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Abstract: A multi-server retrial queue with a finite number of sources of requests was considered. In
contrast to similar models studied in the literature, we assumed this number is not constant but changes
its value in a finite range. During the stay in the system, each source generates the service requests.
These requests are processed in a finite pool of servers. After service completion of a request, the
source is granted the possibility to generate another request. If the source does not use this possibility
during an exponentially distributed time, it is deleted from the system. If the request finds all servers
busy, it can make repeated attempts to enter the service. If all servers are busy, the request may
depart from the system without service. In this case, with a fixed probability, the source that generated
this request is deleted from the system. Sources arrive according to a Markov arrival process. If the
number of sources in the system at the arrival epoch has the maximum allowed number, the arriving
source is lost. This system is a more adequate model of many real-world systems than the standard
finite source queue. Analysis of the considered system required a four-dimensional continuous-time
Markov chain. The generator of the chain was obtained as a block matrix with four levels of nesting.
The stationary distribution of this Markov chain was found numerically as well as the values of the
system’s performance measures. The dependence of these measures on the maximum allowed number
of sources and the number of servers was numerically clarified. An example of solving an optimization
problem was presented.
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1. Introduction

The phenomenon of request retrials, when the request cannot be admitted for service immediately
upon arrival, is inherent in a variety of real-world systems. Examples of such systems and descriptions
of the state-of-the-art methods of analysis of retrial queues can be found in the monographs [1-8].

Due to the wide applicability of retrial queues for analysis of various communication networks
(including wireless networks) and contact centers, these queues are a popular subject of research
despite the essential mathematical difficulties of their study compared to the queues with losses and
buffers. These difficulties are caused by the state-inhomogeneous behavior and higher dimension of
the stochastic processes describing such systems.

The overwhelming majority of the existing literature in the field of retrial queues is devoted to
systems where the number of retrying customers is not restricted (systems with an infinite source of
customers). At the same time, the retrial queues with a finite source also have received attention.
Surveys of early works about the retrial queues with a finite source can be found in [9] and [10].
The majority of these works, including [9], consider single-server queues. As early works, the
papers [11, 12] about the single-server queues can be mentioned.

In the paper [12] by A.G. de Kok, the author considers the system with an arrival rate depending
on the number of customers in orbit (those who met the busy server and will make repeated attempts
to enter service) and the state (busy or idle) of the server. Three special cases are considered there:
systems with infinite orbit capacity, systems with a finite orbit capacity, and systems with quasi-random
input. In the latter case, it is assumed that there are N identical permanently active sources. Every
source can generate service requests. If a source generates a request when the server is idle, this
request is immediately admitted for service; otherwise, the request joins the orbit. When the service of
the request is completed, the source becomes free and sends out a new request after an exponentially
distributed time. A non-free source, i.e., a source whose requests are in service or orbit, cannot generate
a new request.

Namely, the latter special case of the request admission and retrial management is called in the
literature the retrial system with a finite number of sources of calls. As the first paper devoted to the
analysis of multi-server retrial queues with a finite number of sources of requests, the paper [10] by G.
I. Falin can be mentioned. The M/M/c-type queue is considered there. According to [10], each source
can be in one of three states: a request generated by this source receives service; the source is sending
repeated calls (i.e., waiting for service in the orbit); the source is free and will generate the request in
an exponentially distributed time with a constant rate.

From the point of view of potential real-world applications, the source of the request can be
interpreted as the pair of equipment (access point or automated workplace) and a human (operator)
who uses this equipment for uploading or downloading information via communication channels
(servers). An automated workstation (AWP) is a system in which all the tools and programs necessary
for work are combined into one environment, often under the control of specialized software. An
AWP is designed to increase the efficiency of an employee, provide easy access to the necessary
resources, and centralize all business processes. The mentioned assumption that the number of
sources is permanent does not sound realistic because some of the existing access points can be
temporarily unavailable (broken, under maintenance, etc.), and the free operators could have different
activities at different periods (morning, day, evening and night), and generate the sources of requests
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only during working hours or during night.

The source of the requests can also be interpreted as a person having, e.g., a membership card,
season ticket, subscription, etc., who has to be mandatorily provided service in a system if the required
service equipment is currently available. Each source residing in the system can have a rest between
the required sequential services or can receive service, or they can wait for the release of some server
if all servers are occupied. In such systems, there is a fixed maximum value of the number of sources
that can stay in the system at the same time and generate requests, while the actual number of residing
sources is variable. Along with the already mentioned examples with the user having access to the
system resource via certain access equipment, e.g., an automatic workplace or a computer having
secure access to some specific data, the considered model can be applied for the description of the
operation of a variety of real-world systems (communication, transportation, entertainment, banking,
etc.) where the pool of users that can be serviced simultaneously is limited by a certain number. This
number has to be properly chosen at the stage of the system design to balance the number of available
service devices and size of the pool of potential users in such a way to achieve the maximal throughput
of the system and, at the same time, to avoid overcrowding and provide a satisfactory level of service
of the users admitted to the pool.

The main contribution of this paper is that we analyze the retrial queueing model where the number
of sources is variable. The maximum number of sources that can reside in the system is fixed and is
set to be equal to a finite integer number M. Therefore, any number m € {0, 1,2, ..., M} of sources can
stay in the system (be active) at an arbitrary moment. After an exponentially distributed time, the free
source, which did not generate a new request, leaves the system permanently. New sources arrive in the
system and are admitted if the number of sources already processed in the system is less than M and
are rejected otherwise. The proper choice of the optimal number of M and the number of servers in the
system that guarantee the maximal throughput of the system and satisfaction of the fixed requirements
for the quality of service is the non-trivial and challenging problem. The results of this paper provide
the tool for solving this problem.

In the terminology common in the literature devoted to an analysis of IEEE 802.11 DCF protocol
as a random channel access scheme based on CSMA/CA, the standard retrial queueing model with a
finite number of sources corresponds to the saturated system where each station always has a packet
for transmission, see [13]. Here we consider the non-saturated queueing model with a finite number
of sources. As was mentioned in many papers, e.g., in [14], non-saturated systems better describe
real-world systems.

For reasons of mathematical generality, in this paper, we assume that source arrival is described not
by the stationary Poisson process, as in the majority of existing papers, but by a quite general Markov
arrival process (MAP), see, e.g., [15-18]. The MAP is a well-recognized model of correlated bursty
flows in modern telecommunication networks and contact centers as well as other real-world system:s,
see, e.g., [19].

The model considered in this paper has certain common features with the model analyzed in [20].
In the terminology of our present paper, the model considered in [20] assumes a variable number of
active sources. New sources arrive according to a MAP. Request generation by a source is terminated
after a geometrically distributed number of requests is already generated. The difference is that here
we assume that a new request cannot be generated by a source until the previous request, which was
generated by this source, completes its service. In [20], it is assumed that the source can generate
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many requests in turn without waiting for their service beginning and completion. Our model is more
complicated for study than the one analyzed in [20] because the successive intervals between
generations of requests are not independent, identically distributed random variables but have a
complicated structure and include possible inter-retrial times.

A quite general multi-server retrial queue with a fixed finite number of sources of requests was
considered in [21]. Time until the next request generation by a source after service completion of the
previous request generated by this source does not have an exponential but more general so-called
phase type (PH) distribution; for the definition and properties, see, e.g., [22,23]. In contrast to our
model, the number of sources in [21] is permanent (i.e., the system is saturated). Note that the
additional features of the model considered in [21] are the presence of negative customers and the
influence of the external random environment.

The multi-server retrial queues with a fixed, finite number of sources of requests were also
considered in the following papers. In [24], a retrial queue with the search for balking and impatient
customers from the orbit was considered. In [25], it was assumed that service time had a phase-type
distribution. Two known ways for monitoring the phases of service time in all busy servers called
TPFS (track phase for server) and CSFP (count server for phase) were considered. For more details
about these ways, see, e.g., [26]. In [27], a finite-source queueing system consisting of heterogeneous
servers with unequal service intensities was under study. In [28], a finite-source retrial queue with
non-reliable heterogeneous servers was investigated via computer simulation.

Note that the retrial systems with an infinite source of arrivals defined by the MAP and phase type
distribution of the service time have been intensively studied in the existing literature, see, e.g., [29-34].

A brief outline of the paper is as follows. The mathematical model under study is described in detail
in Section 2. Section 3 contains a description of the process of changing the states of the system, which
is essentially more complicated than the corresponding process for the system with a fixed number of
sources, and briefly touches on the problem of the computation of the stationary distribution of this
process. Formulas for the computation of the main performance measures of the system given the
known stationary distribution of the system states are the main object of Section 4. Numerical results
are given in Section 5. Section 6 briefly summarizes the results of the presented analysis and touches
on possible directions for further research.

2. Mathematical model

Let us consider a multi-server retrial queue, the scheme of operation of which is presented in
Figure 1.

A MAP-flow of sources of requests enters the system. This input flow is specified by the control
process v;, t > 0, which is an irreducible continuous-time Markov chain (MC). This chain has a finite
state space {1,2,..., W} and the generator D of size W that can be represented as the sum of two
matrices, Dy and D;. The entries of the non-negative matrix D, define the rates of transitions of the
MC v, at which the sources are generated. The matrix D is the sub-generator. Its diagonal entries
are negative. The modules of these entries define the departure rates of the MC v, from its states. The
non-diagonal entries of matrix D, are non-negative and define the rates of the MC v, transitions within
its state space at which sources do not arrive. The average intensity of source arrival is denoted as A
and is calculated as A = 6D e, where 6 = (6, ...,0y) is the invariant probability vector of the MC v,.
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It is defined as the unique solution of the system 6D = 0, f#e = 1. Here and throughout the paper, e
is a column vector of suitable size consisting of ones, and 0 is a row vector of suitable size consisting
of zeros. A more detailed description of the MAP and formulas for determining its characteristics,
including the correlation and variation coefficients, can be found in [15-18].
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Figure 1. Scheme of the system operation.

It is assumed that there can be no more than M sources processed in the system at the same time. If
M sources are already presented in the system at an arrival moment, the arrived source is permanently
lost. Otherwise, it starts processing in the system as follows.

The number of independent identical servers that provide service to requests is equal to N. The
admitted source, independently of other sources residing in the system, generates a request for service
in exponentially distributed time with intensity @, @ > 0. If there is an idle server at the request
generation epoch, then this request begins service at any of the idle servers. The service time is
exponentially distributed with the parameter . Until the service of the request is finished, the source
that has generated this request resides in the system but cannot generate new requests.

If, at a request generation moment, all servers are busy, then with probability g, 0 < g < 1, the
source decides to make repeated attempts to manage the service of the generated request. With the
complementary probability 1 — g, the request is lost. The time between the repeated attempts to send
the request to service has an exponential distribution with parameter 8, 8 > 0. If the attempt was
successful, i.e., some server is available at the retrial epoch, then the request begins service. If the
attempt to catch an idle server is unsuccessful, the source decides to continue attempts with probability
g, and with the complementary probability, the request is lost. If a request leaves the system without
being serviced, then its source remains in the system with probability p, and with complementary
probability 1 — p, this source leaves the system forever. The source that generated this request may
generate a new request after the exponentially distributed time with the intensity @, @ > 0. Thus, any
source residing in the system can be in the following three states: (i) blocked, when its request receives
service by one of the servers; (i1) making repeated attempts; (iii) free (thinking before generating a new
request). Note that a newly admitted source always turns to the free state.

We assume that the time of the source’s stay in the system is limited. Namely, a free source leaves
the system after an exponentially distributed time with intensity y, y > 0, if it did not generate a request
during this time. By default, it is assumed that y is much less than «, i.e., a source can generate, with
a non-negligible probability, at least several requests during its residence in the system.
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3. The process of changing the states of a system and its stationary distribution

Let i; be the number of sources in the system, i, = O,_M; m, be the number of free sources, m, = 0, i;;
n, be the number of busy servers, n, = 0, min{i, — m,, N}; and v, be the state of the control process of
the MAP, v, = W at the moment ¢, ¢ > 0. Here, notation like i, = W means that i, admits values
from the set {0, 1, ..., M}.

It can be verified that the random process &, = {i;, m;, n;, v;}, t > 0, is an irreducible continuous-time
MC.

To facilitate the work with a four-dimensional MC &,, let us enumerate its states in the lexicographic
order. We ca_ll the set of the states, which have the value (i, m) of the components {i,, m,}, sub-level
(i,m), m=0,i, i =0,M. The set ((i,0),(i,1),...,(i,0) is called level i, i =0, M.

We will use the following denotations:

The square matrix [ has size N + 1 and is defined by I= diag{0,0,...,0, 1}, i.e., it is the diagonal
matrix with all zero diagonal entries except the last entry that is equal to 1; Iy is the identity matrix of
size W; and ¢; ; is Kronecker’s delta (equal to 1 if i = j and 0, otherwise).

The following statement is true.

Theorem 1. The generator Q of the MC &, t > 0, has a tri-block-diagonal structure:

Qoo Qoa O ... 0] o o
Oio Q11 Qip ... o 0 0
O 0O Q2 ... 0] o0 0
Q= . : . : : (1)
0 0] O ... Ou-1m—2 Ou-tim-1 Oum-1m
o 0 o ... 0 Omm-1 Oumm

where:

(1) The diagonal blocks Q;;, i = 0, M, have a tri-block-diagonal structure with non-zero diagonal

blocks Q™™, m = 0, i, the updiagonal blocks Q"-"™"', m = 0,i — 1, and the sub-diagonal blocks

i i

0™ m = 1,1, defined as:

ii

e blocks Q""" are two-block diagonal matrices with the diagonal blocks

i

Q") = Do — (ma +(-m—-n)B+my+ n,u)IW

+5,1,N(q<i —m—mpB+ p(l - q)ma)lw +6iDy, n = 0, min{i —m, NJ, 2)

and the updiagonal blocks

(Qm,m)n,n+1 — (l —-m- l’l)ﬁIWa n= (), mln{l —-m, N} -1. (3)

i
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e The blocks QZ’;'"“ fori—m < N have the form

0 0 o ... 0
| e 0 o ... 0
Qi = 0 ¥t o 0 : @)
0 0 O ... (Qurthymizm-l
where
(QZ’;’"J’])"’"_1 =nuly, n=1,i—m. (5)

Fori—m > N, the blocks QZ’{’"H have non-zero subdiagonal blocks

(Qm,m+1)n,n—l — nﬂlw, n= I’N’

and one non-zero last diagonal block
(QZ?"HI)N’N =p(l —g)i —m— N)Bly. (6)

e The blocks QZ’i’m_l fori—m < N have the form

o (@ hH 0 0

o 0 @ hr2 . 0

Qi’i’ ‘= : : ’: .. : ’ (7
0 0 0 (@ hyimmimmad

where
(Q;ni,m—l)n,nﬂ — mozIW, n= O, i—m.

Fori—m > N, the blocks Q;.’;’m_l have non-zero updiagonal blocks
Q" " = maly, n=0,N -1,
and one non-zero last diagonal block

Q" YN = gmaly. (8)

I

(2) The updiagonal blocks Q;;+1, 1 = 0, M — 1, have the form

0.0 0.1
Qi,i+1 Qlllfrl 102 0 0
o off o o o
Qi =| . b : ©)
' ' . . ii i+
0 o O ... Qi Qi,i:l
where Q;.’;.’Tl, m = 0, i, are zero matrices of size (min{i —m, N}+1)W x (min{i+ 1 —m, N}+ 1)W, and
Q?;;’r"f’l, m = 0,1, are the block-diagonal matrices with the diagonal blocks (QZ;’_:”I”)”’” =D, n=

0, min{i — m, N}.
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(3) The subdiagonal blocks Q;;-1, i = 1, M, have the form

oY, 0 0 .. O 0
o, o, 0. 0o o
Qi1 = : : S : : ; (10)
0 0 0 .. gl gl
o o0 o0.. 0 Q&

mml

where the subdiagonal blocks are defined as Q = ymlinfi—mny+1 @ Iy, m = 1,4, if i—-m <N,

and Q7" U= (ymly. +am(1-¢)(1-p)Doly, zfm = 1,i. The diagonal blocks o', m=0,i—1,
are zero matrices of size (min{i —m, N} + )W X (min{i — 1 —m, N} + 1)W, when i — m < N. For
i —m > N, they are matrices of size (N + 1)W X (N + 1)W, with all zero blocks except the last

diagonal block, (Q;’fl.’Tl)N’N =1 -1 - p)i —m—N)Bly.

Proof of Theorem 1 is implemented via the careful analysis of all possible transitions of the four-
dimensional MC ¢, = {i;,, m;, n;,v,} during an infinitesimal time. The generator Q is a block matrix
whose blocks Q; ; define transition rates from the states that belong to the level i to the states that
belong to the level j. The blocks Q; ; in turn consist of the sub-blocks Qmjm defining transition rates
from the states that belong to the sub-level (i,m) to the states that belong to the sub-level (j,m").
The sub-blocks Qmjm consist of block matrices (Qmm y*" whose entries are the matrices that define
transition rates of the components {i,, m;, n;} of the MC &, from the state (i, m, n) to the state (j,m’,n")
along with possible transitions of the component v, of the chain &,.

Due to the properties of the exponential distribution of time until the generation of a new request by
a free source, inter-retrial times, request service times, and time until the deletion of the inactive free
source, each of the components {i;, m;, n,}, during the time interval of the infinitesimal length, can keep
its value or increase or decrease it by 1.

This implies that all the listed matrices, Q; ;, QU , and (QZ’jtm’)"’”' have all zero blocks except,
probably, the diagonal, updiagonal, and subdiagonal blocks. For the same reason, the generator Q is a
tri-block diagonal structure (1) because the number of sources in the system can maintain its value or
increase it by 1, if a new source arrives and is admitted to the system, or decrease it by 1, if a source
leaves the system due to too long of a stay in the free state or the loss of a request generated by
this source.

The matrices Q,;, 1 = O,_M, also have the tri-block diagonal structure because, under the fixed
number i of sources residing in the system, the number of free sources m can retain its value or increase
or decrease it by 1. Let us comment on the structure of the blocks Q’”m ,m =m—1,m,m+ 1, of the
matrix Q;;.

First of all, consider the expression for the block Q.. This block is not a tri-block diagonal,
but a two-block diagonal matrix. This is because, under the fixed value (i,m) of the components
{i;,, m;} of the MC &,, the component n, cannot decrease its value. Such a decrease corresponds to the
service completion of some requests on one busy server. However, this implies that the source that
has generated this request becomes idle, and the number of free servers must increase to m + 1 and
not remain equal to m. Therefore, (Q/;")""" ' = 0. The form (2) of the block Q™)™ is explained as
follows.
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The diagonal entries of this block are negative. The module of each entry is equal to the exit rate
of the MC &, from the corresponding state. Such an exit can occur due to the exit from its states of the
tri-dimensional process {i,, m,, n;} or of the process v,. Note that, during the interval of an infinitesimal
length, only one of the processes {i;, m,, n,} and v; can exit from its states. The other one remains in its
state. The rate of the exit of the processes {i;, m;,, n,} for the fixed number i of sources presenting in the
system, m of free servers, and n of busy servers, n = 0, N — 1, is equal to ma + (i — m — n)B + my + nu.
This is true because each of m free sources can generate a new request (with rate ) or depart from the
system (with rate y), each busy server can complete service (with rate i), and each retrying request
(the number of such requests is equal to (i — m — n)) can retry (with rate §). When n = N, the
request generated by each of m free sources is lost with probability (1 — ¢) and with probability p the
corresponding source remains in the system. This explains the presence of the additional summand

5n,N(q(i —m-mB+p(l - q)ma)IW in the right-hand side of (2).

The multiplier Iy here reflects the mentioned-above fact that the underlying process v, of the MAP
should not make any change during the small interval of time if some changes in the value of the
process {i;, m;, n,} occur. A transition of the process {i;, m,, n,, v;} without changing the value (i, m, n) of
the components {i,, m,, n,} can also occur due to the transitions of the process v, defined by the matrix
D,. The diagonal entries of this matrix are negative, and the module of each such entry defines the
exit rate from the corresponding state. The non-diagonal entries of this matrix define transition rates
without the generation of a new source. This explains the presence of the summand D in the right-hand
side of formula (2). The presence of the summand 6, ,D; here is explained by the fact that transitions
of the process v;, the rates of which are given by the matrix D;, do not lead to any change of the values
of the components {i;, m,, n,} of the MC &, because the arriving source is not admitted to the system and
is lost when i = M. Thus, we have completely explained the form (2) of the blocks (Qﬁ.’m)”’”.

The form (3) of the block (QZ’I.”")”’"Jrl is clear because the transition of the process {i;, m;, n;} from
the state (i, m, n) to the state (i, m,n + 1) can happen due to the successful retrial by one of (i — m — n)
retrying with rate 8 sources, n = 0, min{i — m, N} — 1.

Let us now explain the form (4) of the block QZ""” when i—m < N.If i—m < N, then min{i—m, N} =
i —m and the number 7 of busy servers admits values from O to i — m. When the number of free servers

m,m+1

increases from m to m + 1, the maximum value of n reduces to i — m — 1. Therefore the matrix Q.

with blocks (Qﬁ’m+l)”’"' is not square. It has i — m + 1 block rows and i — m columns. Among these

blocks, only the blocks (QZ’I.’"’“)”’”‘I, n = 1,i —m, are non-zero. This is because the increase of the
number of free sources from m to m + 1 happens only at the moment of service completion in one of n
busy servers (the rate of service completions is equal to nu). This proves formula (5).

If i —m > N, then min{i — m, N} = N. Therefore, the matrix QZ’;’”“ is square. It has non-zero

subdiagonal entries equal to nuly, n = 1,N, and one diagonal block given by formula (6). This
formula is obvious because the transition of the components {i;, m,, n,} from the state (i, m, N) to the
state (i, m + 1, N) happens when all servers are busy and retrial occurs (with rate (i — m — N)B). This
retrial is not successful. According to the description of the model, with probability (1 —g), the retrying
request is lost, but with probability p, the source generating this request does not leave the system but
becomes free. Thus, the number of free sources becomes equal to m + 1.

Let us now prove formula (7) for the block QZI’”_I. The transition from the sub-level (i, m) to the
sub-level (i, m — 1) can occur when one of m free sources generates a request (with rate ma). Because
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in the considered case i —m < N, the generated request is accepted for service and the component n, of
m,M—l)n,n+l

the MC &, increases by one. Thus, the non-square matrix Ql'.f’i’m_l has non-zero only blocks (O}

b

=Lyl
i,i

which means that this matrix has structure (7) with the blocks (Q equal to maly, n = 0,i — m.

If i—m > N, then the square matrix Ql'.f’i’m_l has, along with the same updiagonal blocks, the non-zero
matrix (QZ’;’"_I)N’N reflecting the scenario when one of m sources generates a request, it is lost because
all servers are busy and the source, which has generated this request, does not leave the system but
becomes the source generating the retrials. As a result, we obtain formula (8).

Let us now explain form (9) of the matrices Q; 1, i = 0, M — 1. These matrices consist of the blocks
Qf"ljrnl where m = 0,i, m’ = 0,i + 1. Thus, these matrices are not square. They have i + 1 block rows
and i + 2 block columns. Because the transition from level i to level i + 1 occurs via a new source
arrival (the rates of transition of the component v, of the MC &, are given by the matrix D;) and this
arrival implies the increase by 1 of the number of free sources, we obtain the formulas given in the
formulation of Theorem 1 for the computation of the matrix Q;;,; and its blocks. Note that, as is stated
in Theorem 1, the blocks Q7 are zero blocks for m = 0, and we could directly replace these blocks
with zero matrices. We preferred to keep these matrices in (9) to give exact information about the size
of the corresponding zero matrices.

Expression (10) for the blocks Q;;_, i = 1,_M, having i + 1 block rows and i block columns, and
their sub-blocks, is explained similarly. The decrease in the number of residing sources fromitoi — 1
may not imply the change in the number of free sources (if the decrease occurs due to the source
departure caused by the unsuccessful retrial when all servers are busy). This explains the presence of
the blocks QZ["I, m = 0,7 — 1, in the generator. The decrease in the number of residing sources from i
to i — 1 may also cause a decrease in the number of free servers if the source departs from the system
due to a long stay without a request generation or due to the departure of the free source caused by the
generated request rejection. This explains the presence of non-zero blocks Q;.”’i’f’l_l in the generator.

We have completed the explanation of the form of the generator, its blocks, and sub-blocks.

Theorem 1 is proven.

Remark 1. It was mentioned above that the main contribution of this paper is the possibility of
variation in the number of sources in the system. This number, if it does not have a maximum allowed
value M, increases by one when a new source arrives in the MAP. This number, if it is positive,
decreases by one when a free source departs from the system due to too long of a period without a
request generation or rejection of the request generated by this source. The difficulty of the analysis of
the system with a varying number of sources compared to the classical system with a permanent
number of sources is easily explained by the fact that here we need to analyze the behavior of the
four-dimensional MC &, while the classical system, see [10], is analyzed via the consideration of the
two-dimensional MC {m,,n,}, m, = 0,M, n, = 0, N. This leads to an essentially more complicated
form of the generator describing the behavior of the system (four levels of blocks nesting instead of
only two) and an essentially larger size of the blocks, which is essential for the computer
implementation of the computation of the steady-state distribution of the system states under the
realistic values of the number of servers N and maximum number M of sources that can be processed
simultaneously.

It is easy to verify that the MC & is an irreducible one and has a finite state space. Therefore, the
positive limits
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a(i,m,n,v), i=0,M, m=0,i,n =0,min{i —m,N}, v=1,W,

called stationary probabilities of the states of the MC &,, exist for any values of the system parameters.
According to the introduced lexicographic ordering of the states of the MC, let us form the row vectors
n(i, m) of the stationary probabilities of the states that belong to the sub-level (i, m), i = (),_M m=20,i,
and the row vectors w; = (w(i,0),7(i, 1),...,n(,Q), i = O,_M, of the stationary probabilities of the
states that belong to the level i, i > 0.

It is well known that the vectors «;, i = (),_M, can be found as the unique solution to the system of
the linear algebraic equations

(71'0,71'1,.. .,7I'M)Q = 0, (7r0,7r1,...,7z'M)e = 1,

where Q is the generator of the MC &, defined by Theorem 1. Although this system has a finite number
of equations, this number can be large. Thus, the tri-block diagonal structure of the generator has to be
effectively taken into account to solve it. Algorithms from [35,36] can be recommended for this goal.

4. Performance characteristics of the system

Having calculated the vectors of stationary probabilities of the system states, we can calculate their
main stationary performance characteristics. Expressions for calculating some of them are given below.
The average number of sources in the system is calculated using the formula

M

Lource = Z im;e.

i=1
The average number of free sources in the system is given by

M i

Lfree—source = Z mﬂ'(i, m)e.
1

i=1 m=

The average number of occupied servers is equal to

M i—1 min{i-m,N}
Lpiocked—source = Z Z l’lﬂ'(i, m, n)e.
i=1 m=0 n=1

The average number of sources that repeat attempts is calculated using the formula

i min{i—-m—1,N}

M -
Lyetrial-source = Z Z Z (i—-m-n)n(i,m,n)e

i=1 m=0 n=0

= Lsource - Lfree—source - Lblocked—source-

The average intensity of serviced requests is defined as
/lserv = ,ULblocked—source-
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The probability of losing an arbitrary request is calculated as
/lserv

Preq—l()ss =1- .
aL free—source

The probability of losing an arbitrary source at the entrance to the system is calculated as

1 M min{M-m,N}
Pource-toss—ent = = Z Z (M, m,n)De.
A
m=0 n=0

The probability of losing an arbitrary source since the request it generated did not immediately
reach the service is calculated as

1 M i-N
Psource—loss—gen = /_1 izzM;l £ am(l — Q)(l - p)ﬂ'(l’ m, N)e.

The probability of losing an arbitrary source due to an unsuccessful retrial to get service is given by

1 M i—-N . ‘
Pource-toss—ret = Z Z Zﬁ(l —m-= N)(l - Q)(l - P)ﬂ'(l, m, N)e

i=N+1 m=0
The probability of an arbitrary source leaving the system due to long inactivity in the free state is
defined as

i

1 M
Psource—left = Z Z

ymn(i, m)e
i=1 m=1

=1- Psource—loss—em - Psource—loss—gen - Psource—loss—ret-

The presence of two different formulas for the computation of the probability P,ucc—f: 18 helpful for
the control of the accuracy of computation of the stationary probabilities of the system states.
The probability that at any given moment there is a free server in the system is calculated as

M i-N

Prreesener = 1= ) > wlim, N)e.

i=N m=0

5. Numerical example

The goals of the following numerical example are to demonstrate the feasibility of the proposed
method for computing performance characteristics of the system and illustrate the dependencies of
certain performance measures of the system on the number N of servers and the maximum number
M of sources that can receive service in the system simultaneously. The possibility of solving an
optimization problem is illustrated as well.

Let the MAP flow of sources arriving at the system be defined by the matrices

-08 0 0.75 0.05
DO‘( 0 —0.2)’D“(0.01 0.19)'

The fundamental rate A of this flow is equal to 0.3. The coeflicients of correlation and variation of
inter-arrival times are c¢.,, = 0.17 and c,,, = 1.625.
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The rate of request generation by a free source is @ = 0.2. The rate of retrial generation is g = 0.3.
The rate of the free source departure from the system is y = 0.01. The service rate is u = 1. The
probability that the source will not depart from the system when the loss of request generated by this
source occurs is p p = 0.8. The probability that the source will make retrials if the request generated
by this source meets all busy servers is ¢ = 0.9. Let us vary the parameter N over the interval [1, 10]
with step 1, and the parameter M over the interval [5, 100] also with step 1.

The dependence of the average number Ly,,.. of sources in the system on the parameters N and
M is presented in Figure 2. The number Lj,,.. more or less quickly increases when the maximum
number M of sources increases from 1 to about 60. After that, the increase becomes slow, and the
average number L. of sources stabilizes. The value Ly, 1s slightly larger for a small number of
servers N because when N is small, the source rarely becomes free and obtains a chance to depart from
the system.

L

source

45
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10
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Figure 2. Dependence of the Lj,,,.. on the parameters N and M.

The dependence of the average number Ly, cred—source Of sources (the average number of busy servers)
in the system on the parameters N and M is presented in Figure 3. This number is small when the
maximum number M of sources and the total number of servers N are small and then increases when
M and N grow. The increase caused by the increase of M becomes negligible for M > 50.

6
5
Lblock@d*murce 4
6 3
: i
4 0
3
2
1 N
0

Figure 3. Dependence of the average number Lyjycxeq—source ON the parameters N and M.

It is worth noting that because the service rate u is equal to 1, Figure 3 also gives an illustration of
the dependence of the average intensity A, of serviced requests on the parameters N and M.

Figure 4 shows the dependence of the average number L. ource Of free sources on the parameters
N and M. This number increases with the growth of the maximum number M of sources and,
especially, with the growth of the number of servers N.

AIMS Mathematics Volume 9, Issue 12, 33365-33385.



33378

L ‘free—source
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25
20
15
10

60 T80 g0 0
Figure 4. Dependence of the average number L. gource Of free sources on the parameters N
and M.

Figure 5 illustrates the behavior of the average number L, iq—source Of sSOurces that repeat attempts
to send the generated request to service. This number is very large when the number N of servers
is small while the number of competing sources is large (because the maximum number of admitted
sources is large). L eiiai—source DECOmMes small when N is large and M is small.

Lyetrial-source 35
35
30
25
20
15
10

Figure 5. Dependence of the average number L, iq—source Of sources that repeat attempts to
send the generated request to service on the parameters N and M.

The behavior of the probability P fyee—serer that at an arbitrary moment, there is a free server in the
system is highlighted in Figure 6. This probability is small when M is large and N is small. When M
is small and N is large, this probability is close to 1, which agrees with the intuitive reasoning.

E free—server / g

COOOO0000O
o Ry o—

(=}

Figure 6. Dependence of the probability Pf.ce—srver that at an arbitrary moment, there is a
free server on the parameters N and M.

The surface giving the dependence of the loss probability P,.,—;,ss of an arbitrary request is presented
in Figure 7. As anticipated, this probability is pretty large when M is large (and competition between
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the sources is high) and N is small. This probability quickly decreases when M decreases and N
increases.

P

req—loss
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Figure 7. Dependence of the loss probability P, Of an arbitrary request on the
parameters N and M.

The dynamic of the probability Py, rce—ioss—ens Of l0osing an arbitrary source at the entrance to the
system is shown in Figure 8. This probability is very high when only a few sources can work in the
system together and essentially decreases when the maximum number M of sources that can operate
in parallel increases. The influence of N is inessential.
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Figure 8. Dependence of the probability Py, ce—ioss—ens Of l0sing an arbitrary source at the
entrance to the system on the parameters N and M.

The dependence of the probability P ce—ioss—gen Of l0sing an arbitrary source, because the request
generated by this source did not immediately reach the service on the parameters N and M, is illustrated
in Figure 9. The shape of the surface giving this dependence is less monotonous and intuitively clear
than the majority of the surfaces presented above. This explains the motivation for the implemented
study. Intuitive reasoning does not always help to understand the existing relations and make the proper
managerial decisions. Mathematical, algorithmic, and numerical analysis is necessary to discover the
existing dependencies under all combinations of the choice of system parameters.

Figure 10 shows the dependence of the probability P, ce—ioss—re: Of losing an arbitrary source due to
an unsuccessful retrial to get service on the parameters N and M. As may be expected, this probability
is very high when N is small and M is large, and essentially decreases when N increases and M
decreases.

The probability Pjouce—ier that an arbitrary arriving source will leave the system due to long
inactivity in the free state as the function of the parameters N and M is presented in Figure 11. This
probability is high when N is large (and the system successfully provides service to almost all
generated requests) and M is relatively large (greater than 50). When M is small, an essential part of
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the sources is lost at the entrance and, thus, has no chance to leave the system due to long inactivity in
the free state.
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Figure 9. Dependence of the probability P ce—ioss—gen Of losing an arbitrary source because
the request generated by this source did not immediately reach the service on the parameters
N and M.
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Figure 10. Dependence of the probability P, c.—ioss—rer Of l0sing an arbitrary source due to
an unsuccessful retrial to get service on the parameters N and M.
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Figure 11. Dependence of the probability Py, ce—if On the parameters N and M.

In the considered model, we have two parameters, N and M, that, as we see from the results of the
numerical example, have an essential impact on the system performance. Therefore, various
optimization problems arise. For example, if the number N of the servers is fixed, it is necessary to
choose the maximum number M of sources (the number of automated workplaces), which can be
processed in the system simultaneously, to provide the desired quality of service. Oppositely, if the
maximum number M of sources is fixed, the number N of servers (or the respective service rates) has
to be chosen. Otherwise, it is necessary to choose the optimal pair of parameters N and M.
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The problem of fixing the proper criterion of quality of the system operation is important, but it can
be solved, usually, based on common sense. For example, it seems reasonable to use the following
criterion:

E(N,M) = als,, — 1L free—source Preg-ioss = C2AP source-ioss—ent

- C3/1Ps0urce—loss—gen - C4/1Psource—loss—ret —dN

where
a is the profit gained by the system from the successful service of one request;
c; is the penalty for the loss of one request;
¢, is the penalty for the loss of one source at the entrance to the system (due to the presence of the
maximum allowed number of sources);
c3 1s the penalty for the loss of one source due to the loss of a request generated by this source;
¢4 1s the penalty for the loss of one source due to the loss of a retrial generated by this source;
d is the payment for maintenance of each server during the unit of time; and
E(N, M) is the average profit gained by the system per unit of time.
Let us fix the following values of the cost coefficients:

a=1,c1=3,¢c2=2,¢c3=15, ¢4 =20,d =0.5.

Figure 12 shows the dependence of the cost criterion E(N, M) on the parameters N and M.

Figure 12. Dependence of the cost criterion E(N, M) on the parameters N and M.

More information about the values of E(N, M) for different values of N and M can be found in the

table.
Table 1. Values of E(N, M) for different values of N and M.

N E(N,5) M*(N) E(N, M*(N)) E(N, 100)
1 -0.811 5 -0.811 -6.535
2 -0.842 10 -0.689 -4.888
3 -1.234 15 -0.477 -3.384
4 -1.721 20 -0.229 -2.075
5 -2.22 25 0.02 -1.016
6 -2.72 35 0.283 -0.24
7 -3.22 45 0.463 0.253
8 -3.72 50 0.558 0.49
9 -4.22 60 0.529 0.513
10 -4.72 70 0.375 0.372
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By M*(N) in the Nth row of the table, we mean the optimal value of M under the fixed value of N.
Looking at the table, we can make the following inferences:

e If the maximum number M of sources is equal to 5, the value of the cost criterion is negative for
any number N of servers.

e If the number N of servers is less than 5, the value of the cost criterion is negative for any
maximum number M of sources.

e When N increases by 1, the optimal value of M increases by 5-10.

e When N increases up to the value N = 8, the value of E(N, M*(N)) increases.

e A further increase in N causes the decrease of E(N, M*(N)) because the charge for the use of an
additional server exceeds the profit obtained due to the improvement of performance
characteristics of the system.

The optimal values N* and M* of the parameters N and M that provide a maximum for the function
E(N, M) in this example are: N* = 8, M* = 50. The maximal value E* of the cost criterion is equal
to 0.558.

6. Conclusions

In this paper, we analyzed the essential generalization of a known retrial queue with a finite number
of sources. Besides consideration of a multi-server queue, while a majority of existing papers focus
on the single-server queue, we assume that the number of sources of requests (primary and retrials),
which are processed in the system, is not constant but admits different values up to a finite maximum.
Variation in the number of processed sources occurs due to deletion from the system of free sources
with low activity and admission for service of new sources. The flow of the new sources is described
by the MAP, which allows us to apply the analyzed model to a variety of real-world systems where
flows of sources have bursty behavior.

As possible directions for further research, we can mention the systems with retrials of sources that
arrive when the number of processed sources has the maximum allowed value, see, e.g., [37, 38];
systems with batch arrival of sources; systems with batch generation of requests by a source; systems
with phase-type distribution of service time; and possible differences for requests that reach the server
immediately upon generation or after retrials. For the latter systems, experience of [25] with the TPFS
and CSFP methods for service phase tracking can be used. Consideration of different phase-type
distributions of service time can be implemented with the use of the generalized phase-type
distribution, see [39]. Similar to [21,40], results can be extended also to the system operating in the
random environment and to the semi-open networks with customer retrial in the case of the inner
network overflow, see, e.g., [41].
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