In this article, using the Fuk-Nagaev type inequality, we studied general strong law of large numbers for weighted sums of m-widely acceptable (m-WA, for short) random variables under sublinear expectation space with the integral condition
ˆE(f−(|X|))≤CV(f−(|X|))<∞
and Choquet integrals existence, respectively, where
f(x)=x1/βL(x)
for β>1, L(x)>0 (x>0) was a monotonic nondecreasing slowly varying function, and f−(x) was the inverse function of f(x). One of the results included the Kolmogorov-type strong law of large numbers and the partial Marcinkiewicz-type strong law of large numbers for m-WA random variables under sublinear expectation space. Besides, we obtained almost surely convergence for weighted sums of m-WA random variables under sublinear expectation space. These results improved the corresponding results of Ma and Wu under sublinear expectation space.
Citation: Qingfeng Wu, Xili Tan, Shuang Guo, Peiyu Sun. Strong law of large numbers for weighted sums of m-widely acceptable random variables under sub-linear expectation space[J]. AIMS Mathematics, 2024, 9(11): 29773-29805. doi: 10.3934/math.20241442
[1] | He Dong, Xili Tan, Yong Zhang . Complete convergence and complete integration convergence for weighted sums of arrays of rowwise m-END under sub-linear expectations space. AIMS Mathematics, 2023, 8(3): 6705-6724. doi: 10.3934/math.2023340 |
[2] | Chengcheng Jia, Qunying Wu . Complete convergence and complete integral convergence for weighted sums of widely acceptable random variables under the sub-linear expectations. AIMS Mathematics, 2022, 7(5): 8430-8448. doi: 10.3934/math.2022470 |
[3] | Mingzhou Xu . Complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(8): 19442-19460. doi: 10.3934/math.2023992 |
[4] | Mingzhou Xu, Xuhang Kong . Note on complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(4): 8504-8521. doi: 10.3934/math.2023428 |
[5] | Yuyan Wei, Xili Tan, Peiyu Sun, Shuang Guo . Weak and strong law of large numbers for weakly negatively dependent random variables under sublinear expectations. AIMS Mathematics, 2025, 10(3): 7540-7558. doi: 10.3934/math.2025347 |
[6] | Haiye Liang, Feng Sun . Exponential inequalities and a strong law of large numbers for END random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(7): 15585-15599. doi: 10.3934/math.2023795 |
[7] | Mingzhou Xu . Complete convergence of moving average processes produced by negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(7): 17067-17080. doi: 10.3934/math.2023871 |
[8] | Baozhen Wang, Qunying Wu . Almost sure convergence for a class of dependent random variables under sub-linear expectations. AIMS Mathematics, 2024, 9(7): 17259-17275. doi: 10.3934/math.2024838 |
[9] | Yongfeng Wu . Limit theorems for negatively superadditive-dependent random variables with infinite or finite means. AIMS Mathematics, 2023, 8(11): 25311-25324. doi: 10.3934/math.20231291 |
[10] | Lunyi Liu, Qunying Wu . Complete integral convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(9): 22319-22337. doi: 10.3934/math.20231138 |
In this article, using the Fuk-Nagaev type inequality, we studied general strong law of large numbers for weighted sums of m-widely acceptable (m-WA, for short) random variables under sublinear expectation space with the integral condition
ˆE(f−(|X|))≤CV(f−(|X|))<∞
and Choquet integrals existence, respectively, where
f(x)=x1/βL(x)
for β>1, L(x)>0 (x>0) was a monotonic nondecreasing slowly varying function, and f−(x) was the inverse function of f(x). One of the results included the Kolmogorov-type strong law of large numbers and the partial Marcinkiewicz-type strong law of large numbers for m-WA random variables under sublinear expectation space. Besides, we obtained almost surely convergence for weighted sums of m-WA random variables under sublinear expectation space. These results improved the corresponding results of Ma and Wu under sublinear expectation space.
Probability limit theories are widely used in various fields of life, including statistics, finance, medicine, engineering, etc. When the mathematical model is definite, classical probability limit theories offer a convenient way to solve problems. However, in a practical situation, some phenomena exist in uncertainty, such as risk measure, super-hedging in finance, and assets pricing, which cannot be settled by classical probability limit theories. In other words, linear additivity cannot be satisfied. Therefore, to solve the limitation of the phenomena, Peng [1,2,3] introduced the concept of sublinear expectation and established the sublinear expectation space as an extension for classical probability limit theory. Due to the fact that classical probability space tools may not be directly applied in sublinear expectation space, Peng [4] introduced several concepts in sublinear expectation space, such as identical distribution, independence, maximum distribution, G-normal distribution, and so on. Furthermore, the theory of sublinear expectation space can be found in Peng's [1,2,3,4]. In recent years, numerous scholars have dedicated themselves to the theoretical research of sublinear expectation space. Zhang [5,6,7] obtained a series of major inequalities under sublinear expectation space. Dong and Tan [8] got complete convergence and complete integration convergence for arrays of row-wise m-extended negatively dependent (m-END) under sublinear expectation space. Guo and Zhang [9] studied the central limit theorem of m-dependent random variables under sublinear expectation space. In addition, we can read Zhong and Wu [10], Anna [11,12], Liu and Zhang [13], Wu et al. [14], Feng et al. [15], and so on.
The strong law of large numbers is one of the important theorems in probability limit theories. In practical applications, especially in statistical inference and data analysis, the strong law of large numbers makes us believe that the sample mean can be used as an estimate of the population mean. Let {Xi,i≥1} be a sequence of random variables in the probability space, and let {an,n≥1} and {bn,n≥1} be sequences of constants with
0<bn↑∞. |
The sequence {Xi,i≥1} has a finite expectation EXi. Then, {aiXi,i≥1} is said to obey the general strong law of large numbers with constant {bn,n≥1} if
1bnn∑i=1ai(Xi−EXi)→0almostsurely(a.s.)P | (1.1) |
holds. If
bn=n, an=1, |
it is the Kolmogorov-type strong law of large numbers. If
bn=n1/r, an=1, r>0, |
it is the Marcinkiewicz-type strong law of large numbers. When
bn=n∑i=1ai, |
the fundamental result is obtained for the strong law of large numbers. In recent years, many results of the strong law of large numbers have been obtained in sublinear expectation space. Zhang and Lin [5,16] established the Kolmogorov and Marcinkiewicz strong law of large numbers of independent and identical random variables under sublinear expectation space with the condition
limc→∞ˆE[(|X1|−c)+]=0. |
Chen [17] studied strong law of the large number of independent and identical random variables under sublinear expectation space with the condition
ˆE|X1|1+α<∞ |
for some α∈(0,1]. Hu [18] obtained weak and strong laws of large numbers of independent random variables under sublinear expectation space with the condition
limn→∞supm≥1ˆE[|Xm|I(|Xm|>n)]=0. |
Moreover, we can refer to Jiang and Wu [19], Wu and Deng [20], Ma and Wu [21], Tan et al. [22], and so on.
Recently, Wu et al. [20] obtained capacity inequalities and strong laws for m-WA (m-widely acceptable) random variables under sublinear expectation space. Ma and Wu [21] established strong law of large numbers for weighted sums of END random variables on some conditions under sublinear expectation space, which was inspired by Shen et al. [23]. Therefore, the goal of this article is to establish strong law of large numbers and almost surely convergence for weighted sums of m-WA random variables under sublinear expectation space. These results improve the corresponding results of Ma and Wu [21] under the sublinear expectation space. In addition, the main structure of this article is as follows. In the Section 2, we introduce some basic definitions and main lemmas to provide tools for proofs of main results. In the Section 3, we give the main results for strong law of large numbers and the almost surely convergence of m-WA random variables under sublinear expectation space with the condition
ˆE(f−(|X|))≤CV(f−(|X|))<∞ |
and Choquet integrals existence. In the Section 4, corresponding proofs of main results are provided.
We use the framework and notions of Peng [1,2,3,4]. Let (Ω,F) be a given measurable space. H was a linear space of real functions defined on (Ω,F) such that if X1,X2,⋯,Xn∈H, then φ(X1,X2,⋯,Xn)∈H for each φ∈Cl,Lip(Rn), where Cl,Lip(Rn) denotes the linear space of local Lipschitz functions φ satisfying
|φ(x)−φ(y)|≤c(1+|x|m+|y|m)|x−y|,∀x,y∈Rn, |
for some c>0 and m∈N depending on φ. Therefore, H can be a space of random variables. In this case we denote X∈H. We also define Cb,Lip(Rn) as the linear space bounded Lipschitz continuous functions φ fulfilling
|φ(x)−φ(y)|≤c|x−y|,∀x,y∈Rn |
for some c>0.
Definition 2.1. [4] A sublinear expectation ˆE is a function ˆE on
H:H→ˉR:=[−∞,+∞] |
satisfying the following conditions: for all X,Y∈H,
(1) Monotonicity: ˆE(X)≥ˆE(Y) if X≥Y;
(2) Constant preserving: ˆE(c)=c for c∈R;
(3) Sub-additivity: ˆE(X+Y)≤ˆE(X)+ˆE(Y), whenever ˆE(X)+ˆE(Y) is not of the form +∞−∞ or −∞+∞;
(4) Positive homogeneity: ˆE(λX)=λˆE(X), ∀λ≥0.
The triple (Ω,H,ˆE) is called a sublinear expectation space.
For a given a sublinear ˆE, let's define a conjugate expectation ˆε of ˆE by
ˆε(X):=−ˆE(−X),∀X∈H. |
From the definition, it is easily obtained that for all X,Y∈H,
ˆε(X)≤ˆE(X),ˆE(X+c)=ˆE(X)+c,|ˆE(X−Y)|≤ˆE|X−Y|,ˆE(X−Y)≥ˆE(X)−ˆE(Y). |
Definition 2.2. [5] Let G⊂F. A function V: G→[0,1] is called a capacity satisfying
(a) V(∅)=0, V(Ω)=1;
(b) V(A)≤V(B), ∀A⊆B, A, B∈G.
It is called to be sub-additive if
V(A∪B)≤V(A)+V(B) |
for all A, B∈G with
A∪B∈G. |
Let (Ω,H,ˆE) be a sublinear expectation space and ˆε be a conjugate expectation of ˆE. We define a pair (V,V) of capacities by
V(A):=inf{ˆE(ξ):IA≤ξ,ξ∈H},V(A)=1−V(Ac),∀A∈F, |
where Ac is the complement set of A. From the above definition,
ˆE(f)≤V(A)≤ˆE(g), ˆε(f)≤V(A)≤ˆε(g), iff≤I(A)≤g,f,g∈H. |
For all X∈H, p>0, and x>0,
I(|X|>x)≤|X|pxpI(|X|>x)≤|X|pxp, |
and we can get the Markov inequality:
V(|X|≥x)≤ˆE|X|pxp,p>0,x>0. |
Definition 2.3. [5] The Choquet integral/expectation (CV,CV) is defined by
CV(X)=∫XdV=∫0−∞(V(X≥t)−1)dt+∫∞0V(X≥t)dt,∀X∈H, |
where V is replaced by V and V, respectively.
Definition 2.4. [19] (ⅰ) A sublinear expectation ˆE: H→R is called to be countably sub-additive if it satisfies
ˆE(X)≤∞∑i=1ˆE(Xi), |
whenever
X≤∞∑i=1Xi, |
X, Xi∈H and X≥0, Xi≥0, i≥1.
(ⅱ) A function V: F→[0,1] is called to be countably sub-additive if
V(∞⋃i=1Ai)≤∞∑i=1V(Ai),∀Ai∈F. |
Definition 2.5. [19] A sequence of random variables {Xi,i≥1} is called to converge to X a.s. V defined by Xi→X a.s. V as i→∞, if
V(Xi↛X)=0. |
Further, by
V(A)+V(Ac)=1 |
for any A∈F,
Xi→Xa.s.V⟺V(Xi→X)=1. |
Definition 2.6. [20] Suppose {Xi,i≥1} is a sequence of random variables in sublinear expectation space (Ω,H,ˆE). {Xi,i≥1} is called to be WA if there exists a positive sequence {g(n),n≥1} dominating coefficients such that for each n≥1,
ˆE[exp(n∑i=1aniφi(Xi))]≤g(n)n∏i=1ˆE[exp(aniφi(Xi))], |
where {ani,1≤i≤n,n≥1} is an array of nonnegative constants and
φi(⋅)∈Cb,Lip(R), i≥1 |
are all nondecreasing (resp., all nonincreasing) real-valued truncation functions.
Definition 2.7. [20] Let m≥1 be a fixed integer. A sequence of random variables {Xi,i≥1} is said to be m-WA if for any i≥2 and any n1, n2, n3, ⋯, ni satisfying
|nk−nj|≥m |
for all 1≤k≠j≤i, we have that Xn1, Xn2, ⋯, Xni are WA.
Remark 2.1. It is easily seen that m-WA random variables are a natural extension of WA random variables. It follows by the definition of m-WA random variables that sequences
{X1,X1+m,X1+2m,⋯},{X2,X2+m,X2+2m,⋯},⋯,{Xm,X2m,X3m,⋯} |
are WA and m-WA is WA if m=1. m-WA random variables include negatively dependent (ND) random variables, END random variables, widely negative orthant dependent (WOD) random variables, m-END random variables, m-WOD random variables, etc. Thus, it is meaningful to research probability limit theories for m-WA random variables.
Definition 2.8. [24] A function L(x): (0,∞)→(0,∞) is called a slowly varying function, if for any λ>0,
limx→∞L(λx)L(x)=1. |
In this paper, the symbol c stands for a positive constant which may not be the same in various places. Let C be a concrete positive constant. I(A) is the indicator function of the event A. an=O(bn) means there exists a constant c>0 such that an≤cbn for all n≥1. an≪bn means that there exists a constant c>0 such that an≤cbn for sufficiently large n. The symbol #A is on behalf of the number of elements in set A.
Lemma 2.1. [20] Let {Xi,i≥1} be a sequence of m-WA random variables with dominating coefficients {g(n),n≥1} in sublinear expectation space (Ω,H,ˆE). If {φi(⋅),i≥1}∈Cb,Lip(R) are all non-decreasing (resp., all nonincreasing), then the sequence {φi(Xi),i≥1} is still m-WA random variables with dominating coefficients {g(n),n≥1}.
Lemma 2.2. [25] (Borel-Cantelli's lemma) Let {An,n≥1} be a sequence of events in F. Suppose that V is a countably sub-additive capacity. If
∞∑n=1V(An)<∞, |
then
V(An,i.o.)=0, |
where
{An,i.o.}=∞⋂n=1∞⋃i=nAi. |
Lemma 2.3. (1) Cr inequality [3]: Let X1, X2, ⋯, Xn∈H for n≥1, then
ˆE|X1+X2+⋯+Xn|r≤Cr[ˆE|X1|r+ˆE|X2|r+⋯+ˆE|Xn|r], |
where
Cr={1,0<r≤1,nr−1,r>1. |
(2) Jensen inequality [25]: Let f(⋅) be a convex function on R. Assume that ˆE(X) and ˆE(f(X)) exist. Then,
ˆE[f(X)]≥f(ˆE(X)). |
(3) [15] For all X∈H and 0<r<s,
(ˆE|X|r)1/r≤(ˆE|X|s)1/s. |
Lemma 2.4. [14] For any X, Y∈H, it holds that
|ˆE(X)−ˆE(Y)|≤ˆE|X−Y|. |
Lemma 2.5. [26] (Toeplitz lemma) Let kn be a positive number and {ank,1≤k≤kn,n≥1} be an array of real numbers fulfilling for any k≥1,
limn→∞ank=0 |
and
supn≥1kn∑k=1|ank|<∞. |
Let {xn,n≥1} be a sequence of real numbers. If
limn→∞xn=0, |
then,
limn→∞kn∑k=1ankxk=0. |
Lemma 2.6. [24] A function L(x): (0,∞)→(0,∞) is a slowly varying function, then for η>0,
limx→∞xηL(x)=∞,limx→∞x−ηL(x)=0. |
Lemma 2.7. [27] Assume that X∈H and
f(x)=x1/βL(x), 0<β<∞, |
and L(x) is a slowly varying function. Then, for any c>0,
CV(f−(|X|)c−β)<∞⟺∞∑n=1V(|X|>cn1/βL(n))<∞, |
where f−(x) is the inverse function of f(x).
Lemma 2.8. [20] (Fuk-Nagaev type inequality) Let {Xi,i≥1} be a sequence of m-WA random variables in (Ω,H,ˆE) with
ˆE[Xi]≤0 |
for i≥1. Then, for all x>0 and d>0,
V(n∑i=1Xi>x)≤mV(max1≤i≤nXi>dm)+mg(n)exp{xd−xdln(1+xd/m2∑ni=1ˆE|Xi|2)}. |
Lemma 2.9. [28] (Kronecker lemma) Let {xn,n≥1} and {bn,n≥1} be sequences of real numbers with 0<bn↑∞. If the series ∞∑n=1xnbn converges, then
limn→∞1bnn∑i=1xi=0. |
Theorem 3.1. Assume that
1<β<α, 1≤s<2, 1s=1α+1β, |
and V is countably sub-additive. Let {Xi,i≥1} be a sequence of m-WA random variables dominated by
g(n)=O(nθ) (0≤θ<2α−1) |
in (Ω,H,ˆE). Suppose that
f(x)=x1/βL(x), |
where L(x)>0 (x>0) is a monotonic nondecreasing slowly varying function, and f−(x) is the inverse function of f(x). Further, there exist a random variable X and a constant C satisfying that
ˆE[ψ(Xi)]≤CˆE[ψ(X)],∀i≥1,0≤ψ∈Cl,Lip(R) | (3.1) |
and
ˆE[f−(|X|)]≤CV[f−(|X|)]<∞. | (3.2) |
Let {ai,i≥1} and {bi,i≥1} be sequences of positive numbers with ai↑, bi↑∞, and the following two conditions hold:
n∑i=1ai=O(bn), | (3.3) |
anbn=O(n−1/s). | (3.4) |
Then,
lim supn→∞b−1n(L(n))−1n∑i=1ai(Xi−ˆE(Xi))≤0,a.s.V | (3.5) |
and
lim infn→∞b−1n(L(n))−1n∑i=1ai(Xi−ˆε(Xi))≥0,a.s.V. | (3.6) |
Furthermore, if
ˆE(Xi)=ˆε(Xi), |
we have
limn→∞b−1n(L(n))−1n∑i=1ai(Xi−ˆE(Xi))=0,a.s.V. | (3.7) |
Theorem 3.2. Let {Xi,i≥1} be a sequence of m-WA random variables dominated by
g(n)=O(nθ) (0≤θ<1) |
in (Ω,H,ˆE). Assume that
1<γ≤γ+θ<2, |
ˆE and V are countably sub-additive,
h(x)=x1/γL(x), |
where L(x)>0 (x>0) is a monotonic nondecreasing slowly varying function, and h−(x) is the inverse function of h(x). There exist a random variable X and a constant C satisfying (3.1). For any c>0,
∞∑n=1nθ/γV(|X|>cn1/γL(n))<∞, | (3.8) |
and CV(h−(|X|)) exists. Suppose that {ai,i≥1} and {bi,i≥1} are sequences of positive numbers with bi↑∞ and
cn=bn/an↑∞ |
fulfilling that
∞∑n=ib−2nnθ(L(cn))−2≪b−2icθi(L(ci))−2 |
for sufficiently large i. Note that
T(n)=#{i,ci≤n}≪nγ,n≥1. | (3.9) |
Then
lim supn→∞b−1n(L(cn))−1n∑i=1ai(Xi−ˆE(Xi))≤0,a.s.V | (3.10) |
and
lim infn→∞b−1n(L(cn))−1n∑i=1ai(Xi−ˆε(Xi))≥0,a.s.V. | (3.11) |
Furthermore, if
ˆE(Xi)=ˆε(Xi), |
we have
limn→∞b−1n(L(cn))−1n∑i=1ai(Xi−ˆE(Xi))=0,a.s.V. | (3.12) |
Taking L(x)=1, an=1, bn=ns for s=1 in Theorem 3.1, we get the Kolmogorov-type strong law of large numbers.
Corollary 3.1. Assume that the conditions of Theorem 3.1 hold and
ˆE(Xi)=ˆε(Xi), |
then
limn→∞n−1n∑i=1(Xi−ˆE(Xi))=0,a.s.V. |
Besides, taking L(x)=1, an=1, bn=ns for 1<s<2 in Theorem 3.1, we obtain the partial Marcinkiewicz-type strong law of large numbers.
Corollary 3.2. Assume that the conditions of Theorem 3.1 hold and
ˆE(Xi)=ˆε(Xi), |
then
limn→∞n−sn∑i=1(Xi−ˆE(Xi))=0,a.s.V. |
Taking L(x)=1, an=1, bn=en in Theorem 3.2, we have
cn=en↑∞. |
By
ci=ei≤n, |
we can get
i≤lnn≪n. |
Thus,
T(n)≪n≪nγ |
for 1<γ<2, which satisfies the condition of (3.9). By 0≤θ<1 and n≪en, we get
∞∑n=ib−2nnθ=∞∑n=ie−2nnθ≪∞∑n=ie−2nenθ=∞∑n=ie−(2−θ)n≪e−(2−θ)i=e−2i⋅eiθ=b−2icθi. |
Therefore, the above conditions satisfy Theorem 3.2. So, we obtain Corollary 3.3.
Corollary 3.3. Assume that the conditions of Theorem 3.2 hold and
ˆE(Xi)=ˆε(Xi), |
then
limn→∞e−nn∑i=1(Xi−ˆE(Xi))=0,a.s.V. |
Remark 3.1. Theorems 3.1 and 3.2 extend the results of Ma and Wu [21] from END random variables to m-WA random variables under sublinear expectation space. The dominating coefficient of END random variables is a constant K≥1, but the dominating coefficients of m-WA random variables is a positive sequence {g(n),n≥1}. Thus, {g(n),n≥1} has brought us the main technical difficulties of the proofs.
Remark 3.2. Besides, in sublinear expectation space, Ma and Wu [21] studied strong law of large numbers for weighted sums of END random variables under sublinear expectations with the condition
ˆE(|X|β)≤CV(|X|β)<∞, β>1 |
and
CV(|X|r)<∞, 1<r<2. |
Thus, we introduce the slowly varying function, making our results better than the results of Ma and Wu [21] and our conditions weaker than those in [21]. In particular, taking θ=0 and L(x)=1 in Theorem 3.1 and Theorem 3.2, we conclude that these results are almost identical to the results of Ma and Wu [21].
Remark 3.3. From Corollaries 3.1 and 3.2, Theorem 3.1 consists of the Kolmogorov-type strong law of large numbers and the partial Marcinkiewicz-type strong law of large numbers for m-WA random variables, which is different from the result of Wu et al. [20]. Theorem 3.2 is the result of almost surely convergence and Corollary 3.3 is the application of Theorem 3.2.
Remark 3.4. In Theorems 3.1 and 3.2, we assume that V is countably sub-additive. If V isn't countably sub-additive, we can define an outer capacity V∗ as in Zhang [7] by
V∗(A)=inf{∞∑n=1V(An):A⊂∞⋃n=1An},V∗(A)=1−V∗(Ac),A∈F. |
Then V∗(A) is countably sub-additive with
V∗(A)≤V(A). |
Therefore, we can get the corresponding strong law of large numbers with respect to V∗.
Proof of Theorem 3.1. It is easily seen that
CV(f−(|X|))<∞ |
is equivalent to
CV(f−(|X|)c−β)<∞ |
from Definition 2.3. So, for any c>0, according to Lemma 2.7, we get
∞∑n=1V(|X|>cn1/βL(n))<∞. | (4.1) |
We notice that
∞∑n=1V(|X|>cn1/βL(n))=∞∑j=1∑2j−1≤n<2jV(|X|>cn1/βL(n))≥∞∑j=1∑2j−1≤n<2jV(|X|>c2j/βL(2j))≥∞∑j=1(2j−2j−1)V(|X|>c2j/βL(2j))≥2−1∞∑j=12jV(|X|>c2j/βL(2j)), |
which implies that
∞∑j=12jV(|X|>c2j/βL(2j))<∞. | (4.2) |
For a sequence of m-WA random variables, to ensure that the truncated random variables are also a sequence of m-WA random variables, we choose the function as follows:
la(x)=−aI(x<−a)+xI(|x|≤a)+aI(x>a) |
for any a>0. This truncated function la(x) belongs to Cb,Lip(R) and is nondecreasing. So, by Lemma 2.1, for fixed n≥1 and each 1≤i≤n,
Yni:=−n1/βL(n)I(Xi<−n1/βL(n))+XiI(|Xi|≤n1/βL(n))+n1/βL(n)I(Xi>n1/βL(n)),Zni:=Xi−Yni=(Xi+n1/βL(n))I(Xi<−n1/βL(n))+(Xi−n1/βL(n))I(Xi>n1/βL(n)). | (4.3) |
Then, {Yni,n≥1,1≤i≤n} is also a sequence of m-WA random variables. It is easy to obtain that
b−1n(L(n))−1n∑i=1ai(Xi−ˆE(Xi))=b−1n(L(n))−1n∑i=1aiZni+b−1n(L(n))−1n∑i=1ai(Yni−ˆE(Yni))+b−1n(L(n))−1n∑i=1ai(ˆE(Yni)−ˆE(Xi))=J1+J2+J3. |
In order to prove the Eq (3.5), it suffices to verify that
lim supn→∞J1≤0a.s.V,lim supn→∞J2=0a.s.V | (4.4) |
and
limn→∞J3=0. | (4.5) |
In classical probability space (Ω,F,P), we know that the equation
P(A)=E(IA) |
was established for A∈F. However, in the sublinear expected space (Ω,H,ˆE), to ensure continuity, we need to adjust the indicator function through the function in Cl,Lip(R). So, we define the function as follows. For 0<μ<1, ˉg(x) is an even function and ˉg(x)∈Cl,Lip(R) fulfilling
0≤ˉg(x)≤1 |
for all x. ˉg(x)=1 if |x|<μ; ˉg(x)=0 if |x|>1, and ˉg(x) is nonincreasing as x>0. Then,
I(|x|≤μ)≤ˉg(|x|)≤I(|x|≤1),I(|x|>1)≤1−ˉg(|x|)≤I(|x|>μ). | (4.6) |
By (3.1), (4.1), (4.3), and (4.6), we get
∞∑n=1V(Zni≠0)≤∞∑n=1V(|Xi|>n1/βL(n))≤∞∑n=1ˆE(1−ˉg(|Xi|n1/βL(n)))≤C∞∑n=1ˆE(1−ˉg(|X|n1/βL(n)))≤C∞∑n=1V(|X|>μn1/βL(n))<∞. | (4.7) |
Then, by (4.7), Lemma 2.2, and V being countably sub-additive, we obtain
V(Zni≠0,i.o.)=0. |
Since (3.4), ai↑, and L(x) is a nondecreasing function, we obtain
|J1|≤b−1n(L(n))−1max1≤i≤nain∑i=1|Zni|≤b−1n(L(n))−1ann∑i=1|Zni|≤cn−1/s(L(n))−1n∑i=1|Zni|→0,a.s.V. |
Hence,
lim supn→∞J1≤0a.s.V |
has been proved, and we will turn to prove (4.5).
Because f(x) (x>0) is a regularly varying function with an exponent of 1/β, f−(x) is a regularly varying function with an exponent of β from Bingham et al. [29, Theorem 1.5.12]. Thus, by (3.2) and Lemma 2.3 (3),
ˆE(f−(|X|))<∞ |
implies
ˆE|X|δ<∞,∀δ∈(0,β). | (4.8) |
We choose
η=1/β>0 |
in Lemma 2.6, then we have n1/βL(n)→∞ as n→∞. We take δ∈(1,β). By (3.1), (4.3), (4.6), (4.8), Lemma 2.4, and 1−δ<0, and we have
|ˆE(Yni)−ˆE(Xi)|≤ˆE|Yni−Xi|≤ˆE[|−n1/βL(n)−Xi|I(Xi<−n1/βL(n))+|n1/βL(n)−Xi|I(Xi>n1/βL(n))]≪ˆE[|Xi|(1−ˉg(|Xi|n1/βL(n)))]≤CˆE[|X|(1−ˉg(|X|n1/βL(n)))]=CˆE[|X|δ|X|1−δ(1−ˉg(|X|n1/βL(n)))]≤Cμ1−δn(1−δ)/β(L(n))1−δˆE|X|δ→0,n→∞. | (4.9) |
According to bn↑∞ and the fact that L(n) is nondecreasing, for fixed ai, we get
limn→∞b−1n(L(n))−1ai=0. |
By (3.3),
supn≥1bn−1(L(n))−1n∑i=1ai≤(L(1))−1supn≥1bn−1n∑i=1ai≤c<∞. | (4.10) |
Then, by (4.9), (4.10), and Lemma 2.5, the Eq (4.5) is proved.
Finally, we will turn to prove
lim supn→∞J2=0a.s.V. |
We notice that {Yni,n≥1,1≤i≤n} is a sequence of m-WA random variables, then by Lemma 2.1, {ai(Yni−ˆE(Yni)),n≥1,1≤i≤n} is still a sequence of m-WA random variables and
ˆE[ai(Yni−ˆE(Yni))]=0, |
which satisfies the requirements of Lemma 2.8. For every ε>0, we take
x=d=bnL(n)ε |
in Lemma 2.8. By using the Markov inequality, V being countably sub-additive, and Lemma 2.3 (1) and (2), we get
V[b−1n(L(n))−1n∑i=1ai(Yni−ˆE(Yni))>ε]≤mV[max1≤i≤nai(Yni−ˆE(Yni))>bnL(n)⋅εm]+mg(n)exp{1−ln(1+ε2⋅b2n(L(n))2/m2n∑i=1a2iˆE|Yni−ˆE(Yni)|2)}≤mn∑i=1V[|ai(Yni−ˆE(Yni))|>bnL(n)⋅εm]+mg(n)⋅e⋅(1+ε2⋅b2n(L(n))2/m2n∑i=1a2iˆE|Yni−ˆE(Yni)|2)−1≤mn∑i=1V[|ai(Yni−ˆE(Yni))|>bnL(n)⋅εm]+mg(n)⋅e⋅(ε2b2n(L(n))2m2)−1n∑i=1a2iˆE|Yni−ˆE(Yni)|2≤m(εbnL(n)m)−αn∑i=1aαiˆE|Yni−ˆE(Yni)|α+mg(n)⋅e⋅(ε2b2n(L(n))2m2)−1n∑i=1a2iˆE|Yni−ˆE(Yni)|2≪(bnL(n))−αn∑i=1aαiˆE|Yni−ˆE(Yni)|α+g(n)(bnL(n))−2n∑i=1a2iˆE|Yni−ˆE(Yni)|2≪(bnL(n))−αn∑i=1aαiˆE|Yni|α+g(n)(bnL(n))−2n∑i=1a2iˆE|Yni|2. | (4.11) |
Thus, by (4.11) and g(n)=O(nθ),
∞∑n=1V[b−1n(L(n))−1n∑i=1ai(Yni−ˆE(Yni))>ε]≪∞∑n=1(bnL(n))−αn∑i=1aαiˆE|Yni|α+∞∑n=1nθ(bnL(n))−2n∑i=1a2iˆE|Yni|2=J21+J22. |
In order to prove J21<∞, we need to structure an even function, which is similar to (4.6). Let
ˉgj(x)∈Cl.Lip(R), j≥1 |
satisfying
0≤ˉgj(x)≤1 |
for all x∈R, and if
2(j−1)/βL(2j−1)<|x|≤2j/βL(2j), ˉgj(x2j/βL(2j))=1; |
if
|x|≤μ2(j−1)/βL(2j−1) |
or
|x|>(1+μ)2j/βL(2j), ˉgj(x2j/βL(2j))=0. |
Thus, for every ρ>0,
ˉgj(|X|2j/βl(2j))≤I(μ2(j−1)/βL(2j−1)<|X|≤(1+μ)2j/βL(2j)),|X|ρˉg(|X|2k/βL(2k))≤1+k∑j=1|X|ρˉgj(|X|2j/βL(2j)). | (4.12) |
For all τ>0, by (3.1), (4.3), (4.6),
ˆE|Yni|τ≤ˆE[|Xi|τI(|Xi|≤n1/βL(n))+nτ/β(L(n))τI(|Xi|>n1/βL(n))]≤ˆE[|Xi|τˉg(μ|Xi|n1/βL(n))]+nτ/β(L(n))τˆE(1−ˉg(|Xi|n1/βL(n)))≤CˆE[|X|τˉg(μ|X|n1/βL(n))]+Cnτ/β(L(n))τˆE(1−ˉg(|X|n1/βL(n)))≤CˆE[|X|τˉg(μ|X|n1/βL(n))]+Cnτ/β(L(n))τV(|X|>μn1/βL(n)). | (4.13) |
Thus, for all α>1, since (3.4), (4.1), (4.13), ai↑, and
1s=1α+1β, |
then,
J21≤∞∑n=1b−αn(L(n))−αmax1≤i≤naαin∑i=1ˆE|Yni|α≤∞∑n=1b−αnaαn(L(n))−αn∑i=1ˆE|Yni|α≤∞∑n=1n−α/s(L(n))−αn∑i=1[CˆE[|X|αˉg(μ|X|n1/βL(n))]+Cnα/β(L(n))αV(|X|>μn1/βL(n))]=C∞∑n=1n1−α/s(L(n))−αˆE[|X|αˉg(μ|X|n1/βL(n))]+C∞∑n=1n1−α/snα/βV(|X|>μn1/βL(n))=C∞∑n=1n1−α/s(L(n))−αˆE[|X|αˉg(μ|X|n1/βL(n))]+C∞∑n=1V(|X|>μn1/βL(n))=J211+c. | (4.14) |
In order to prove J21<∞, we need to show J211<∞. Because L(x)>0 (x>0) is a monotonic nondecreasing function and α>β, we have
∞∑k=12(1−α/β)k(L(2k))−α≤L(2)−α∞∑k=12(1−α/β)k<∞. | (4.15) |
Otherwise, taking
x=2j−1andλ=2>0 |
in Definition 2.8, we can get
L(2j)≤cL(2j−1) |
and
{|X|>c2jL(2j−1)}⊂{|X|>c2jL(2j)}. |
Thus, by (4.2), (4.12), (4.15), α>β, ˉg(x)↓ for all x>0,
1s=1α+1β, |
we get
J211=C∞∑n=1n−α/β(L(n))−αˆE[|X|αˉg(μ|X|n1/βL(n))]≤C∞∑k=1∑2k−1≤n<2k2[−(k−1)α]/β(L(2k−1))−αˆE[|X|αˉg(μ|X|2k/βL(2k))]≪∞∑k=12(1−α/β)k(L(2k−1))−αˆE[|X|αˉg(μ|X|2k/βL(2k))]≤∞∑k=12(1−α/β)k(L(2k−1))−αˆE[1+k∑j=1|X|αˉgj(μ|X|2j/βL(2j))]≤∞∑k=12(1−α/β)k(L(2k−1))−α+∞∑k=12(1−α/β)k(L(2k−1))−αk∑j=1ˆE[|X|αˉgj(μ|X|2j/βL(2j))]≤∞∑j=1ˆE[|X|αˉgj(μ|X|2j/βL(2j))]∞∑k=j2(1−α/β)k(L(2k))−α+c≪∞∑j=12(1−α/β)j(L(2j))−αˆE[|X|αˉgj(μ|X|2j/βL(2j))]+c≪∞∑j=12(1−α/β)j(L(2j))−α⋅2jα/β(L(2j))αV(|X|>2(j−1)/βL(2j−1))+c=∞∑j=12jV(|X|>2−1/β⋅2j/βL(2j−1))+c≤∞∑j=12jV(|X|>c2j/βL(2j))+c<∞. | (4.16) |
In the end, we need to prove \mathrm{J_{22}} < \infty . We take
\max \left \{ 0, \; \beta \left ( 2+\theta -2/\alpha \right ) \right \} < \delta < \min {\left \{ 2, \; \beta \right \} }. |
For all \eta > 0 , by Lemma 2.6, we can get
c x^\eta \ge L\left ( x \right ) . |
Since \delta < \beta , we have
c n^{1-\delta /\beta }\left ( L\left ( n \right ) \right ) ^{-\delta }\ge 1 |
when n is sufficiently large. According to (4.1) and Lemma 2.2, we obtain
n\mathbb{V} \left ( \left | X \right | > c n^{1/\beta }L\left ( n \right ) \right )\to 0 |
as n \to\infty . By (4.6), (4.13), we have
\begin{align} \begin{aligned} \sum\limits_{i = 1}^{n} \hat{\mathbb{E} } \left | Y_{ni} \right |^2 \le&\mathrm{C} \sum\limits_{i = 1}^{n}\hat{\mathbb{E}}\left[\left | X \right | ^2\bar{g} \left ( \frac{\mu \left|X\right|}{n^{1/\beta }L\left ( n \right ) } \right )\right]+\mathrm{C} \sum\limits_{i = 1}^{n}n^{2/\beta } \left ( L\left ( n \right ) \right )^2\mathbb{V} \left ( \left | X \right | > \mu n^{1/\beta } L\left ( n \right ) \right )\\ = &\mathrm{C}n \hat{\mathbb{E} } \left[\left | X \right | ^2\bar{g} \left ( \frac{\mu \left|X\right|}{n^{1/\beta }L\left ( n \right ) } \right )\right]+\mathrm{C}n^{2/\beta+1 } \left ( L\left ( n \right ) \right )^2\mathbb{V} \left ( \left | X \right | > \mu n^{1/\beta } L\left ( n \right ) \right )\\ \ll&n \hat{\mathbb{E} } \left[\left | X \right | ^2\bar{g} \left ( \frac{\mu \left|X\right|}{n^{1/\beta }L\left ( n \right ) } \right )\right]+n^{2/\beta } \left ( L\left ( n \right ) \right )^2\\ \le&\left ( 1/\mu \right ) ^{2-\delta }\cdot \; n\left [ n^{1/\beta }L\left ( n \right ) \right ] ^{2-\delta }\hat{\mathbb{E} } \left | X \right |^ \delta +n^{2/\beta } \left ( L\left ( n \right ) \right )^2\\ \ll&n^{2/\beta }\left ( L\left ( n \right ) \right ) ^2\left [ n^{1-\delta /\beta } \left ( L\left ( n \right ) \right )^{-\delta }+1 \right ] \\ \ll&n^{1+\left ( 2-\delta \right )/\beta }\left ( L\left ( n \right ) \right )^{2-\delta } .\end{aligned} \end{align} | (4.17) |
Since
\beta \left ( 2+\theta -2/\alpha \right ) < \delta, |
we can get
\theta -\left ( 2/\alpha -1+\delta /\beta \right ) < -1. |
Thus, by (3.4), (4.17), a_i \uparrow ,
\frac{1}{s} = \frac{1}{\alpha } +\frac{1}{\beta } |
and L\left (x \right) > 0 ( x > 0 ) being a monotonic nondecreasing function,
\begin{align} \begin{aligned} \mathrm{J_{22}} \le& \sum\limits_{n = 1}^{\infty } n^\theta b_n^{-2}\left ( L\left ( n \right ) \right )^{-2}\max _{1\le i \le n}a_i^2\sum\limits_{i = 1}^{n}\hat{\mathbb{E} } \left | Y_{ni} \right | ^2 \\ \le& \sum\limits_{n = 1}^{\infty } n^\theta b_n^{-2}a_n^{2}\left ( L\left ( n \right ) \right )^{-2}\sum\limits_{i = 1}^{n}\hat{\mathbb{E} } \left | Y_{ni} \right | ^2 \\ \ll& \sum\limits_{n = 1}^{\infty } n^\theta \cdot n^{-2/s}\left ( L\left ( n \right ) \right ) ^{-2}\cdot n^{1+\left ( 2-\delta \right )/\beta }\left ( L\left ( n \right ) \right )^{2-\delta } \\ = & \sum\limits_{n = 1}^{\infty }n^{\theta -\left ( 2/\alpha -1+\delta /\beta \right ) }\left ( L\left ( n \right ) \right )^{-\delta } \\ \le&\left (L\left ( 1\right ) \right )^{-\delta }\sum\limits_{n = 1}^{\infty }n^{\theta -\left ( 2/\alpha -1+\delta /\beta \right ) }\\ < &\infty.\end{aligned} \end{align} | (4.18) |
By (4.16) and (4.18), we get
\begin{align*} \sum\limits_{n = 1}^{\infty } \mathbb{V} \left [ b_n^{-1} \left ( L\left ( n \right ) \right )^{-1 }\sum\limits_{i = 1}^{n}a_i\left ( Y_{ni}-\hat{\mathbb{E} } \left ( Y_{ni} \right ) \right ) > \varepsilon \right ] < \infty. \end{align*} |
According to Lemma 2.2 and \mathbb{V} being countably sub-additive, we know
\begin{align*} \mathbb{V} \left [ b_n^{-1} \left ( L\left ( n \right ) \right )^{-1 }\sum\limits_{i = 1}^{n}a_i\left ( Y_{ni}-\hat{\mathbb{E} } \left ( Y_{ni} \right ) \right ) > \varepsilon , \; i.o. \right ] = 0 \end{align*} |
and
\begin{align*} \mathcal{V} \left [ \bigcup\limits_{t = 1}^{\infty } \bigcap\limits_{n = t}^{\infty }\left \{ b_n^{-1} \left ( L\left ( n \right ) \right )^{-1 }\sum\limits_{i = 1}^{n}a_i\left ( Y_{ni}-\hat{\mathbb{E} } \left ( Y_{ni} \right ) \right )\le \varepsilon\right \} \right ] = 1. \end{align*} |
It is obvious that
\begin{align*} \left \{ \bigcup\limits_{t = 1}^{\infty } \bigcap\limits_{n = t}^{\infty }\left \{ b_n^{-1} \left ( L\left ( n \right ) \right )^{-1 }\sum\limits_{i = 1}^{n}a_i\left ( Y_{ni}-\hat{\mathbb{E} } \left ( Y_{ni} \right ) \right )\le \varepsilon\right \} \right \} &\subset \left \{ b_n^{-1} \left ( L\left ( n \right ) \right )^{-1 }\sum\limits_{i = 1}^{n}a_i\left ( Y_{ni}-\hat{\mathbb{E} } \left ( Y_{ni} \right ) \right )\to 0, \; n\to \infty \right \}\nonumber\\ & = \left \{\mathrm{J_2}\to 0, \; \; n\to \infty \right \} . \end{align*} |
The equation
\limsup\limits_{n\rightarrow \infty} \; \mathrm{J_2} = 0\; a.s.\; \mathbb{V} |
has been proved.
Replacing \left \{ X_i, \; i\ge 1 \right \} by \left \{ -X_i, \; i\ge 1 \right \} for each 1 \le i \le n in (3.5), by
\hat{ \varepsilon } \left ( X_i \right ) : = - \hat{\mathbb{E } }\left ( - X_i \right ), |
we have
\begin{align*} 0 \ge&\limsup\limits_{n\rightarrow \infty}\; b_n^{-1}\left ( L\left ( n \right ) \right ) ^{-1}\sum\limits_{i = 1}^{n} a_i\left ( -X_i-\hat{\mathbb{E} } \left ( -X_i \right ) \right )\\ = & \limsup\limits_{n\rightarrow \infty}\; b_n^{-1}\left ( L\left ( n \right ) \right ) ^{-1}\sum\limits_{i = 1}^{n} a_i\left ( -X_i+\hat{\varepsilon } \left ( X_i \right ) \right )\\ = & \limsup\limits_{n\rightarrow \infty}\; b_n^{-1}\left ( L\left ( n \right ) \right ) ^{-1}\sum\limits_{i = 1}^{n} a_i\left ( -\left (X_i-\hat{\varepsilon } \left ( X_i \right ) \right ) \right ), \end{align*} |
which implies (3.6). Therefore, by (3.5), (3.6), and
\hat{\mathbb{E} } \left ( X_i \right ) = \hat{\varepsilon } \left ( X_i \right ), |
the Eq (3.7) is obtained.
The proof of Theorem 3.1 is completed.
Proof of Theorem 3.2. We define for fixed n\ge1 and each 1\le i \le n ,
\begin{align} Z_{ni}': = -c_iL\left ( c_i \right ) I\left ( X_i < -c_iL\left ( c_i \right ) \right )+X_iI\left ( \left | X_i \right |\le c_iL\left ( c_i \right ) \right )+c_iL\left ( c_i \right )I\left ( X_i > c_iL\left ( c_i \right ) \right ) . \end{align} | (4.19) |
By Lemma 2.1, it is easy to see that \left \{ Z_{ni}', \; n\ge 1, \; 1\le i\le n \right \} is still a sequence of m -WA random variables. Besides, we notice that
\begin{align*} b_n^{-1}\left ( L\left ( c_n \right ) \right ) ^{-1}\sum\limits_{i = 1}^{n}a_i\left ( X_i-\hat{\mathbb{E} }\left ( X_i \right ) \right ) = &b_n^{-1}\left ( L\left ( c_n \right ) \right ) ^{-1}\sum\limits_{i = 1}^{n}a_i\left ( X_i-Z_{ni}' \right ) +b_n^{-1}\left ( L\left ( c_n \right ) \right ) ^{-1}\sum\limits_{i = 1}^{n}a_i\left (Z_{ni}'-\hat{\mathbb{E} }\left ( Z_{ni}'\right ) \right )\\&+b_n^{-1}\left ( L\left ( c_n \right ) \right ) ^{-1}\sum\limits_{i = 1}^{n}a_i\left ( \hat{\mathbb{E} }\left ( Z_{ni}' \right ) -\hat{\mathbb{E} }\left ( X_i \right ) \right ) \\ = &\mathrm{K} _1+ \mathrm{K} _2+\mathrm{K} _3. \end{align*} |
In order to prove (3.10), we only need to prove
\begin{align} \limsup\limits_{n\rightarrow \infty} \; \mathrm{K_1} \le 0\; a.s.\; \mathbb{V}, \; \; \limsup\limits_{n\rightarrow \infty} \; \mathrm{K_2} = 0\; a.s.\; \mathbb{V} \end{align} | (4.20) |
and
\begin{align} \lim\limits_{n\to \infty} \; \mathrm{K_3} = 0. \end{align} | (4.21) |
For any c > 0 , by (3.8), we easily obtain
\begin{align*} \sum\limits_{n = 1}^{\infty } \mathbb{V} \left ( \left | X \right | > cn^{1/\gamma } L\left ( n \right ) \right ) < \infty. \end{align*} |
Since Definition 2.3, we know
\mathrm {C}_\mathbb{V} \left ( h^-\left ( \left | X \right | \right ) \right ) < \infty |
is equivalent to
\mathrm{C}_\mathbb{V} \left ( h^-\left ( \left | X \right | \right ) c^{-\gamma } \right ) < \infty. |
According to Lemma 2.7, we obtain
\mathrm {C}_\mathbb{V} \left ( h^-\left ( \left | X \right | \right ) \right ) < \infty . |
By Definition 2.8, taking
x = n^{1/\gamma } |
and
\lambda = n^{1-1/\gamma } > 0 |
for n\ge1 , we get
L\left ( n \right )\le c L\left ( n^{1/\gamma } \right ) |
and
\left \{ \left | X \right | > c n^{1/r}L\left ( n \right ) \right \} \supset \left \{ \left | X \right | > c n^{1/r}L\left ( n ^{1/\gamma }\right ) \right \} . |
By 0\le\theta < 1 , we notice that
\begin{align*} \sum\limits_{n = 1}^{\infty } n^{\theta /\gamma } \mathbb{V} \left ( \left | X \right | > \mathrm {C}n^{1/\gamma } L\left ( n \right ) \right ) \ge& \sum\limits_{n = 1}^{\infty } n^{\theta /\gamma } \mathbb{V} \left ( \left | X \right | > cn^{1/\gamma } L\left ( n^{1/\gamma} \right ) \right )\\ \ge&\sum\limits_{k = 1}^{\infty } \sum\limits_{2^{k\gamma-1}\le n < 2^{k\gamma }}\left ( 2^{k\gamma -1} \right ) ^{\theta /\gamma }\mathbb{V}\left ( \left | X \right | > c 2^kL\left ( 2^k\right ) \right ) \\ \ge&\sum\limits_{k = 1}^{\infty }\left(2^{k\gamma }-2^{k\gamma-1 }\right)\left ( 2^{k\gamma -1} \right ) ^{\theta /\gamma }\mathbb{V}\left ( \left | X \right | > c 2^kL\left ( 2^k \right )\right) \\ \ge&2^{-1-\theta/\gamma}\sum\limits_{k = 1}^{\infty } 2^{k\left(\gamma+\theta\right)} \mathbb{V}\left ( \left | X \right | > c2^kL\left ( 2^k \right )\right) \\ \ge&2^{-1-\theta/\gamma}\sum\limits_{k = 1}^{\infty } 2^{k\gamma} \mathbb{V}\left ( \left | X \right | > c 2^kL\left ( 2^k \right )\right ), \end{align*} |
which implies that
\begin{align} \sum\limits_{k = 1}^{\infty } 2^{k\left(\gamma+\theta\right)} \mathbb{V}\left ( \left | X \right | > c 2^kL\left ( 2^k \right )\right) < \infty \end{align} | (4.22) |
and
\begin{align} \sum\limits_{k = 1}^{\infty } 2^{k\gamma} \mathbb{V}\left ( \left | X \right | > c 2^kL\left ( 2^k \right )\right) < \infty. \end{align} | (4.23) |
Besides, for every c_i , i\ge1 , there exists a k such that
2^{k-1}\le c_i < 2^k. |
By (4.22),
\left \{ \left | X \right | > c 2^kL\left ( 2^{k-1} \right ) \right \} \subset \left \{ \left | X \right | > c 2^kL\left ( 2^{k} \right )\right \}. |
L\left (x \right) > 0 ( x > 0 ) is a monotonic nondecreasing function and 0\le\theta < 1 , and we get
\begin{align*} \sum\limits_{k = 1}^{\infty } 2^{k\left(\gamma+\theta\right)} \mathbb{V}\left ( \left | X \right | > c2^kL\left ( 2^k \right )\right) = &\sum\limits_{k = 1}^{\infty } 2^{k\left(\gamma+\theta\right)} \mathbb{V}\left ( \left | X \right | > 2c 2^{k-1}L\left ( 2^k \right )\right)\\ \ge&2^{\gamma}\sum\limits_{k = 1}^{\infty } 2^{k\theta} \mathbb{V}\left ( \left | X \right | > 2c 2^{k-1}L\left ( 2^{k} \right )\right)\\ \ge&2^{\gamma}\sum\limits_{k = 1}^{\infty } 2^{k\theta} \mathbb{V}\left ( \left | X \right | > 2c 2^{k-1}L\left ( 2^{k-1} \right )\right)\\ \ge&2^{\gamma}\sum\limits_{i = 1}^{\infty } c_i^\theta \mathbb{V}\left ( \left | X \right | > 2c c_iL\left ( c_i \right )\right)\\ \ge&2^{\gamma}\sum\limits_{i = 1}^{\infty } \mathbb{V}\left ( \left | X \right | > 2c c_iL\left ( c_i \right )\right), \end{align*} |
which implies that
\begin{align} \sum\limits_{i = 1}^{\infty } c_i^\theta \mathbb{V}\left ( \left | X \right | > c c_iL\left ( c_i \right )\right) < \infty \end{align} | (4.24) |
and
\begin{align} \sum\limits_{i = 1}^{\infty } \mathbb{V}\left ( \left | X \right | > c c_iL\left ( c_i \right )\right) < \infty. \end{align} | (4.25) |
For 0 < \mu < 1 , let \tilde{g} \left (x \right) be an even function and
\tilde{g} \left ( x \right )\in \mathrm{C}_{l, Lip}\left(\mathbb{R}\right) |
satisfying
0\le \tilde{g}\left ( x \right ) \le 1 |
for all x .
\tilde{g} \left ( x \right ) = 1 |
if \left | x \right | < \mu ;
\tilde{g} \left ( x \right ) = 0 |
if \left | x \right | > 1 , and \tilde{g} \left (x \right) is nonincreasing as x > 0 . Then,
\begin{equation} \begin{aligned} I\left ( \left | x \right | \le \mu \right ) &\le \tilde{g} \left ( \left | x \right | \right ) \le I\left ( \left | x \right |\le 1 \right ), \\ I\left ( \left | x \right | > 1 \right ) &\le 1-\tilde{g} \left ( \left | x \right | \right ) \le I\left ( \left | x \right | > \mu \right ). \end{aligned} \end{equation} | (4.26) |
We also define an even function \tilde{g} _j\left (x \right) as follows. Let
\tilde{g} _j\left ( x \right )\in \mathrm{C}_{l, Lip}\left(\mathbb{R}\right), \ \ j\ge1 |
such that
0\le \tilde{g} _j\left ( x \right ) \le1 |
for all x and
\tilde{g} _j\left ( \frac{x}{2^jL\left(2^{j}\right)} \right ) = 1 |
if
\begin{align*} 2^{j-1}L\left ( 2^{j-1} \right )& < \left | X \right | \le 2^jL\left ( 2^j \right ) ; \\ \tilde{g} _j\left ( \frac{x}{2^jL\left(2^{j}\right)} \right )& = 0 \end{align*} |
if
\left| X \right | < \mu 2^{j-1}L\left ( 2^{j-1} \right ) |
or
\left | X \right | > \left ( 1+\mu \right ) 2^jL\left ( 2^j \right ) . |
Then, for all \rho > 0 ,
\begin{equation} \begin{aligned} \tilde{g} _j\left ( \frac{\left|X\right|}{2^jL\left(2^{j}\right)} \right )&\le I\left(\mu 2^{j-1}L\left ( 2^{j-1} \right ) < \left | X \right | \le \left ( 1+\mu \right ) 2^jL\left ( 2^j \right ) \right), \\ \left | X \right |^\rho \tilde{g} \left ( \frac{\left|X\right| }{2^{k }L\left ( 2^k \right ) } \right )&\le 1+\sum\limits_{j = 1}^{k} \left | X \right |^\rho \tilde{g}_j\left ( \frac{\left|X\right| }{2^{j }L\left ( 2^j \right ) } \right ) \end{aligned} \end{equation} | (4.27) |
and
\begin{align} 1-\tilde{g} \left ( \frac{\left|X\right|}{2^kL\left ( 2^k \right ) } \right )\le\sum\limits_{j = k}^{\infty } \tilde{g}_j \left ( \frac{\left|X\right|}{2^jL\left ( 2^j\right ) } \right ) . \end{align} | (4.28) |
To start, we prove
\limsup\limits_{n\rightarrow \infty} \; \mathrm{K_1} \le 0\; a.s.\; \mathbb{V}. |
Let
T\left(1\right) = 1. |
By (3.1), (3.9), (4.19), (4.23), (4.26), (4.27), and (4.28), \tilde{g} \left (x \right) \downarrow for all x > 0 ,
\left \{ \left | X \right | > c 2^jL\left ( 2^{j-1} \right ) \right \} \subset \left \{ \left | X \right | > c 2^jL\left ( 2^{j} \right )\right \} |
and \hat{\mathbb{E}} being countably sub-additive, we have
\begin{align} \begin{aligned} \sum\limits_{i = 1}^{\infty } \mathbb{V } \left ( X_i \ne Z_{ni} ' \right ) \le& \sum\limits_{i = 1}^{\infty }\mathbb{V} \left ( \left | X_i \right | > c_iL\left ( c_i \right ) \right ) \\ \le&\sum\limits_{i = 1}^{\infty }\hat{\mathbb{E} } \left [ 1-\tilde{g}\left ( \frac{\left|X_i\right|}{c_iL\left ( c_i \right ) } \right ) \right ] \\ \le&\mathrm{C}\sum\limits_{i = 1}^{\infty }\hat{\mathbb{E} } \left [ 1-\tilde{g}\left ( \frac{\left|X\right|}{c_iL\left ( c_i \right ) } \right ) \right ]\\ \ll&\sum\limits_{k = 1}^{\infty } \sum\limits_{2^{k-1}\le c_i < 2^k}\hat{\mathbb{E} } \left [ 1-\tilde{g}\left ( \frac{\left|X\right|}{2^{k-1}L\left ( 2^{k-1} \right ) } \right ) \right ] \\ \le&\sum\limits_{k = 1}^{\infty }\left [ T\left ( 2^k \right )-T\left ( 2^{k-1} \right ) \right ] \hat{\mathbb{E} } \left [ 1-\tilde{g}\left ( \frac{\left|X\right|}{2^{k-1}L\left ( 2^{k-1} \right ) } \right ) \right ] \\ \le&\sum\limits_{k = 1}^{\infty }\left [ T\left ( 2^k \right )-T\left ( 2^{k-1} \right ) \right ] \sum\limits_{j = k-1}^{\infty } \hat{\mathbb{E} } \left [ \tilde{g}_j\left ( \frac{\left|X\right|}{2^jL\left ( 2^j \right ) } \right ) \right ] \\ \le&\sum\limits_{k = 1}^{\infty }\left [ T\left ( 2^k \right )-T\left ( 2^{k-1} \right ) \right ] \sum\limits_{j = k-1}^{\infty } \mathbb{V} \left ( \left | X \right | > \mu 2^{j-1}L\left ( 2^{j-1} \right ) \right )\\ = &\sum\limits_{j = 1}^{\infty } \mathbb{V} \left ( \left | X \right | > \mu 2^{j-1}L\left ( 2^{j-1} \right ) \right )\sum\limits_{k = 1}^{j+1 }\left [ T\left ( 2^k \right )-T\left ( 2^{k-1} \right ) \right ]\\ \le&\sum\limits_{j = 1}^{\infty } T\left ( 2^{j+1} \right )\mathbb{V} \left ( \left | X \right | > \mu 2^{j-1}L\left ( 2^{j-1} \right ) \right )\\ \ll&\sum\limits_{j = 1}^{\infty }2^{j\gamma}\mathbb{V} \left ( \left | X \right | > \mu 2^{j-1}L\left ( 2^{j-1} \right ) \right )\\ \le&\sum\limits_{j = 1}^{\infty }2^{j\gamma}\mathbb{V} \left ( \left | X \right | > c 2^{j}L\left ( 2^{j} \right ) \right ) < \infty.\end{aligned} \end{align} | (4.29) |
By (4.29), Lemma 2.2, and \mathbb{V} being countably sub-additive, we have
\mathbb{V } \left ( X_i \ne Z_{ni} ', \; i.o. \right ) = 0. |
By b_n \uparrow\infty ,
c_n = b_n/a_n \uparrow \infty |
and L\left (x \right) > 0 ( x > 0 ) being a monotonic nondecreasing function. We have
\begin{align} \left | K_1 \right | \le& b_n^{-1}\left ( L\left ( c_n \right ) \right ) ^{-1}\sum\limits_{i = 1}^{n} a_i \left | X_i-Z_{ni}' \right | \to 0, \; \; a.s.\; \mathbb{V}. \end{align} |
Second, we prove
\limsup\limits_{n\rightarrow \infty} \mathrm{K_2} = 0\; a.s.\; \mathbb{V}. |
By Lemma 2.1, \left \{ a_i\left (Z_{ni}'-\hat{\mathbb{E} } \left (Z_{ni}' \right) \right), \; n\ge 1, \; 1\le i\le n \right \} is still a sequence of m -WA random variables. We can easily obtain
\hat{\mathbb{E}}\left [a_i\left ( Z_{ni}'-\hat{\mathbb{E} } \left ( Z_{ni}' \right ) \right ) \right ] = 0, |
which satisfies the condition of Lemma 2.8. Then, for all \varepsilon > 0 , we take
x = d = b_n L\left(c_n\right) \varepsilon |
in Lemma 2.8. By the Markov inequality, Lemma 2.3 (1) (2),
g\left ( n \right ) = \mathrm{O}\left ( n^\theta \right ) , |
and \mathbb{V} being countably sub-additive, we have
\begin{align} \begin{aligned} &\mathbb{V} \left [ \sum\limits_{i = 1}^{n}a_i\left ( Z_{ni}'-\hat{\mathbb{E} }\left ( Z_{ni}' \right ) \right ) > b_nL\left ( c_n \right )\varepsilon \right ] \\ &\le m\mathbb{V } \left [\max\limits_{1\le i \le n} a_i\left ( Z_{ni}'-\hat{\mathbb{E} }\left ( Z_{ni}' \right )\right ) > \frac{b_nL\left ( c_n \right )\varepsilon }{m} \right ]+mg\left ( n \right ) \exp \left \{ 1-\ln \left ( 1+\frac{\varepsilon ^2b_n^2\left ( L\left ( c_n \right ) \right )^2/m^2 }{ \sum\limits_{i = 1}^{n}a_i^2\hat{\mathbb{E} }\left | Z_{ni}'-\hat{\mathbb{E} }\left ( Z_{ni}' \right ) \right |^2 } \right ) \right \} \\ &\le m\sum\limits_{i = 1}^{n} \mathbb{V } \left [ \left |a_i\left ( Z_{ni}'-\hat{\mathbb{E} }\left ( Z_{ni}' \right )\right ) \right | > \frac{b_nL\left ( c_n \right )\varepsilon }{m} \right ]+mg\left ( n \right ) \cdot \mathrm{e}\cdot\left ( 1+\frac{\varepsilon ^2b_n^2\left ( L\left ( c_n \right ) \right )^2/m^2 }{ \sum\limits_{i = 1}^{n}a_i^2\hat{\mathbb{E} }\left | Z_{ni}'-\hat{\mathbb{E} }\left ( Z_{ni}' \right ) \right |^2 }\right )^{-1}\\ &\le m\sum\limits_{i = 1}^{n} \mathbb{V } \left [ \left |a_i\left ( Z_{ni}'-\hat{\mathbb{E} }\left ( Z_{ni}' \right )\right ) \right | > \frac{b_nL\left ( c_n \right )\varepsilon }{m} \right ]+m g\left(n\right) \cdot \mathrm{e}\cdot \left(\frac{\varepsilon ^2b_n^2\left ( L\left ( c_n \right ) \right )^2}{m^2}\right)^{-1}\sum\limits_{i = 1}^{n}a_i^2\hat{\mathbb{E} } \left | Z_{ni}'-\hat{\mathbb{E} }\left ( Z_{ni}' \right ) \right |^2 \\ &\le m\left ( \frac{b_nL\left ( c_n \right )\varepsilon }{m} \right ) ^{-2} \sum\limits_{i = 1}^{n} a_i^2\hat{\mathbb{E} } \left | Z_{ni}'-\hat{\mathbb{E} }\left ( Z_{ni}' \right ) \right |^2 +m g\left(n\right) \cdot \mathrm{e}\cdot \left(\frac{\varepsilon ^2b_n^2\left ( L\left ( c_n \right ) \right )^2}{m^2}\right)^{-1}\sum\limits_{i = 1}^{n}a_i^2\hat{\mathbb{E} } \left | Z_{ni}'-\hat{\mathbb{E} }\left ( Z_{ni}' \right ) \right |^2 \\ &\le m^3\varepsilon ^{-2}b_n^{-2}\left ( L\left ( c_n \right ) \right ) ^{-2 }\sum\limits_{i = 1}^{n} a_i^2\hat{\mathbb{E} } \left | Z_{ni}' \right |^2 +\mathrm{e}m^3\varepsilon^{-2} b_n^{-2}\left ( L\left ( c_n \right ) \right ) ^{-2 }g\left(n\right)\sum\limits_{i = 1}^{n} a_i^2\hat{\mathbb{E} } \left | Z_{ni}' \right |^2 \\ \ll&n^\theta b_n^{-2}\left ( L\left ( c_n \right ) \right ) ^{-2 }\sum\limits_{i = 1}^{n} a_i^2\hat{\mathbb{E} } \left | Z_{ni}' \right |^2 .\end{aligned} \end{align} | (4.30) |
Thus, by (4.30) and
\sum\limits_{n = i}^{\infty } b_n^{-2}n^\theta \left(L\left ( c_n \right )\right)^{-2} \ll b_i^{-2} c_i^\theta \left(L\left ( c_i \right )\right)^{-2} |
for sufficiently large i ,
\begin{align} \begin{aligned} \sum\limits_{n = 1}^{\infty } \mathbb{V} \left [ b_n^{-1}\left ( L\left ( c_n \right ) \right )^{-1} \sum\limits_{i = 1}^{n}a_i\left ( Z_{ni}'-\hat{\mathbb{E} }\left ( Z_{ni}' \right ) \right ) > \varepsilon \right ] \ll&\sum\limits_{n = 1}^{\infty }n^\theta b_n^{-2}\left ( L\left ( c_n \right ) \right ) ^{-2 }\sum\limits_{i = 1}^{n} a_i^2\hat{\mathbb{E} } \left | Z_{ni}' \right |^2 \\ = &\sum\limits_{i = 1}^{\infty } a_i^2\hat{\mathbb{E} } \left | Z_{ni}' \right |^2 \sum\limits_{n = i}^{\infty }n^\theta b_n^{-2}\left ( L\left ( c_n \right ) \right ) ^{-2 }\\ \ll&\sum\limits_{i = 1}^{\infty } c_i^{\theta-2}\left(L\left(c_i\right)\right)^{-2}\hat{\mathbb{E} } \left | Z_{ni}' \right |^2 .\end{aligned} \end{align} | (4.31) |
Otherwise, by (3.1), (4.19), (4.26), we get
\begin{align} \begin{aligned} \hat{\mathbb{E} }\left| Z_{ni}'\right|^2 &\le \hat{\mathbb{E} } \left [ \left | X_{i} \right |^2 I\left ( \left | X_{i} \right | \le c_i L\left ( c_i \right ) \right )+ c_i^2\left ( L\left(c_i\right)\right )^2 I\left ( \left | X_{i} \right | > c_i L\left ( c_i \right ) \right ) \right ] \\ &\le \hat{\mathbb{E} } \left [ \left | X_{i} \right | ^2\tilde{g} \left ( \frac{\mu \left|X_i\right|}{ c_i L\left ( c_i \right )} \right ) \right ] + c_i^2\left ( L\left ( c_i \right ) \right )^2 \hat{\mathbb{E} }\left ( 1-\tilde{g} \left ( \frac{\left|X_i\right|}{ c_i L\left ( c_i \right )} \right ) \right ) \\ & \le \mathrm{C} \hat{\mathbb{E} } \left [ \left | X\right | ^2\tilde{g} \left ( \frac{\mu \left|X\right|}{c_i L\left ( c_i \right ) } \right ) \right ] +\mathrm{C}c_i^ 2\left ( L\left ( c_i \right ) \right )^2 \hat{\mathbb{E} }\left [ 1-\tilde{g} \left ( \frac{\left|X\right|}{c_i L\left ( c_i \right ) } \right ) \right ] \\ &\le \mathrm{C} \hat{\mathbb{E} } \left [ \left | X\right | ^2\tilde{g} \left ( \frac{\mu \left|X\right|}{ c_i L\left ( c_i \right )} \right ) \right ] +\mathrm{C}c_i^2\left ( L\left ( c_i \right ) \right ) ^2\mathbb{V} \ \left ( \left | X\right | > \mu c_i L\left ( c_i \right ) \right ). \end{aligned} \end{align} | (4.32) |
Since 0\le\theta < 1 , we get
-2\le\theta-2 < -1. |
Thus, by (4.24), (4.27), (4.31), (4.32), \tilde{g} \left (x \right) \downarrow for all x > 0 , L\left (x \right) > 0 ( x > 0 ) being a monotonic non-decreasing function,
L\left ( 2^k \right )\le cL\left ( 2^{k-1} \right ) |
and \hat{\mathbb{E} } being countably sub-additive, we have
\begin{align*} &\sum\limits_{i = 1}^{\infty } c_i^{\theta-2}\left(L\left(c_i\right)\right)^{-2}\hat{\mathbb{E} }\left | Z_{ni}' \right |^2 \nonumber\\ &\le\mathrm{C}\sum\limits_{i = 1}^{\infty } c_i^{\theta-2}\left(L\left(c_i\right)\right)^{-2} \hat{\mathbb{E} } \left [ \left | X\right | ^2\tilde{g}\left ( \frac{\mu \left|X\right|}{ c_i L\left ( c_i \right )} \right ) \right ]+\mathrm{C}\sum\limits_{i = 1}^{\infty }c_i^\theta \mathbb{V} \left ( \left | X\right | > \mu c_i L\left ( c_i \right ) \right )\nonumber\\ & \ll \sum\limits_{k = 1}^{\infty } \sum\limits_{2^{k-1}\le c_i < 2^k} c_i^{\theta-2}\left(L\left(c_i\right)\right)^{-2} \hat{\mathbb{E} } \left [ \left | X\right | ^2\tilde{g}\left ( \frac{\mu \left|X\right|}{ c_i L\left ( c_i \right )} \right ) \right ]+c\nonumber\\ &\le\sum\limits_{k = 1}^{\infty }\left [ T\left ( 2^k \right ) -T\left ( 2^{k-1} \right ) \right ] \left ( 2^{k-1} \right ) ^{\theta-2}\left(L\left(2^{k-1}\right)\right)^{-2} \hat{\mathbb{E} } \left [ \left | X\right | ^2\tilde{g} \left ( \frac{\mu \left|X\right|}{ 2^k L\left ( 2^k\right )} \right ) \right ]+c\nonumber\\ &\le\sum\limits_{k = 1}^{\infty }\left [ T\left ( 2^k \right ) -T\left ( 2^{k-1} \right ) \right ] \left ( 2^{k-1} \right ) ^{\theta-2}\left(L\left(2^{k}\right)\right)^{-2} \hat{\mathbb{E} }\left[1+\sum\limits_{j = 1}^{k} \left | X \right |^2 \tilde{g}_j\left ( \frac{ \mu \left|X\right| }{2^{k }L\left ( 2^k \right ) } \right )\right]+c\nonumber\\ &\le\sum\limits_{k = 1}^{\infty }\left [ T\left ( 2^k \right ) -T\left ( 2^{k-1} \right ) \right ] \left ( 2^{k-1} \right ) ^{\theta-2}\left(L\left(2^{k}\right)\right)^{-2}\\&\quad+\sum\limits_{k = 1}^{\infty }\left [ T\left ( 2^k \right ) -T\left ( 2^{k-1} \right ) \right ] \left ( 2^{k-1} \right ) ^{\theta-2}\left(L\left(2^{k}\right)\right)^{-2}\sum\limits_{j = 1}^{k}\hat{\mathbb{E} }\left[\left | X \right |^2 \tilde{g}_j\left ( \frac{ \mu \left|X\right| }{2^{k }L\left ( 2^k \right ) } \right )\right]+c\\& = \mathrm{K_{21}}+\mathrm{K_{22}}+c. \end{align*} |
By (3.9), L\left (x \right) > 0 being a monotonic nondecreasing function, and \gamma +\theta < 2 , we get
\begin{align} \begin{aligned} \mathrm{K_{21}}\le&\sum\limits_{k = 1}^{\infty}T\left ( 2^k \right )\left [ \left ( 2^{k-1} \right )^{\theta -2} \left ( L\left ( 2^k \right ) \right )^{-2} -\left ( 2^k \right )^{\theta -2} \left ( L\left ( 2^k \right ) \right )^{-2} \right ] \\ \le&\sum\limits_{k = 1}^{\infty}T\left ( 2^k \right )\left ( 2^{k-1} \right )^{\theta -2} \left ( L\left ( 2^k \right ) \right )^{-2}\\ \ll&\sum\limits_{k = 1}^{\infty}2^{k\left(\gamma+\theta-2\right)}\left ( L\left ( 2^k \right ) \right )^{-2}\\ \le&\left ( L\left ( 2 \right ) \right )^{-2} \sum\limits_{k = 1}^{\infty}2^{k\left(\gamma+\theta-2\right)}\\ < &\infty.\end{aligned} \end{align} | (4.33) |
Besides, by (3.9), (4.22), (4.27), \gamma +\theta < 2 ,
\left \{ \left | X \right | > c 2^jL\left ( 2^{j-1} \right ) \right \} \subset \left \{ \left | X \right | > c 2^jL\left ( 2^{j} \right )\right \} |
and L\left (x \right) > 0 being a monotonic nondecreasing function, we obtain
\begin{align} \begin{aligned} \mathrm{K_{22}}\le&\sum\limits_{k = 1}^{\infty }\left [ T\left ( 2^k \right ) -T\left ( 2^{k-1} \right ) \right ] \left ( 2^{k-1} \right ) ^{\theta-2}\left(L\left(2^{k}\right)\right)^{-2}\sum\limits_{j = 1}^{k}2^{2j} \left (L\left ( 2^j \right ) \right ) ^2\mathbb{V}\left ( \left | X \right | > 2^{j-1} L\left ( 2^{j-1} \right ) \right ) \\ = &\sum\limits_{j = 1}^{\infty} 2^{2j} \left (L\left ( 2^j \right ) \right ) ^2\mathbb{V}\left ( \left | X \right | > 2^{j-1} L\left ( 2^{j-1} \right ) \right )\sum\limits_{k = j}^{\infty }\left [ T\left ( 2^k \right ) -T\left ( 2^{k-1} \right ) \right ] \left ( 2^{k-1} \right ) ^{\theta-2}\left(L\left(2^{k}\right)\right)^{-2}\\ \le&\sum\limits_{j = 1}^{\infty} 2^{2j} \left (L\left ( 2^j \right ) \right ) ^2\mathbb{V}\left ( \left | X \right | > 2^{j-1} L\left ( 2^{j-1} \right ) \right )\sum\limits_{k = j}^{\infty }T\left ( 2^k \right )\left [ \left ( 2^{k-1} \right )^{\theta -2} \left ( L\left ( 2^k \right ) \right )^{-2} -\left ( 2^k \right )^{\theta -2} \left ( L\left ( 2^k \right ) \right )^{-2} \right ]\\ \le&\sum\limits_{j = 1}^{\infty} 2^{2j} \left (L\left ( 2^j \right ) \right ) ^2\mathbb{V}\left ( \left | X \right | > 2^{j-1} L\left ( 2^{j-1} \right ) \right )\sum\limits_{k = j}^{\infty }T\left ( 2^k \right )\left ( 2^{k-1} \right )^{\theta -2} \left ( L\left ( 2^k \right ) \right )^{-2}\\ \ll&\sum\limits_{j = 1}^{\infty} 2^{2j} \left (L\left ( 2^j \right ) \right ) ^2\mathbb{V}\left ( \left | X \right | > 2^{j-1} L\left ( 2^{j-1} \right ) \right )\sum\limits_{k = j}^{\infty }2^{k\left(\gamma+\theta-2\right)}\left ( L\left ( 2^k \right ) \right )^{-2}\\ \le&\sum\limits_{j = 1}^{\infty} 2^{j\left ( \gamma +\theta \right ) }\mathbb{V}\left ( \left | X \right | > 2^{j-1} L\left ( 2^{j-1} \right ) \right )\\ \le&\sum\limits_{j = 1}^{\infty} 2^{j\left ( \gamma +\theta \right ) }\mathbb{V}\left ( \left | X \right | > c 2^{j} L\left ( 2^{j} \right ) \right )\\ < &\infty.\end{aligned} \end{align} | (4.34) |
Thus, by (4.33) and (4.34), we get
\begin{align*} \sum\limits_{n = 1}^{\infty } \mathbb{V} \left [ b_n^{-1}\left ( L\left ( c_n \right ) \right )^{-1} \sum\limits_{i = 1}^{n}a_i\left ( Z_{ni}'-\hat{\mathbb{E} }\left ( Z_{ni}' \right ) \right ) > \varepsilon \right ] < \infty, \end{align*} |
which implies that
\limsup\limits_{n\rightarrow \infty} \; \mathrm{K_2} = 0\; a.s.\; \mathbb{V} |
by Lemma 2.2 and \mathbb{V} being countably sub-additive.
Finally, we will turn to prove (4.21). By (3.1), (4.19), (4.26), and Lemma 2.4, we get
\begin{align} \begin{aligned} \left | \hat{\mathbb{E} }\left ( Z_{ni} '\right ) -\hat{\mathbb{E} } \left ( X_i \right ) \right |\le& \hat{\mathbb{E} }\left|Z_{ni}'-X_i\right|\\ \le&\hat{\mathbb{E} }\left [ \left (\left | X_i \right | +c_iL\left ( c_i \right ) \right ) \left (1-\tilde{g} \left ( \frac{\left|X_i\right|}{c_iL\left ( c_i \right ) } \right ) \right ) \right ] \\ \le&\hat{\mathbb{E} }\left[\left | X_i \right |\left ( 1-\tilde{g}\left ( \frac{\left|X_i\right|}{c_iL\left ( c_i \right ) } \right ) \right )\right]+c_iL\left(c_i\right)\hat{\mathbb{E} }\left[1-\tilde{g} \left ( \frac{\left|X_i\right|}{c_iL\left ( c_i \right ) } \right ) \right]\\ \le&\mathrm{C}\hat{\mathbb{E} }\left[\left | X \right |\left ( 1-\tilde{g}\left ( \frac{\left|X\right|}{c_iL\left ( c_i \right ) } \right ) \right )\right]+\mathrm{C}c_iL\left(c_i\right)\hat{\mathbb{E} }\left[1-\tilde{g} \left ( \frac{\left|X\right|}{c_iL\left ( c_i \right ) } \right )\right].\end{aligned} \end{align} | (4.35) |
Thus, by (4.25), (4.26), (4.35), and c_n = b_n/a_n , we have
\begin{align} \begin{aligned} &\sum\limits_{i = 1}^{\infty } \left | \frac{a_i}{b_iL\left ( c_i \right ) }\left [ \hat{\mathbb{E} }\left ( Z_{ni} '\right ) -\hat{\mathbb{E} } \left ( X_i \right ) \right ] \right |\\ & \le\sum\limits_{i = 1}^{\infty } c_i^{-1}\left ( L\left ( c_i \right ) \right )^{-1} \left | \hat{\mathbb{E} }\left ( Z_{ni} '\right ) -\hat{\mathbb{E} } \left ( X_i \right ) \right | \\ & \le\mathrm{C} \sum\limits_{i = 1}^{\infty } c_i^{-1}\left ( L\left ( c_i \right ) \right )^{-1}\hat{\mathbb{E} }\left[\left | X \right |\left ( 1-\tilde{g}\left ( \frac{\left|X\right|}{c_iL\left ( c_i \right ) } \right ) \right )\right]+\mathrm{C} \sum\limits_{i = 1}^{\infty }\hat{\mathbb{E} }\left[1-\tilde{g} \left ( \frac{\left|X\right|}{c_iL\left ( c_i \right ) } \right )\right]\\ & \le\mathrm{C} \sum\limits_{i = 1}^{\infty } c_i^{-1}\left ( L\left ( c_i \right ) \right )^{-1}\hat{\mathbb{E} }\left[\left | X \right |\left ( 1-\tilde{g}\left ( \frac{\left|X\right|}{c_iL\left ( c_i \right ) } \right ) \right )\right]+\mathrm{C} \sum\limits_{i = 1}^{\infty }\mathbb{V}\left ( \left | X \right | > \mu c_iL\left ( c_i \right ) \right ) \\ & = \mathrm{K_{31}}+c.\end{aligned} \end{align} | (4.36) |
By (4.23), (4.27), (4.28), \tilde{g} \left (x \right) \downarrow for all x > 0 ,
L\left ( 2^k \right )\le cL\left ( 2^{k-1} \right ) |
and \hat{\mathbb{E} } being countably sub-additive, we obtain
\begin{align*} \mathrm{K_{31}} \ll& \sum\limits_{k = 1}^{\infty } \sum\limits_{2^{k-1}\le c_i < 2^k} \left ( 2^{k-1} \right ) ^{-1}\left ( L\left ( 2^{k-1}\right ) \right )^{-1}\hat{\mathbb{E} }\left[\left | X \right |\left ( 1-\tilde{g}\left ( \frac{\left|X\right|}{2^{k-1}L\left ( 2^{k-1} \right ) } \right ) \right )\right]\nonumber\\ \le& \sum\limits_{k = 1}^{\infty }\left [ T\left ( 2^k \right )-T\left ( 2^{k-1} \right ) \right ] \left ( 2^{k-1} \right ) ^{-1}\left ( L\left ( 2^{k-1} \right ) \right )^{-1}\sum\limits_{j = k-1}^{\infty } \hat{\mathbb{E} } \left [ \left | X \right | \tilde{g}_j\left ( \frac{\left|X\right|}{2^jL\left ( 2^j \right ) } \right ) \right ] \nonumber\\ \le&\sum\limits_{k = 1}^{\infty }\left [ T\left ( 2^k \right )-T\left ( 2^{k-1} \right ) \right ] \left ( 2^{k-1} \right ) ^{-1}\left ( L\left ( 2^{k} \right ) \right )^{-1}\sum\limits_{j = k-1}^{\infty } 2^jL\left ( 2^j \right ) \mathbb{V} \left ( \left | X \right | > \mu 2^{j-1}L\left ( 2^{j-1} \right ) \right ) \nonumber\\ \le& \sum\limits_{j = 1}^{\infty }2^jL\left ( 2^j \right ) \mathbb{V} \left ( \left | X \right | > \mu 2^{j-1}L\left ( 2^{j-1} \right ) \right )\sum\limits_{k = 1}^{j+1 }\left [ T\left ( 2^k \right )-T\left ( 2^{k-1} \right ) \right ] \left ( 2^{k-1} \right ) ^{-1}\left ( L\left ( 2^{k} \right ) \right )^{-1}\nonumber\\ \le& \sum\limits_{j = 1}^{\infty }2^jL\left ( 2^j \right ) \mathbb{V} \left ( \left | X \right | > \mu 2^{j-1}L\left ( 2^{j-1} \right ) \right )\sum\limits_{k = 1}^{j+1 }T\left ( 2^k \right ) \left [ \left ( 2^{k-1} \right )^{-1} \left ( L\left ( 2^k \right ) \right )^{-1}-\left ( 2^k \right ) ^{-1} \left ( L\left ( 2^k \right ) \right )^{-1} \right ] \nonumber\\ = & \sum\limits_{j = 1}^{\infty }2^jL\left ( 2^j \right ) \mathbb{V} \left ( \left | X \right | > \mu 2^{j-1}L\left ( 2^{j-1} \right ) \right )\sum\limits_{k = 1}^{j }T\left ( 2^k \right ) \left [ \left ( 2^{k-1} \right )^{-1} \left ( L\left ( 2^k \right ) \right )^{-1}-\left ( 2^k \right ) ^{-1} \left ( L\left ( 2^k \right ) \right )^{-1} \right ]\nonumber\\&+\sum\limits_{j = 1}^{\infty }2^jL\left ( 2^j \right ) \mathbb{V} \left ( \left | X \right | > \mu 2^{j-1}L\left ( 2^{j-1} \right ) \right )\left \{ T\left ( 2^{j+1} \right ) \left [ \left ( 2^{j} \right )^{-1} \left ( L\left ( 2^{j+1} \right ) \right )^{-1}-\left ( 2^{j+1} \right ) ^{-1} \left ( L\left ( 2^{j+1} \right ) \right )^{-1} \right ] \right \} \nonumber\\ = &\mathrm{K_{311}}+\mathrm{K_{312}}. \end{align*} |
By (3.9), (4.23),
\left \{ \left | X \right | > c 2^jL\left ( 2^{j-1} \right ) \right \} \subset \left \{ \left | X \right | > c 2^jL\left ( 2^{j} \right )\right \} |
and L\left(x\right) > 0 ( x > 0 ) being a monotonic nondecreasing function, we have
\begin{align} \begin{aligned} \mathrm{K_{312}}\le& \sum\limits_{j = 1}^{\infty }2^jL\left ( 2^j \right ) \mathbb{V} \left ( \left | X \right | > \mu 2^{j-1}L\left ( 2^{j-1} \right ) \right ) \cdot T\left ( 2^{j+1} \right )\left ( 2^{j} \right )^{-1} \left ( L\left ( 2^{j+1} \right ) \right )^{-1}\\ \ll& \sum\limits_{j = 1}^{\infty }L\left ( 2^j \right )\mathbb{V} \left ( \left | X \right | > \mu 2^{j-1}L\left ( 2^{j-1} \right ) \right )\cdot2^{\left(j+1\right)\gamma}\left ( L\left ( 2^{j} \right ) \right )^{-1}\\ \le& \sum\limits_{j = 1}^{\infty }2^{j\gamma}\mathbb{V} \left ( \left | X \right | > \mu 2^{-1}\cdot2^{j}L\left ( 2^{j-1} \right ) \right )\\ \le& \sum\limits_{j = 1}^{\infty }2^{j\gamma}\mathbb{V} \left ( \left | X \right | > c2^{j}L\left ( 2^{j} \right ) \right )\\ < &\infty.\end{aligned} \end{align} | (4.37) |
Besides, taking
\lambda = 2^{j-k} > 0 |
for j\ge k and x = 2^k in Definition 2.8, we get
L\left ( 2^j \right ) \le c L\left ( 2^k \right ) . |
According to (3.9), (4.23), \gamma > 1 , L\left(x\right) > 0 ( x > 0 ), and
\left \{ \left | X \right | > c 2^jL\left ( 2^{j-1} \right ) \right \} \subset \left \{ \left | X \right | > c 2^jL\left ( 2^{j} \right )\right \}, |
we obtain
\begin{align} \begin{aligned} \mathrm{K_{311}}\le&\sum\limits_{j = 1}^{\infty }2^jL\left ( 2^j \right ) \mathbb{V} \left ( \left | X \right | > \mu 2^{j-1}L\left ( 2^{j-1} \right ) \right )\sum\limits_{k = 1}^{j }T\left ( 2^k \right ) \left ( 2^{k-1} \right )^{-1} \left ( L\left ( 2^k \right ) \right )^{-1}\\ \ll&\sum\limits_{j = 1}^{\infty }2^jL\left ( 2^j \right ) \mathbb{V} \left ( \left | X \right | > \mu 2^{j-1}L\left ( 2^{j-1} \right ) \right )\sum\limits_{k = 1}^{j }2^{k\left(\gamma-1\right)}\left ( L\left ( 2^k \right ) \right )^{-1}\\ \le&\sum\limits_{j = 1}^{\infty }2^jL\left ( 2^j \right ) \mathbb{V} \left ( \left | X \right | > \mu 2^{j-1}L\left ( 2^{j-1} \right ) \right )\sum\limits_{k = 1}^{j }2^{k\left(\gamma-1\right)}\left ( L\left ( 2^j \right ) \right )^{-1}\\ \le&\sum\limits_{j = 1}^{\infty }2^{j\gamma} \mathbb{V} \left ( \left | X \right | > \mu 2^{-1}\cdot2^{j}L\left ( 2^{j-1} \right ) \right )\\ \le&\sum\limits_{j = 1}^{\infty }2^{j\gamma} \mathbb{V} \left ( \left | X \right | > c 2^{j}L\left ( 2^{j} \right ) \right )\\ < &\infty.\end{aligned} \end{align} | (4.38) |
By (4.36)–(4.38), we get
\begin{align*} \sum\limits_{i = 1}^{\infty } \left | \frac{a_i}{b_iL\left ( c_i \right ) }\left [ \hat{\mathbb{E} }\left ( Z_{ni} '\right ) -\hat{\mathbb{E} } \left ( X_i \right ) \right ] \right | < \infty. \end{align*} |
Using Lemma 2.9, we obtain (4.22). Thus, (3.10) has been proved.
Replacing \left \{ X_i, \; i\ge 1 \right \} by \left \{- X_i, \; i\ge 1 \right \} for each 1 \le i \le n in (3.10), by
\hat{ \varepsilon } \left ( X _i\right ) : = - \hat{\mathbb{E } }\left ( - X_i \right ), |
we have
\begin{align*} 0 \ge& \limsup\limits_{n\rightarrow \infty}\; b_n^{-1}\left ( L\left ( c_n \right ) \right ) ^{-1}\sum\limits_{i = 1}^{n} a_i\left ( -X_i-\hat{\mathbb{E} } \left ( -X_i \right ) \right )\\ = & \limsup\limits_{n\rightarrow \infty}\; b_n^{-1}\left ( L\left ( c_n \right ) \right ) ^{-1}\sum\limits_{i = 1}^{n} a_i\left ( -X_i+\hat{\varepsilon } \left ( X_i \right ) \right )\\ = & \limsup\limits_{n\rightarrow \infty}\; b_n^{-1}\left ( L\left ( c_n \right ) \right ) ^{-1}\sum\limits_{i = 1}^{n} a_i\left ( -\left (X_i-\hat{\varepsilon } \left ( X_i \right ) \right ) \right ), \end{align*} |
which implies (3.11). Furthermore, by (3.10), (3.11), and
\hat{\mathbb{E} } \left ( X_i \right ) = \hat{\varepsilon } \left ( X_i \right ), |
we can get (3.12) immediately.
The proof of Theorem 3.2 is completed.
In this article, by using the Fuk-Nagaev type inequality, \mathrm{C}_r inequality, Jensen inequality, and so on under the sublinear expectation space, we obtain general strong law of large numbers of m -WA random variables on different conditions under sublinear expectation space. The key of solving this problem makes full use of the Fuk-Nagaev type inequality. One of the results includes the Kolmogorov-type strong law of large numbers and the partial Marcinkiewicz-type strong law of large numbers for m -WA random variables under sublinear expectation space. Additionally, we obtain almost surely convergence for weighted sums of m -WA random variables under sublinear expectation space. However, the Kronecker Lemma is not applied for arrays of row-wise random variables. Thus, we will try our best to choose other ways to prove almost surely convergence for arrays of row-wise m -WA random variables under sublinear expectation space in the future.
Qingfeng Wu: conceptualization, formal analysis, investigation, methodology, writing-original draft, writing-review and editing; Xili Tan: funding acquisition, project administration, supervision, methodology, formal analysis, writing-review and editing; Shuang Guo: formal analysis, writing-review and editing; Peiyu Sun: writing-review and editing. All authors have read and approved the final version of the manuscript for publication.
This paper was supported by the Department of Science and Technology of Jilin Province (Grant No.YDZJ202101ZYTS156).
All authors declare no conflicts of interest in this paper.
[1] |
S. G. Peng, Nonlinear expectations and nonlinear Markov chains, Chinese Ann. Math., 26 (2005), 159–184. https://doi.org/10.1142/S0252959905000154 doi: 10.1142/S0252959905000154
![]() |
[2] |
S. G. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type, Stoch. Anal. Appl., 2007,541–567. https://doi.org/10.1007/978-3-540-70847-6_25 doi: 10.1007/978-3-540-70847-6_25
![]() |
[3] |
S. G. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stoch. Proc. Appl., 118 (2008), 2223–2253. https://doi.org/10.1016/j.spa.2007.10.015 doi: 10.1016/j.spa.2007.10.015
![]() |
[4] | S. G. Peng, Nonlinear expectations and stochastic calculus under uncertainty, Springer, 2019. https://doi.org/10.1007/978-3-662-59903-7 |
[5] |
L. X. Zhang, Strong limit theorems for extended independent random variables and extended negatively dependent random variables under sub-linear expectations, Acta. Math. Sci., 42 (2022), 467–490. https://doi.org/10.1007/s10473-022-0203-z doi: 10.1007/s10473-022-0203-z
![]() |
[6] |
L. X. Zhang, Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm, Sci. China Math., 59 (2016), 2503–2526. https://doi.org/10.1007/s11425-016-0079-1 doi: 10.1007/s11425-016-0079-1
![]() |
[7] |
L. X. Zhang, Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications, Sci. China Math., 59 (2016), 751–768. https://doi.org/10.1007/s11425-015-5105-2 doi: 10.1007/s11425-015-5105-2
![]() |
[8] |
H. Dong, X. L. Tan, Y. Zhang, Complete convergence and complete integration convergence for weighted sums of arrays of rowwise m-END under sub-linear expectations space, AIMS Math., 8 (2023), 6705–6724. https://doi.org/10.3934/math.2023340 doi: 10.3934/math.2023340
![]() |
[9] |
S. Guo, Y. Zhang, Central limit theorem for linear processes generated by m-dependent random variables under the sub-linear expectation, Commun. Stat., 52 (2023), 6407–6419. https://doi.org/10.1080/03610926.2022.2028840 doi: 10.1080/03610926.2022.2028840
![]() |
[10] |
H. Y. Zhong, Q. Y. Wu, Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation, J. Inequal. Appl., 2017 (2017), 261. https://doi.org/10.1186/s13660-017-1538-1 doi: 10.1186/s13660-017-1538-1
![]() |
[11] |
A. Kuczmaszewska, Complete convergence for widely acceptable random variables under the sublinear expectations, J. Math. Anal. Appl., 484 (2020), 123662. https://doi.org/10.1016/j.jmaa.2019.123662 doi: 10.1016/j.jmaa.2019.123662
![]() |
[12] |
A. Kuczmaszewska, Complete convergence and complete moment convergence for widely negative orthant dependent random variables under the sub-linear expectations, Stochastics, 95 (2023), 1101–1119. https://doi.org/10.1080/17442508.2022.2164695 doi: 10.1080/17442508.2022.2164695
![]() |
[13] |
W. Liu, Y. Zhang, Large deviation principle for linear processes generated by real stationary sequences under the sub-linear expectation, Commun. Stat., 52 (2023), 5727–5741. https://doi.org/10.1080/03610926.2021.2018462 doi: 10.1080/03610926.2021.2018462
![]() |
[14] |
Y. Wu, X. Deng, M. M. Xi, X. J. Wang, Strong convergence theorems under sub-linear expectations and its applications in nonparametric regression models, Commun. Math. Stat., 2023. https://doi.org/10.1007/s40304-023-00344-8 doi: 10.1007/s40304-023-00344-8
![]() |
[15] |
F. X. Feng, D. C. Wang, Q. Y. Wu, H. W. Huang, Complete and complete moment convergence for weighted sums of arrays of rowwise negatively dependent random variables under the sub-linear expectations, Commun. Stat., 50 (2021), 594–608. https://doi.org/10.1080/03610926.2019.1639747 doi: 10.1080/03610926.2019.1639747
![]() |
[16] |
L. X. Zhang, J. H. Lin, Marcinkiewicz's strong law of large numbers for nonlinear expectations, Stat. Probab. Lett., 137 (2018), 269–276. https://doi.org/10.1016/j.spl.2018.01.022 doi: 10.1016/j.spl.2018.01.022
![]() |
[17] |
Z. J. Chen, Strong laws of large numbers for sub-linear expectations, Sci. China Math., 59 (2016), 945–954. https://doi.org/10.1007/s11425-015-5095-0 doi: 10.1007/s11425-015-5095-0
![]() |
[18] |
C. Hu, Weak and strong laws of large numbers for sub-linear expectation, Commun. Stat., 49 (2020), 430–440. https://doi.org/10.1080/03610926.2018.1543771 doi: 10.1080/03610926.2018.1543771
![]() |
[19] |
Q. Y. Wu, Y. Y. Jiang, Strong law of large numbers and Chover's law of the iterated logarithm under sub-linear expectations, J. Math. Anal. Appl., 460 (2018), 252–270. https://doi.org/10.1016/j.jmaa.2017.11.053 doi: 10.1016/j.jmaa.2017.11.053
![]() |
[20] |
Y. Wu, X. Deng, X. J. Wang, Capacity inequalities and strong laws for m-widely acceptable random variables under sub-linear expectations, J. Math. Anal. Appl., 525 (2023), 127282. https://doi.org/10.1016/j.jmaa.2023.127282 doi: 10.1016/j.jmaa.2023.127282
![]() |
[21] |
X. C. Ma, Q. Y. Wu, On some conditions for strong law of large numbers for weighted sums of END random variables under sublinear expectations, Discrete Dyn. Nat. Soc., 2019 (2019), 1–8. https://doi.org/10.1155/2019/7945431 doi: 10.1155/2019/7945431
![]() |
[22] |
X. L. Tan, K. L. Zhang, Y. Zhang, T. Z. Liu, Almost sure convergence of weighted sums for sequence of WOD random variables under sublinear expectations, J. Jilin Uni., 60 (2022), 295–302. http://doi.org/10.13413/j.cnki.jdxblxb.2021274 doi: 10.13413/j.cnki.jdxblxb.2021274
![]() |
[23] |
Y. Shen, J. Yang, S. H. Hu, On strong law of large numbers and growth rate for a class of random variables, J. Inequal. Appl., 2013 (2013), 563. https://doi.org/10.1186/1029-242X-2013-563 doi: 10.1186/1029-242X-2013-563
![]() |
[24] | E. Seneta, Regularly varying functions, Springer, 2006. |
[25] |
Z. J. Chen, P. Y. Wu, M. B. Li, A strong law of large numbers for non-additive probabilities, Int. J. Approx. Reason., 54 (2013), 365–377. https://doi.org/10.1016/j.ijar.2012.06.002 doi: 10.1016/j.ijar.2012.06.002
![]() |
[26] | M. Loève, Elementary probability theory, Springer, 1977. https://doi.org/10.1007/978-1-4684-9464-8_1 |
[27] | X. C. Ma, Q. Y. Wu, Limiting behavior of weighted sums of extended negatively dependent random variables under sublinear expectations, Adv. Math., 49 (2020), 497–511. |
[28] |
A. Linero, A. Rosalsky, On the Toeplitz lemma, convergence in probability, and mean convergence, Stoch. Anal. Appl., 31 (2013), 684–694. https://doi.org/10.1080/07362994.2013.799406 doi: 10.1080/07362994.2013.799406
![]() |
[29] | N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Cambridge University Press, 1989. |