathsf{x}^*\in \Phi_1 . Let \mathfrak{g}^*(\mathfrak{s}) = \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}^*(\mathfrak{s}) . From the relationship between \Sigma and \mho , we have

    \begin{align*} \mathfrak{g}^*(\mathfrak{s})& = \mathscr{O}_{\lambda,\mu}[\mathfrak{g}_0-\varpi(0,\mathfrak{g}(0))]+\varpi(\mathfrak{s},\mathfrak{g}^*(\mathfrak{s}))+\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\mathcal{F}(\mathfrak{l},\mathfrak{g}^*(\mathfrak{l}))d\mathfrak{l}\nonumber\\[0.3cm] & \quad+\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}^*(\omega))dW(\omega)d\mathfrak{l},\quad \mathfrak{s}\in [0,\infty), \end{align*}

    which shows that \mathfrak{g}^* is a mild solution of the neutral stochastic HF-system (1.1).

    (ⅱ) If \mathfrak{g}(\mathfrak{s}) is a mild solution of the neutral stochastic HF-system (1.1), then

    \begin{align*} \mathfrak{g}(\mathfrak{s})& = \mathscr{O}_{\lambda,\mu}[\mathfrak{g}_0-\varpi(0,\mathfrak{g}(0))]+\varpi(\mathfrak{s},\mathfrak{g}(\mathfrak{s}))+\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\mathcal{F}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))d\mathfrak{l}\nonumber\\[0.3cm] & \quad+\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))dW(\omega)d\mathfrak{l},\quad \mathfrak{s}\in [0,\infty). \end{align*}

    By (H_2) , (H_4) , and (H_5) , noting that -1+\lambda-\lambda\mu+\mu\kappa < 0 , we obtain

    \begin{align*} E\|\mathfrak{g}(\mathfrak{s})\|^2&\leq 8\mathcal{K}_2^2[E\|\mathfrak{g}_0\|^2+\mathcal{K}_{\varpi}^2(1+\|\mathfrak{g}_0\|^2)]+4\mathcal{K}_\varpi^2\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}(1+\|\mathfrak{g}\|^2)\\[0.3cm] & \quad +\frac{4\mathcal{K}_1^2}{\mu\kappa}\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)+\mu\kappa}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{p}(\mathfrak{s})d\mathfrak{l}\\[0.3cm] & \quad +4Tr(Q)\mathcal{K}_1^2\mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}\mathfrak{q}(\mathfrak{s})d\mathfrak{l}\rightarrow 0,\ \text{as}\ \mathfrak{s}\rightarrow \infty. \end{align*}

    Immediately, we can conclude that \mathfrak{g}(\mathfrak{s}) is an attractive solution which completes the proof.

    We assume that the subsequent hypothesis is true to demonstrate the existence results when the semigroup operator \{\mathscr{O}(\mathfrak{s})\}_{\mathfrak{s} > 0} is noncompact.

    (H_6) There exists a constant \mathscr{L} > 0 such that for every bounded set D\subset \mathscr{Y} , \alpha(\mathcal{F}(\mathfrak{s}, D))\vee \alpha(\int_0^{\mathfrak{l}}\mathit{G}(\mathfrak{l}, D))\leq \mathscr{L}\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}\alpha(D) , for a.e. \mathfrak{s}\in [0, \infty) .

    Theorem 3.6. Assume the semigroup operator \mathscr{O}(\mathfrak{s}) is noncompact for any \mathfrak{s} > 0 . If (H_1) (H_6) are satisfied, then

    (i) there exists at least one mild solution in \widehat{\Phi}_1 for the neutral stochastic HF-system (1.1);

    (ii) all these mild solutions are attractive.

    Proof. (ⅰ) We set \mathsf{x}_0(\mathfrak{s}) = \mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}\mathscr{O}_{\lambda, \mu}(\mathfrak{s})\mathfrak{g}_0, \ \mathfrak{s}\in [0, \infty) and \mathsf{x}_{m+1} = \mho\mathsf{x}_m, \ m = 0, 1, 2, \cdots . From Lemma 3.3, \mho\mathsf{x}_m\subset \Phi_1 whenever \mathsf{x}_m\in \Phi_1, \ m = 0, 1, 2, \cdots . Define \widehat{\mathcal{D}} = \{\mathrm{z}_m:\mathrm{z}_m(\mathfrak{s}) = \dfrac{(\mho\mathsf{x}_m)(\mathfrak{s})}{1+\mathfrak{s}}, \ \mathsf{x}_m\in \Phi_1\}_{m = 0}^{\infty} . We have to show that set \widehat{\mathcal{D}} is relatively compact.

    According to Lemmas 3.1 and 3.2, we already know that \widehat{\mathcal{D}} is equicontinuous, and for \mathsf{x}_m\in \Phi_1, \ \lim\limits_{\mathfrak{s}\rightarrow \infty}E\|\dfrac{(\mho\mathsf{x}_m)(\mathfrak{s})}{1+\mathfrak{s}}\|^2 = 0 uniformly. From Lemma 2.14, we have to show

    \widehat{\mathcal{D}} = \{\mathrm{z}_m:\mathrm{z}_m(\mathfrak{s}) = \dfrac{(\mho\mathsf{x})_m(\mathfrak{s})}{1+\mathfrak{s}},\ \mathsf{x}_m\in \Phi_1\}_{m = 0}^{\infty}

    is relatively compact in L^2(\Xi, \mathscr{Y}) .

    By Lemmas 2.6 and 2.12, along with the condition (H_6) , we obtain

    \begin{align*} &\quad \alpha\bigg(\bigg\{\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\mathcal{F}(\mathfrak{l},\mathfrak{g}_m(\mathfrak{l}))d\mathfrak{l}\bigg\}_{m = 0}^{\infty}\bigg)\\[0.3cm] &\leq 2\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\alpha\bigg(\mathcal{F}\bigg(\mathfrak{l},\bigg\{\mathfrak{l}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}_m(\mathfrak{l})\bigg\}_{m = 0}^{\infty}\bigg)\bigg)d\mathfrak{l}\\[0.3cm] &\leq 2\mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{l}^{1-\lambda+\lambda\mu-\mu\kappa}\alpha\bigg(\bigg\{\mathfrak{l}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}_m(\mathfrak{l})\bigg\}_{m = 0}^{\infty}\bigg)d\mathfrak{l}\\[0.3cm] &\leq 2\mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}(1+\mathfrak{l})\alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{l})}{1+\mathfrak{l}}\bigg\}_{m = 0}^{\infty}\bigg)d\mathfrak{l}. \end{align*}

    On the other side, for all \mathfrak{g}, v\in \mathscr{Y} , from Lemmas 2.6 and 2.12, we obtain

    \begin{align*} &\quad\bigg\|\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\bigg[\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))-\int_0^{\mathfrak{l}}\mathit{G}(\omega,v(\omega))\bigg]dW(\omega)\bigg\|\\[0.3cm] &\leq \mathcal{K}_1\bigg(\bigg\|\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}[\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))-\int_0^{\mathfrak{l}}\mathit{G}(\omega,v(\omega))]dW(\omega)\bigg\|^2\bigg)^{\frac{1}{2}}\\[0.3cm] &\leq \mathcal{K}_1Tr(Q)\bigg(\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)} \mathcal{K}_1\bigg\|\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}(\omega))-\int_0^{\mathfrak{l}}\mathit{G}(\omega,v(\omega)) \mathcal{K}_1\bigg\|^2d\omega\bigg)^{\frac{1}{2}}. \end{align*}

    Thus, one has

    \begin{align*} &\quad\alpha\bigg(\bigg\{\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}_m(\omega))dW(\omega)\bigg\}_{m = 0}^{\infty}\bigg)\\[0.3cm] &\leq \mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\bigg[2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}\bigg[\alpha\bigg(\mathit{G}\bigg(\mathfrak{l},\bigg\{\mathfrak{l}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}_m(\mathfrak{l})\bigg\}_{m = 0}^{\infty}\bigg)\bigg)\bigg]^2d\mathfrak{l}\bigg]^{\frac{1}{2}}\\[0.3cm] &\leq \mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\bigg[2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}\mathfrak{l}^{2(1-\lambda+\lambda\mu-\mu\kappa)}\bigg[\alpha\bigg(\bigg\{\mathfrak{l}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}_m(\mathfrak{l})\bigg\}_{m = 0}^{\infty}\bigg)\bigg]^2d\mathfrak{l}\bigg]^{\frac{1}{2}}\\[0.3cm] &\leq \mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\bigg[2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}(1+\mathfrak{l})^2\bigg[\alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{l})}{1+\mathfrak{l}}\bigg\}_{m = 0}^{\infty}\bigg)\bigg]^2d\mathfrak{l}\bigg]^{\frac{1}{2}}. \end{align*}

    The above estimates yield that

    \begin{align*} \alpha(\widehat{\mathcal{D}}(\mathfrak{s}))& = \alpha\bigg(\bigg\{\frac{(\mho\mathsf{x})_m(\mathfrak{s})}{1+\mathfrak{s}}\bigg\}_{m = 0}^{\infty}\bigg)\\[0.3cm] & = \alpha\bigg(\bigg\{\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\mathscr{O}{\lambda,\mu}[\mathfrak{g}_0-\varpi(0,\mathfrak{g}(0))]+\varpi(\mathfrak{s},\mathfrak{g}_m(\mathfrak{s}))\\[0.3cm] & \quad+\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\mathcal{F}(\mathfrak{l},\mathfrak{g}_m(\mathfrak{l}))d\mathfrak{l}\\[0.3cm] &\quad+\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}_m(\omega))dW(\omega)d\mathfrak{l}\bigg\}_{m = 0}^{\infty}\bigg)\\[0.3cm] & = \alpha\bigg(\bigg\{\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\mathcal{F}(\mathfrak{l},\mathfrak{g}_m(\mathfrak{l}))d\mathfrak{l}\\[0.3cm] &\quad+\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}\mathscr{P}_{\mu}(\mathfrak{s}-\mathfrak{l})\int_0^{\mathfrak{l}}\mathit{G}(\omega,\mathfrak{g}_m(\omega))dW(\omega)d\mathfrak{l}\bigg\}_{m = 0}^{\infty}\bigg)\\[0.3cm] & = 2\mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}(1+\mathfrak{l})\alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{l})}{1+\mathfrak{l}}\bigg\}_{m = 0}^{\infty}\bigg)d\mathfrak{l}\\[0.3cm] &\quad +\mathscr{L}\mathcal{K}_1\frac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\bigg[2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}(1+\mathfrak{l})^2\bigg[\alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{l})}{1+\mathfrak{l}}\bigg\}_{m = 0}^{\infty}\bigg)\bigg]^2d\mathfrak{l}\bigg]^{\frac{1}{2}}. \end{align*}

    For any \mathfrak{s}\in [0, \infty) , from Lemma 2.5, one can derive that

    \begin{align*} \alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{s})}{1+\mathfrak{s}}\bigg\}_{m = 0}^{\infty}\bigg) = \alpha\bigg(\bigg\{\frac{\mathsf{x}_0(\mathfrak{s})}{1+\mathfrak{s}}\bigg\}\cup\bigg\{\frac{\mathsf{x}_m(\mathfrak{s})}{1+\mathfrak{s}}\bigg\}_{m = 1}^{\infty}\bigg) = \alpha\bigg(\bigg\{\frac{\mathsf{x}_m(\mathfrak{s})}{1+\mathfrak{s}}\bigg\}_{m = 1}^{\infty}\bigg) = \alpha(\widehat{\mathcal{D}}(\mathfrak{s})). \end{align*}

    Hence, we deduce that

    \begin{align*} \alpha(\widehat{\mathcal{D}}(\mathfrak{s}))&\leq 2\mathscr{L}\mathcal{K}_1\mathcal{M}^*\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}(1+\mathfrak{l})\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))d\mathfrak{l}\\[0.3cm] &\quad +\mathscr{L}\mathcal{K}_1\mathcal{M}^*\bigg[2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}(1+\mathfrak{l})^2[\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))]^2d\mathfrak{l}\bigg]^{\frac{1}{2}}\\[0.3cm] & = M_1+M_2, \end{align*}

    where \mathcal{M}^* = \max\limits_{\mathfrak{s}\in [0, \infty)}\bigg\{\dfrac{\mathfrak{s}^{1-\lambda+\lambda\mu-\mu\kappa}}{1+\mathfrak{s}}\bigg\} .

    If M_1 > M_2 , from the estimates above, we have

    \begin{align*} \alpha(\widehat{\mathcal{D}}(\mathfrak{s}))&\leq 4\mathscr{L}\mathcal{K}_1\mathcal{M}^*\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}(1+\mathfrak{l})\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))d\mathfrak{l}. \end{align*}

    Therefore, by a similar estimation, one of the inequalities

    \begin{align*} \alpha(\widehat{\mathcal{D}}(\mathfrak{s}))&\leq 8\mathscr{L}\mathcal{K}_1\mathcal{M}^*\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))d\mathfrak{l}, \end{align*}

    or

    \begin{align*} \alpha(\widehat{\mathcal{D}}(\mathfrak{s}))&\leq 8\mathscr{L}\mathcal{K}_1\mathcal{M}^*\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{\mu\kappa-1}\mathfrak{l}\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))d\mathfrak{l} \end{align*}

    holds. As a result, the inequality, in ([46], p. 188), enables us to claim that \alpha(\widehat{\mathcal{D}}(\mathfrak{s})) = 0 .

    If M_1 < M_2 , a standard calculation yields that

    \begin{align*} \big(\alpha(\widehat{\mathcal{D}}(\mathfrak{s}))\big)^2\leq (2\mathscr{L}\mathcal{K}_1\mathcal{M}^*)^2\bigg(2Tr(Q)\int_0^{\mathfrak{s}}(\mathfrak{s}-\mathfrak{l})^{2(\mu\kappa-1)}(1+\mathfrak{l})^2[\alpha(\widehat{\mathcal{D}}(\mathfrak{l}))]^2d\mathfrak{l}\bigg). \end{align*}

    We may also conclude that \alpha(\widehat{\mathcal{D}}(\mathfrak{s})) = 0 by using an analogous argument to the first scenario. Therefore, \widehat{\mathcal{D}}(\mathfrak{s}) is relatively compact. Lemma 2.14, finally, gives this fact that the set \widehat{\mathcal{D}} is relatively compact. A subsequence of \{\mathsf{x}_m\}_{m = 0}^{\infty} exists so that it is convergent to, say, \mathsf{x}^* , i.e., \lim_{m\rightarrow \infty}\mathsf{x}_m = \mathsf{x}^*\in \Phi_1 . Thus, the continuity of the operator \mho enables us to declare that

    \begin{align*} \mathsf{x}^* = \lim\limits_{m\rightarrow \infty}\mathsf{x}_m = \lim\limits_{m\rightarrow \infty}\mho\mathsf{x}_{m-1} = \mho(\lim\limits_{m\rightarrow \infty}\mathsf{x}_{m-1}) = \mho\mathsf{x}^*. \end{align*}

    Let \mathfrak{g}^*(\mathfrak{s}) = \mathfrak{s}^{-1+\lambda-\lambda\mu+\mu\kappa}\mathsf{x}^*(\mathfrak{s}) . Thus, \mathfrak{g}^* is a fixed-point of \Sigma , which will be the mild solution of the neutral stochastic HF-system (1.1).

    (ⅱ) This proof is similar to (ⅱ) in Theorem 3.5.

    By Theorems 3.5 and 3.6, we have a corollary.

    Corollary 3.7. Assume that the semigroup operator \mathscr{O}(\mathfrak{s}) is compact for any \mathfrak{s} > 0 and assumptions (H_1) and (H_3) are fulfilled.

    (H_7) There exist a function \mathfrak{p}:(0, \infty)\rightarrow (0, \infty) and constants \chi\in (0, 1), \ \mathscr{N} > 0 such that for any \mathfrak{g}\in \mathscr{Y}, \ \mathfrak{s}\in (0, \infty) ,

    (I_{0+}^{\mu}\mathfrak{p})(\mathfrak{s})\in C((0,\infty),(0,\infty)),\ \mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)+\mu}(I_{0+}^{\mu}\mathfrak{p})(\mathfrak{s})\leq \mathscr{N}\mathfrak{s}^{2\chi},

    and

    E\|\mathcal{F}(\mathfrak{s},\mathfrak{g})\|^2\leq \mathfrak{p}(\mathfrak{s}).

    (H_8) There exist a function \mathfrak{q}:(0, \infty)\rightarrow (0, \infty) and constants \widehat{\chi}\in (0, 1), \ \widehat{\mathscr{N}} > 0 such that for any \mathfrak{g}\in \mathscr{Y}, \ \mathfrak{s}\in (0, \infty) ,

    (I_{0+}^{2\mu-1}\mathfrak{q})(\mathfrak{s})\in C((0,\infty),(0,\infty)),\ \mathfrak{s}^{2(1-\lambda+\lambda\mu-\mu\kappa)}(I_{0+}^{2\mu-1}\mathfrak{q})(\mathfrak{s})\leq \widehat{\mathscr{N}}\mathfrak{s}^{2\widehat{\chi}},

    and

    E\|\int_0^{\mathfrak{s}}\mathit{G}(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))d\mathfrak{l}\|^2\leq \mathfrak{q}(\mathfrak{s}).

    Then, there exists at least one mild solution in \widehat{\Phi}_1 for the neutral stochastic HF-system (1.1).

    Corollary 3.8. Suppose that the semigroup operator \mathscr{O}(\mathfrak{s}) is noncompact for all \mathfrak{s} > 0 . If (H_1) , (H_3) , (H_7) , (H_8) , and (H_6) are hold, then one can find at least one mild solution in \widehat{\Phi}_1 to the neutral stochastic HF-system (1.1).

    Consider the following HF neutral stochastic evolution integro-differential system on an infinite interval:

    \begin{align} \begin{cases} ^{H}D_{0+}^{\mu}[\mathfrak{g}(\mathfrak{s})-w(\mathfrak{s},\mathfrak{g}(\mathfrak{s}))] = \mathcal{A}[\mathfrak{g}(\mathfrak{s})-w(\mathfrak{s},\mathfrak{g}(\mathfrak{s}))]+f(\mathfrak{s},\mathfrak{g}(\mathfrak{s}))+ \int_0^{\mathfrak{s}}g(\mathfrak{l},\mathfrak{g}(\mathfrak{l}))dW(\mathfrak{l}),\\[0.2cm] I_{0+}^{1-\mu}\mathfrak{g}(0) = \mathfrak{g}_0,\; \; \; \; \; \mathfrak{s}\in (0,\infty), \end{cases} \end{align} (4.1)

    where f(\mathfrak{s}, \mathfrak{g}(\mathfrak{s})) and \int_0^{\mathfrak{s}}g(\mathfrak{l}, \mathfrak{g}(\mathfrak{l}))dW(\mathfrak{l}) fulfill (H_1) and (H_3) , respectively, and the constants \zeta, \beta > 0 exist such that E\|f(\mathfrak{s}, \mathfrak{g}(\mathfrak{s}))\|^2\leq \mathfrak{s}^{-\zeta}, \ E\| \int_0^{\mathfrak{s}}g(\mathfrak{l}, \mathfrak{g}(\mathfrak{l}))d\mathfrak{l}\|^2\leq \mathfrak{s}^{-\beta} for \zeta\in (\mu, 1), \ \beta\in (2\mu-1, 1) , and for \mathfrak{s}\in (0, \infty), \ \{\mathscr{O}(\mathfrak{s})\}_{\mathfrak{s}\geq 0} is compact.

    Let \mathfrak{p}(\mathfrak{s}) = \mathfrak{s}^{-\zeta}, \ \mathfrak{q}(\mathfrak{s}) = \mathfrak{s}^{-\beta} , for \mathfrak{s} > 0 . Then, it is easy to verify that

    \begin{align*} (I_{0+}^{\mu}\mathfrak{p})(\mathfrak{s})& = \frac{\Gamma(1-\zeta)}{\Gamma(1+\mu-\zeta)}\mathfrak{s}^{\mu-\zeta}\in C((0,\infty),(0,\infty)),\ \mathfrak{s}^{2(1-\mu)+\mu}(I_{0+}^{\mu}\mathfrak{p})(\mathfrak{s})\leq \mathscr{N}\mathfrak{s}^{2\chi},\\[0.3cm] (I_{0+}^{2\mu-1}\mathfrak{q})(\mathfrak{s})& = \frac{\Gamma(1-\beta)}{\Gamma(2\mu-\beta)}\mathfrak{s}^{2\mu-\beta-1}\in C((0,\infty),(0,\infty)),\ \mathfrak{s}^{2(1-\mu)}(I_{0+}^{2\mu-1}\mathfrak{q})(\mathfrak{s})\leq \widehat{\mathscr{N}}\mathfrak{s}^{2\widehat{\chi}}, \end{align*}

    where \chi = \dfrac{1}{2}(2-\zeta)\in (0, 1), \ \widehat{\chi} = \dfrac{1}{2}(1-\beta)\in (0, 1), \ \mathscr{N}\geq \dfrac{\Gamma(1-\zeta)}{\Gamma(1+\mu-\zeta)}\mathfrak{s}^{\mu-\zeta}, \widehat{\mathscr{N}}\geq \dfrac{\Gamma(1-\beta)}{\Gamma(2\mu-\beta)}\mathfrak{s}^{2\mu-\beta-1} , which means that the conditions (H_7) and (H_8) are fulfilled. Further, it is easy to prove that 1-\dfrac{\mu}{2} > \dfrac{1}{2}(2-\zeta) = \chi and 1-\mu > \dfrac{1}{2}(1-\beta) = \widehat{\chi} . By Corollary 3.7, the neutral stochastic HF-system (4.1) has at least a mild solution and also an attractive solution.

    Remark 4.1. This result may also extend to the attractive solution for Hilfer fractional neutral stochastic differential equations with Poisson jump.

    In this paper, we proved that Hilfer fractional neutral stochastic integro-differential equations on an infinite interval with almost sectorial operators have global mild and attractive solutions, and that the corresponding semigroup is either compact or noncompact. We determined the Wright function, the measure of noncompactness, and several alternative criteria to ensure the worldwide existence of mild solutions to the HF-system (1.1) by using the generalized Ascoli-Arzela theorem. To demonstrate the acquired theoretical findings, an example was given. This result may also be used to study Hilfer fractional neutral stochastic integro-differential equations with impulses on an infinite interval and their approximate controllability.

    The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.

    This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (grant no. 6041). This study is supported via funding from Prince Sattam bin Abdulaziz University, project number (PSAU/2024/R/1445).

    The authors declare no conflicts of interest.



    [1] G. I. Falin, J. G. C. Templeton, Retrial queues, London: Chapman & Hall, 1997.
    [2] J. R. Artalejo, A. Gomez-Corral, Retrial queueing systems, Berlin: Springer, 2008.
    [3] G. Falin, A survey of retrial queues, Queueing Syst., 7 (1990), 127–167. https://doi.org/10.1007/BF01158472 doi: 10.1007/BF01158472
    [4] T. Yang, J. G. C. Templeton, A survey on retrial queues, Queueing Syst., 2 (1987), 201–233. https://doi.org/10.1007/BF01158899 doi: 10.1007/BF01158899
    [5] A. Gomez-Corral, A bibliographical guide to the analysis of retrial queues through matrix analytic techniques, Ann. Oper. Res., 141 (2006), 163–191. https://doi.org/10.1007/s10479-006-5298-4 doi: 10.1007/s10479-006-5298-4
    [6] J. R. Artalejo, Accessible bibliography on retrial queues: progress in 2000–2009, Math. Comput. Model., 51 (2010), 1071–1081. https://doi.org/10.1016/j.mcm.2009.12.011 doi: 10.1016/j.mcm.2009.12.011
    [7] J. Kim, B. Kim, A survey of retrial queueing systems, Ann. Oper. Res., 247 (2016), 3–36. https://doi.org/10.1007/s10479-015-2038-7 doi: 10.1007/s10479-015-2038-7
    [8] C. S. Kim, S. H. Park, A. Dudin, V. Klimenok, G. Tsarenkov, Investigation of the BMAP/G/1\to/\bullet/PH/1/M tandem queue with retrials and losses, Appl. Math. Model., 34 (2010), 2926–2940. https://doi.org/10.1016/j.apm.2010.01.003 doi: 10.1016/j.apm.2010.01.003
    [9] G. Falin, J. R. Artalejo, A finite source retrial queue, Eur. J. Oper. Res., 108 (1998), 409–424. https://doi.org/10.1016/S0377-2217(97)00170-7 doi: 10.1016/S0377-2217(97)00170-7
    [10] G. Falin, A multiserver retrial queue with a finite number of sources of primary calls, Math. Comput. Model., 30 (1999), 33–49. https://doi.org/10.1016/S0895-7177(99)00130-2 doi: 10.1016/S0895-7177(99)00130-2
    [11] Y. N. Kornyshev, Design of a fully accessible switching system with repeated calls, Telecommunications, 23 (1969), 46–52.
    [12] A. G. Kok, Algorithmic methods for single server systems with repeated attempts, Stat. Neerl., 38 (1984), 23–32. https://doi.org/10.1111/j.1467-9574.1984.tb01094.x doi: 10.1111/j.1467-9574.1984.tb01094.x
    [13] G. Bianchi, IEEE 802.11-saturation throughput analysis, IEEE Commun. Lett., 2 (1998), 318–320. http://dx.doi.org/10.1109/4234.736171 doi: 10.1109/4234.736171
    [14] Y. Lee, M. Y. Chung, T. J. Lee, Performance analysis of IEEE 802.11 DCF under nonsaturation condition, Lect. Notes Comput. Sci., 17 (2008), 1–17. http://doi.org/10.1155/2008/574197 doi: 10.1155/2008/574197
    [15] S. R. Chakravarthy, Introduction to matrix-analytic methods in queues 1: analytical and simulation approach-basics, In: ISTE Ltd, London and John Wiley and Sons, New York, 2022.
    [16] S. R. Chakravarthy, Introduction to matrix-analytic methods in queues 2: analytical and simulation approach-queues and simulation, In: ISTE Ltd, London and John Wiley and Sons, New York, 2022.
    [17] A. N. Dudin, V. I. Klimenok, V. M. Vishnevsky, The theory of queuing systems with correlated flows, Berlin: Springer Nature, 2020. https://doi.org/10.1007/978-3-030-32072-0
    [18] D. Lucantoni, New results on the single server queue with a batch Markovian arrival process, Commun. Stat. Stochast. Models, 7 (1991), 1–46. https://doi.org/10.1080/15326349108807174 doi: 10.1080/15326349108807174
    [19] M. Gonzalez, R. E. Lillo, J. Ramirez Cobo, Call center data modeling: a queueing science approach based on Markovian arrival processes, Qual. Technol. Quant. Manage., 2024. http://dx.doi.org/10.1080/16843703.2024.2371715
    [20] S. A. Dudin, The MAP/N/N retrial queueing system with time-phased batch arrivals, Probl. Inform. Transmiss., 45 (2009), 270–281. https://doi.org/10.1134/S0032946009030089 doi: 10.1134/S0032946009030089
    [21] J. Wu, Z. Liu, G. Yan, Analysis of the finite source MAP/PH/N retrial G-queue operating in a random environment, Appl. Math. Model., 35 (2011), 1184–1193. https://doi.org/10.1016/j.apm.2010.08.006 doi: 10.1016/j.apm.2010.08.006
    [22] M. F. Neuts, Matrix-geometric solutions in stochastic models: an algorithmic approach, Chicago: Courier Corporation, 1994.
    [23] C. A. O'Cinneide, Phase-type distributions: open problems and a few properties, Stochast. Models, 15 (1999), 731–757. https://doi.org/10.1080/15326349908807560 doi: 10.1080/15326349908807560
    [24] P. Wüchner, J. Sztrik, H. de Meer, Finite-source M/M/S retrial queue with search for balking and impatient customers from the orbit, Comput. Networks, 53 (2009), 1264–1273. https://doi.org/10.1016/j.comnet.2009.02.015 doi: 10.1016/j.comnet.2009.02.015
    [25] A. S. Alfa, K. S. Isotupa, An M/PH/k retrial queue with finite number of sources, Comput. Oper. Res., 31 (2004), 1455–1464. https://doi.org/10.1016/S0305-0548(03)00100-X doi: 10.1016/S0305-0548(03)00100-X
    [26] Q. M. He, A. S. Alfa, Space reduction for a class of multidimensional Markov chains: a summary and some applications, INFORMS J. Comput., 30 (2018), 1–10. https://doi.org/10.1287/ijoc.2017.0759 doi: 10.1287/ijoc.2017.0759
    [27] D. Efrosinin, N. Stepanova, J. Sztrik, Algorithmic analysis of finite-source multi-server heterogeneous queueing systems, Mathematics, 9 (2021), 2624. https://doi.org/10.3390/math9202624 doi: 10.3390/math9202624
    [28] J. Roszik, J. Sztrik, Performance analysis of finite-source retrial queues with nonreliable heterogenous servers, J. Math. Sci., 146 (2007), 6033–6038.
    [29] Q. M. He, H. Li, Y. Q. Zhao, Ergodicity of the BMAP/PH/s/s+ K retrial queue with PH-retrial time, Queueing Syst., 35 (2000), 323–347. https://doi.org/10.1023/A:1019110631467 doi: 10.1023/A:1019110631467
    [30] L. Breuer, A. Dudin, V. Klimenok, A retrial BMAP/PH/N system, Queueing Syst., 40 (2002), 433–457. https://doi.org/10.1023/A:1015041602946 doi: 10.1023/A:1015041602946
    [31] L. Breuer, V. Klimenok, A. Birukov, A. Dudin, U. R. Krieger, Modeling the access to a wireless network at hot spots, Eur. Transact. Telecommun., 16 (2005), 309–316. https://doi.org/10.1002/ett.1000 doi: 10.1002/ett.1000
    [32] A. N. Dudin, R. Manzo, R. Piscopo, Single server retrial queue with group admission of customers, Comput. Oper. Res., 61 (2015), 89–99. https://doi.org/10.1016/j.cor.2015.03.008 doi: 10.1016/j.cor.2015.03.008
    [33] A. N. Dudin, S. A. Dudin, R. Manzo, L. Rarità, Analysis of multi-server priority queueing system with hysteresis strategy of server reservation and retrials, Mathematics, 10 (2022), 3747. https://doi.org/10.3390/math10203747 doi: 10.3390/math10203747
    [34] C. D'Apice, M. P. D'Arienzo, A. Dudin, R. Manzo, Admission control in priority queueing system with servers reservation and temporal blocking admission of low priority users, IEEE Access, 11 (2023), 44425–44443. https://doi.org/10.1109/ACCESS.2023.3273148 doi: 10.1109/ACCESS.2023.3273148
    [35] S. A. Dudin, O. S. Dudina, Call center operation model as a MAP/PH/N/N-R system with impatient customers, Probl. Inform. Transmiss., 47 (2011), 364–377. https://doi.org/10.1134/S0032946011040053 doi: 10.1134/S0032946011040053
    [36] H. Baumann, W. Sandmann, Multi-server tandem queue with Markovian arrival process, phase-type service times, and finite buffers, Eur. J. Oper. Res., 256 (2017), 187–195. https://doi.org/10.1016/j.ejor.2016.07.035 doi: 10.1016/j.ejor.2016.07.035
    [37] A. N. Dudin, S. A. Dudin, R. Manzo, L. Rarità, Queueing system with batch arrival of heterogeneous orders, flexible limited processor sharing and dynamical change of priorities, AIMS Math., 9 (2024), 12144–12169. https://doi.org/10.3934/math.2024593 doi: 10.3934/math.2024593
    [38] A. Dudin, S. Dudin, A. Melikov, O. Dudina, Framework for analysis of queueing systems with correlated arrival processes and simultaneous service of a restricted number of customers in scenarios with an infinite buffer and retrials, Algorithms, 17 (2024), 493. https://doi.org/10.3390/a17110493 doi: 10.3390/a17110493
    [39] C. Kim, A. Dudin, O. Dudina, S. Dudin, Tandem queueing system with infinite and finite intermediate buffers and generalized phase-type service time distribution, Eur. J. Oper. Res., 235 (2014), 170–179. https://doi.org/10.1016/j.ejor.2013.12.012 doi: 10.1016/j.ejor.2013.12.012
    [40] A. Dudin, C. Kim, S. Dudin, O. Dudina, Priority retrial queueing model operating in random environment with varying number and reservation of servers, Appl. Math. Comput., 269 (2015), 674–690. https://doi.org/10.1016/j.amc.2015.08.005 doi: 10.1016/j.amc.2015.08.005
    [41] S. Dudin, A. Dudin, R. Manzo, L. Rarità, Analysis of semi-open queueing network with correlated arrival process and multi-server nodes, Oper. Res. Forum, 5 (2024), 99. https://doi.org/10.1007/s43069-024-00383-z doi: 10.1007/s43069-024-00383-z
  • This article has been cited by:

    1. M. Lavanya, B. Sundara Vadivoo, Kottakkaran Sooppy Nisar, Controllability Analysis of Neutral Stochastic Differential Equation Using \psi -Hilfer Fractional Derivative with Rosenblatt Process, 2025, 24, 1575-5460, 10.1007/s12346-024-01178-7
    2. A. Priyadharshini, K. Jothimani, V. Vijayakumar, Existence and Uniqueness of the Solution for the Hilfer Fuzzy Fractional Integrodifferential Equation Via Resolvent Operators, 2025, 24, 1575-5460, 10.1007/s12346-024-01192-9
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(849) PDF downloads(114) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog