Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

Existence of solutions for Kirchhoff-double phase anisotropic variational problems with variable exponents

  • Received: 20 June 2024 Revised: 17 July 2024 Accepted: 29 July 2024 Published: 05 August 2024
  • MSC : 35J20, 35J60, 35J62

  • This paper is devoted to dealing with a kind of new Kirchhoff-type problem in RN that involves a general double-phase variable exponent elliptic operator ϕ. Specifically, the operator ϕ has behaviors like |τ|q(x)2τ if |τ| is small and like |τ|p(x)2τ if |τ| is large, where 1<p(x)<q(x)<N. By applying some new analytical tricks, we first establish existence results of solutions for this kind of Kirchhoff-double-phase problem based on variational methods and critical point theory. In particular, we also replace the classical Ambrosetti–Rabinowitz type condition with four different superlinear conditions and weaken some of the assumptions in the previous related works. Our results generalize and improve the ones in [Q. H. Zhang, V. D. Rădulescu, J. Math. Pures Appl., 118 (2018), 159–203.] and other related results in the literature.

    Citation: Wei Ma, Qiongfen Zhang. Existence of solutions for Kirchhoff-double phase anisotropic variational problems with variable exponents[J]. AIMS Mathematics, 2024, 9(9): 23384-23409. doi: 10.3934/math.20241137

    Related Papers:

    [1] Umar Ishtiaq, Fahad Jahangeer, Doha A. Kattan, Manuel De la Sen . Generalized common best proximity point results in fuzzy multiplicative metric spaces. AIMS Mathematics, 2023, 8(11): 25454-25476. doi: 10.3934/math.20231299
    [2] Xiangxing Tao, Jiahui Wang . Commutators of multilinear θ-type generalized fractional integrals on non-homogeneous metric measure spaces. AIMS Mathematics, 2022, 7(6): 9627-9647. doi: 10.3934/math.2022535
    [3] Aftab Hussain . Fractional convex type contraction with solution of fractional differential equation. AIMS Mathematics, 2020, 5(5): 5364-5380. doi: 10.3934/math.2020344
    [4] Monairah Alansari, Mohammed Shehu Shagari, Akbar Azam, Nawab Hussain . Admissible multivalued hybrid Z-contractions with applications. AIMS Mathematics, 2021, 6(1): 420-441. doi: 10.3934/math.2021026
    [5] Md Hasanuzzaman, Mohammad Imdad . Relation theoretic metrical fixed point results for Suzuki type ZR-contraction with an application. AIMS Mathematics, 2020, 5(3): 2071-2087. doi: 10.3934/math.2020137
    [6] Nizar Souayah, Nabil Mlaiki, Salma Haque, Doaa Rizk, Amani S. Baazeem, Wasfi Shatanawi . A new type of three dimensional metric spaces with applications to fractional differential equations. AIMS Mathematics, 2022, 7(10): 17802-17814. doi: 10.3934/math.2022980
    [7] Tatjana Došenović, Dušan Rakić, Stojan Radenović, Biljana Carić . Ćirić type nonunique fixed point theorems in the frame of fuzzy metric spaces. AIMS Mathematics, 2023, 8(1): 2154-2167. doi: 10.3934/math.2023111
    [8] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [9] Zijie Qin, Lin Chen . Characterization of ternary derivation of strongly double triangle subspace lattice algebras. AIMS Mathematics, 2023, 8(12): 29368-29381. doi: 10.3934/math.20231503
    [10] Muhammad Nazam, Aftab Hussain, Asim Asiri . On a common fixed point theorem in vector-valued b-metric spaces: Its consequences and application. AIMS Mathematics, 2023, 8(11): 26021-26044. doi: 10.3934/math.20231326
  • This paper is devoted to dealing with a kind of new Kirchhoff-type problem in RN that involves a general double-phase variable exponent elliptic operator ϕ. Specifically, the operator ϕ has behaviors like |τ|q(x)2τ if |τ| is small and like |τ|p(x)2τ if |τ| is large, where 1<p(x)<q(x)<N. By applying some new analytical tricks, we first establish existence results of solutions for this kind of Kirchhoff-double-phase problem based on variational methods and critical point theory. In particular, we also replace the classical Ambrosetti–Rabinowitz type condition with four different superlinear conditions and weaken some of the assumptions in the previous related works. Our results generalize and improve the ones in [Q. H. Zhang, V. D. Rădulescu, J. Math. Pures Appl., 118 (2018), 159–203.] and other related results in the literature.



    Fractional derivatives, which have attracted considerable attention during the last few decades, can be defined according to their type. These include the Caputo [1,2,3,4,5,6,8,7,9,10,11,12,13], Riemann-Liouville [14,15,16,17,18,19,20,21], Riesz [22,23,24,25,26], and Caputo-Fabrizio (CF) [27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46] types. Especially for the CF derivative, there were many related reports based on some discussions of different aspects, see the above references, and the Refs. [43,44,45]. In order to better grasp the fractional order problem, one can refer to the related works [47,48] and other fractional books.

    Based on these fractional derivatives, numerous models have been developed. However, these models are difficult to solve directly by applying the general analytical methods because of the existence of fractional derivatives. This problem has inspired scholars to develop numerical algorithms to derive numerical solutions efficiently. In [5,49,50,51], a few high-order approximation formulas for the Riemann-Liouville, Caputo, and Riesz fractional derivatives were proposed and developed using different techniques or ideas. Recently, high-order discrete formulas for the CF fractional derivatives were designed and discussed in Refs. [32,33,34,35,36,37,38].

    Another difficulty for simulating the models with fractional derivatives is the non-locality which greatly reduces the efficiency of the algorithm and requires much more memory storage compared with the traditional local models. Specifically, to obtain the approximation solutions {Uk}Mk=1 with M a positive integer, for the fractional models its computing complexity is O(M2), and the memory storage is O(M), in contrast to the local models with O(M) and O(1), respectively. For fast algorithms aimed at the Riemann-Liouville, Caputo, and Riesz fractional derivatives, see Refs. [14,52,53,54,55]. However, few scholars studied the fast algorithm for the CF fractional derivative. To the best of our knowledge, authors in [39] proposed numerically a fast method for the CF fractional derivative without further analysing the error accuracy.

    In this study, our aim is to construct a novel efficient approximation formula for the following CF fractional derivative [31]

    CF0αtu(t)=11αt0u(s)exp[α1α(ts)]ds,0<α<1, (1.1)

    where t[0,T], 0<T<. Our contributions in this study mainly focus on

    Propose a novel second-order approximation formula for the CF fractional derivative with detailed theoretical analysis for the truncation error.

    Develop a fast algorithm based on the novel discretization technique which reduces the computing complexity from O(M2) to O(M) and the memory storage from O(M) to O(1). Moreover, we theoretically show that the fast algorithm maintains the optimal convergence rate.

    The remainder of this paper is structured as follows. In Section 2, we derive a novel approximation formula with second-order convergence rate for the CF fractional derivative. In Section 3, we develop a fast algorithm by splitting the CF fractional derivative into two parts, the history part and local part, and then rewrite the history part by a recursive formula. Further we prove the truncation error for the fast algorithm. In Section 4, two numerical examples are provided to verify the approximation results and the efficiency of our fast algorithm. In Section 5, we provide a conclusion and offer suggestions for future studies.

    Throughout this article, we denote C as a positive constant, which is free of the step size Δt.

    To derive a novel approximation formula, we choose a uniform time step size Δt=TM=tktk1 with nodes tk=kΔt,k=0,1,,M, where M is a positive constant. We denote uk=u(tk) on [0,T].

    We next give a discrete approximation of CF fractional derivative CF0αtu(t) at tk+12(k1)

    CF0αtu(tk+12)=11αkj=1tj+12tj12u(s)exp[α1α(tk+12s)]ds+11αt12t0u(s)exp[α1α(tk+12s)]ds=11αkj=1tj+12tj12[u(tj)+u(tj)(stj)+12u(ξj)(stj)2]exp[α1α(tk+12s)]ds+11αt12t0[u(t12)+u(t12)(st12)+12u(ξ0)(st12)2]exp[α1α(tk+12s)]ds=1αkj=1uj+1uj12Δt(Mk+12j+12Mk+12j12)+1αu1u0Δt(Mk+1212Mk+120)+Rk+121+Rk+122CF0Dαtu(tk+12)+Rk+12, (2.1)

    where ξj generally depending on s satisfies ξj(tj12,tj+12) for j1 and ξ0(t0,t12). The coefficients Mkj and error Rk+12 are defined as follows

    Mkj=exp[α1α(tktj)],     Rk+12=Rk+121+Rk+122, (2.2)
    Rk+121=11αkj=1tj+12tj12[u(tj)(stj)+12u(ξj)(stj)2]exp[α1α(tk+12s)]ds+11αt12t0[u(t12)(st12)+12u(ξ0)(st12)2]exp[α1α(tk+12s)]ds,Rk+122=11αO(Δ2t)tk+12t0exp[α1α(tk+12s)]ds. (2.3)

    From (2.1), we obtain the following approximation formula for CF0αtu(tk+12) with k1.

    CF0Dαtu(tk+12)=1αkj=1uj+1uj12Δt(Mk+12j+12Mk+12j12)+1αu1u0Δt(Mk+1212Mk+120). (2.4)

    Based on this discussion, we obtain the novel approximation formula (2.4). We next discuss the truncation error of the novel approximation formula.

    Theorem 1. For u(t)C3[0,T], the truncation error Rk+12(k0) satisfies the following estimate

    |Rk+12|CΔ2t, (2.5)

    where the constant C is independent of k and Δt.

    Proof. According to formula (2.3), we can obtain:

    |Rk+12||Rk+121|+|Rk+122||11αkj=1u(tj)tj+12tj12(stj)exp[α1α(tk+12s)]ds|+|11αu(t12)t12t0(st12)exp[α1α(tk+12s)]ds|+|12(1α)kj=1tj+12tj12u(ξj)(stj)2exp[α1α(tk+12s)]ds|+|12(1α)t12t0u(ξ0)(st12)2exp[α1α(tk+12s)]ds|+|11αtk+12t0O(Δ2t)exp[α1α(tk+12s)]ds|=I1+I2+I3+I4+I5. (2.6)

    For the term I1, using integration by parts, we can arrive at:

    I1max (2.7)

    Next, for the term I_{2} , by using the mean value theorem of integrals, we obtain:

    \begin{equation} \begin{split} I_{2} = &\bigg|\frac{\Delta_t}{2(1-\alpha)}u''(t_{\frac{1}{2}})(t_{\varepsilon}-t_{\frac{1}{2}})\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{k+\frac{1}{2}}-t_{\varepsilon})\bigg]\bigg|\\ \leq&\max\limits_{t\in[0,T]}|u''(t)|\frac{\Delta_{t}^{2}}{4(1-\alpha)}\\ \leq&C\Delta_{t}^{2}, \end{split} \end{equation} (2.8)

    where t_{0}\leq t_{\varepsilon}\leq t_{\frac{1}{2}} .

    For the term I_{3} , we can easily obtain:

    \begin{equation} \begin{split} I_{3} \leq&\max\limits_{t\in[0,T]}|u'''(t)|\frac{\Delta_{t}^{2}}{8(1-\alpha)}\int^{t_{k+\frac{1}{2}}}_{t_{\frac{1}{2}}}\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{k+\frac{1}{2}}-s)\bigg]ds\\ \leq&C\Delta_{t}^{2}. \end{split} \end{equation} (2.9)

    Similarly, we can estimate the term I_{4} as follows:

    \begin{equation} \begin{split} I_{4} \leq&\max\limits_{t\in[0,T]}|u'''(t)|\frac{\Delta_{t}^{2}}{8(1-\alpha)}\int^{t_{\frac{1}{2}}}_{t_{0}}\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{k+\frac{1}{2}}-s)\bigg]ds\\ \leq&C\Delta_{t}^{2}. \end{split} \end{equation} (2.10)

    Finally, for the term I_{5} , we can derive:

    \begin{equation} \begin{split} I_{5} \leq\frac{1}{1-\alpha}|O(\Delta_{t}^{2})|\bigg(1-M^{k+\frac{1}{2}}_{0}\bigg)\leq C\Delta_{t}^{2}. \end{split} \end{equation} (2.11)

    Based on the aforementioned estimates for the terms I_1 , \cdots, I_5 , we can complete the proof of the Theorem.

    It is obvious that the approximation formula (2.4) is nonlocal since the value at node t_{k+\frac{1}{2}} for the CF fractional derivative is concerned with all the values of u^j , j = 0, 1, \cdots, k, k+1 , which means the computing complexity when apply the formula (2.4) to ODEs is of O(M^2) and the memory requirement is O(M) . In the following analysis, inspired by the work [14], we develop a fast algorithm based on the new discretization technique used in this paper, with which the computing complexity is reduced from O(M^2) to O(M) and the memory requirement is O(1) instead of O(M) .

    We split the derivative _0^{CF}D_t^\alpha u(t_{k+\frac{1}{2}}) for k\geq 1 into two parts: the history part denoted by C_h(t_{k+\frac{1}{2}}) and the local part denoted by C_l(t_{k+\frac{1}{2}}) , respectively, as follows

    \begin{equation} \begin{split} _0^{CF}\partial_t^\alpha u(t_{k+\frac{1}{2}})& = C_h(t_{k+\frac{1}{2}})+C_l(t_{k+\frac{1}{2}}) \\& = \frac{1}{1-\alpha}\int^{t_{k-\frac{1}{2}}}_{t_0}u'(s)\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{k+\frac{1}{2}}-s)\bigg]ds \\&\quad+\frac{1}{1-\alpha}\int^{t_{k+\frac{1}{2}}}_{t_{k-\frac{1}{2}}}u'(s)\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{k+\frac{1}{2}}-s)\bigg]ds. \end{split} \end{equation} (3.1)

    For the local part C_l(t_{k+\frac{1}{2}}) , we have

    \begin{equation} \begin{split} C_l(t_{k+\frac{1}{2}}) = \frac{u^{k+1}-u^{k-1}}{2\alpha\Delta_{t}}\bigg(1-M^{k+\frac{1}{2}}_{k-\frac{1}{2}}\bigg)+R^{k+\frac{1}{2}}_l, \end{split} \end{equation} (3.2)

    where M^k_j is defined by (2.2), and the truncation error R^{k+\frac{1}{2}}_l is

    \begin{equation} \begin{split} R^{k+\frac{1}{2}}_l& = \frac{1}{1-\alpha}\int^{t_{k+\frac{1}{2}}}_{t_{k-\frac{1}{2}}}\bigg[u''(t_k)(s-t_{k})+\frac{1}{2}u'''(\xi_k)(s-t_{k})^{2}\bigg]\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{k+\frac{1}{2}}-s)\bigg]ds \\&\quad+ \frac{1}{1-\alpha}\bigg[u'(t_k)-\frac{u^{k+1}-u^{k-1}}{2\Delta_t}\bigg]\int^{t_{k+\frac{1}{2}}}_{t_{k-\frac{1}{2}}}\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{k+\frac{1}{2}}-s)\bigg]ds,\quad k\geq 1. \end{split} \end{equation} (3.3)

    For the history part C_h(t_{k+\frac{1}{2}}) , we rewrite it into a recursive formula when k\geq 2 in the following way

    \begin{equation} \begin{split} C_h(t_{k+\frac{1}{2}})& = \frac{1}{1-\alpha}\int^{t_{k-\frac{3}{2}}}_{t_0}u'(s)\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{k+\frac{1}{2}}-s)\bigg]ds \\&\quad+ \frac{1}{1-\alpha}\int^{t_{k-\frac{1}{2}}}_{t_{k-\frac{3}{2}}}u'(s)\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{k+\frac{1}{2}}-s)\bigg]ds \\&\triangleq C_h^{(1)}(t_{k+\frac{1}{2}})+C_h^{(2)}(t_{k+\frac{1}{2}}), \end{split} \end{equation} (3.4)

    and when k = 1 ,

    \begin{equation} \begin{split} C_h(t_{\frac{3}{2}})& = \frac{1}{1-\alpha}\int^{t_{\frac{1}{2}}}_{t_0}u'(s)\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{\frac{3}{2}}-s)\bigg]ds \\&\triangleq C_h^{(2)}(t_{\frac{3}{2}}). \end{split} \end{equation} (3.5)

    Careful calculations show that

    \begin{equation} \begin{split} C_h^{(1)}(t_{k+\frac{1}{2}}) = \exp\bigg(\frac{\alpha \Delta_t}{\alpha-1}\bigg)C_h(t_{k-\frac{1}{2}}), \quad k\geq 2. \end{split} \end{equation} (3.6)

    For the term C_h^{(2)}(t_{k+\frac{1}{2}}) , by similar analysis for the Theorem 1, we have

    \begin{equation} C_h^{(2)}(t_{k+\frac{1}{2}}) = \begin{cases} \frac{u^k-u^{k-2}}{2\alpha\Delta_t}\bigg(M^{k+\frac{1}{2}}_{k-\frac{1}{2}}-M^{k+\frac{1}{2}}_{k-\frac{3}{2}}\bigg)+R_h^{k+\frac{1}{2}}, & \mbox{if } k\geq2 \\ \frac{u^1-u^0}{\alpha\Delta_t}\bigg(M^{\frac{3}{2}}_{\frac{1}{2}}-M^{\frac{3}{2}}_{0}\bigg)+R_h^{\frac{3}{2}}, & \mbox{if } k = 1, \end{cases} \end{equation} (3.7)

    where, for k\geq 2 ,

    \begin{equation} \begin{split} R_h^{k+\frac{1}{2}}& = \frac{1}{1-\alpha}\int^{t_{k-\frac{1}{2}}}_{t_{k-\frac{3}{2}}}\bigg[u''(t_{k-1})(s-t_{k-1})+\frac{1}{2}u'''(\xi_{k-1})(s-t_{k-1})^{2}\bigg]\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{k+\frac{1}{2}}-s)\bigg]ds \\&\quad+ \frac{1}{1-\alpha}\bigg[u'(t_{k-1})-\frac{u^{k}-u^{k-2}}{2\Delta_t}\bigg]\int^{t_{k-\frac{1}{2}}}_{t_{k-\frac{3}{2}}}\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{k+\frac{1}{2}}-s)\bigg]ds, \end{split} \end{equation} (3.8)

    and, for k = 1 ,

    \begin{equation} \begin{split} R_h^{\frac{3}{2}}& = \frac{1}{1-\alpha}\int^{t_{\frac{1}{2}}}_{t_{0}}\bigg[u''(t_{\frac{1}{2}})(s-t_{\frac{1}{2}})+\frac{1}{2}u'''(\xi_0)(s-t_\frac{1}{2})^{2}\bigg]\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{k+\frac{1}{2}}-s)\bigg]ds \\&\quad+ \frac{1}{1-\alpha}\bigg[u'(t_{\frac{1}{2}})-\frac{u^{1}-u^{0}}{\Delta_t}\bigg]\int^{t_{\frac{1}{2}}}_{t_{0}}\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{\frac{3}{2}}-s)\bigg]ds. \end{split} \end{equation} (3.9)

    For the truncation error R_l^{k+\frac{1}{2}} and R_h^{k+\frac{1}{2}} defined respectively by (3.3) and (3.8)-(3.9), we have the estimates that

    Lemma 1. Suppose that u(t)\in C^3[0, T] , then for any k\geq 1 , R_l^{k+\frac{1}{2}} and R_h^{k+\frac{1}{2}} satisfy

    \begin{equation} \begin{split} |R^{k+\frac{1}{2}}_l|\leq C\Delta_t^3,\quad |R^{k+\frac{1}{2}}_h|\leq C\Delta_t^3, \end{split} \end{equation} (3.10)

    where the constant C is free of k and \Delta_t .

    Proof. To avoid repetition we just prove the estimate for R^{k+\frac{1}{2}}_l , since the estimate for R^{k+\frac{1}{2}}_h can be derived similarly. By the definition (3.3), we have

    \begin{equation} \begin{split} \big|R^{k+\frac{1}{2}}_l\big| &\leq \frac{1}{1-\alpha}\max\limits_{t\in[0,T]}|u''(t)|\bigg|\int^{t_{k+\frac{1}{2}}}_{t_{k-\frac{1}{2}}}(s-t_{k})\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{k+\frac{1}{2}}-s)\bigg]ds\bigg| \\&\quad+\frac{1}{2(1-\alpha)}\max\limits_{t\in[0,T]}|u'''(t)|\int^{t_{k+\frac{1}{2}}}_{t_{k-\frac{1}{2}}}(s-t_{k})^{2}\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{k+\frac{1}{2}}-s)\bigg]ds \\&\quad+ \frac{C\Delta_t^2}{1-\alpha}\int^{t_{k+\frac{1}{2}}}_{t_{k-\frac{1}{2}}}\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{k+\frac{1}{2}}-s)\bigg]ds. \\&\triangleq L_1+L_2+L_3. \end{split} \end{equation} (3.11)

    Then, for the term L_1 , using integration by parts and the Taylor expansion for \exp(t) at zero, we have

    \begin{equation} \begin{split} L_1 &\leq C \Delta_t^2\bigg(M^{k+\frac{1}{2}}_{k+\frac{1}{2}}-M^{k+\frac{1}{2}}_{k-\frac{1}{2}}\bigg)+C\int^{t_{k+\frac{1}{2}}}_{t_{k-\frac{1}{2}}}(s-t_k)^2\exp\bigg[-\frac{\alpha}{1-\alpha}(t_{k+\frac{1}{2}}-s)\bigg]ds \\&\leq C\Delta_t^2\bigg[1-\bigg(1-\frac{\alpha\Delta_t}{1-\alpha}-|O(\Delta_t^2)|\bigg)\bigg]+C\Delta_t^3 \\&\leq C\Delta_t^3. \end{split} \end{equation} (3.12)

    For the terms L_2 and L_3 , by the mean value theorem of integrals we can easily get L_2 \leq C\Delta_t^3 and L_3 \leq C\Delta_t^3 . Hence, we have proved the estimate for R^{k+\frac{1}{2}}_l .

    Now, based on the above analysis, and for a better presentation, we can introduce an operator {}^{CF}_0 \mathcal{F}_t^{\alpha} for the fast algorithm defined by

    \begin{equation} \begin{split} {}^{CF}_0 \mathcal{F}_t^{\alpha}u(t_{k+\frac{1}{2}}) = \frac{u^{k+1}-u^{k-1}}{2\alpha\Delta_t}\bigg(1-M^{k+\frac{1}{2}}_{k-\frac{1}{2}}\bigg)+\mathcal{F}_h(t_{k+\frac{1}{2}}), \quad k\geq 1, \end{split} \end{equation} (3.13)

    where the history part \mathcal{F}_h(t_{k+\frac{1}{2}}) satisfies

    \begin{equation} \begin{split} \mathcal{F}_h(t_{k+\frac{1}{2}}) = \begin{cases} \exp\bigg( \frac{\alpha \Delta_t}{\alpha-1}\bigg)\mathcal{F}_h(t_{k-\frac{1}{2}})+ \frac{u^k-u^{k-2}}{2\alpha\Delta_t}\bigg(M^{k+\frac{1}{2}}_{k-\frac{1}{2}}-M^{k+\frac{1}{2}}_{k-\frac{3}{2}}\bigg), & \mbox{if } k\geq 2 \\ \frac{u^1-u^0}{\alpha\Delta_t}\bigg(M^{\frac{3}{2}}_{\frac{1}{2}}-M^{\frac{3}{2}}_{0}\bigg), & \mbox{if } k = 1. \end{cases} \end{split} \end{equation} (3.14)

    We note that with (3.13) and (3.14), u^{k+1} only depends on u^k , u^{k-1} and u^{k-2} , which reduces the algorithm complexity from O(M^2) to O(M) and the memory requirement from O(M) to O(1) .

    The following theorem confirms the efficiency of the operator {}^{CF}_0 \mathcal{F}_t^{\alpha} , with which we can still obtain the second-order convergence rate.

    Theorem 2. Assume u(t) \in C^3[0, T] and the operator {}^{CF}_0 \mathcal{F}_t^{\alpha} is defined by (3.13). Then

    \begin{equation} \begin{split} \big|{}_0^{CF}\partial_t^\alpha u(t_{k+\frac{1}{2}})-{}^{CF}_0 \mathcal{F}_t^{\alpha}u(t_{k+\frac{1}{2}})\big| \leq C\Delta_t^2, \end{split} \end{equation} (3.15)

    where the constant C is independent of k and \Delta_t .

    Proof. Combining (3.1), (3.2), (3.4)-(3.5) with (3.13), (3.14), we can get

    \begin{equation} \begin{split} \big|{}_0^{CF}\partial_t^\alpha u(t_{k+\frac{1}{2}})-{}^{CF}_0 \mathcal{F}_t^{\alpha}u(t_{k+\frac{1}{2}})\big| \leq \big|C_h(t_{k+\frac{1}{2}})-\mathcal{F}_h(t_{k+\frac{1}{2}})\big|+\big|R_l^{k+\frac{1}{2}}\big|, \quad k\geq 2. \end{split} \end{equation} (3.16)

    Then, next we mainly analyse the estimate for \big|C_h(t_{k+\frac{1}{2}})-\mathcal{F}_h(t_{k+\frac{1}{2}})\big| . Actually, by definitions we obtain

    \begin{equation} \begin{split} C_h(t_{k+\frac{1}{2}})-\mathcal{F}_h(t_{k+\frac{1}{2}}) = \exp\bigg(\frac{\alpha \Delta_t}{\alpha-1}\bigg)\big[C_h(t_{k-\frac{1}{2}})-\mathcal{F}_h(t_{k-\frac{1}{2}})\big]+R_h^{k+\frac{1}{2}}. \end{split} \end{equation} (3.17)

    We introduce some notations to simplify the presentation. Let

    \begin{equation} \begin{split} T_{k+1} = C_h(t_{k+\frac{1}{2}})-\mathcal{F}_h(t_{k+\frac{1}{2}}), \quad L = \exp\bigg(\frac{\alpha \Delta_t}{\alpha-1}\bigg). \end{split} \end{equation} (3.18)

    Then, the recursive formula (3.17) reads that

    \begin{equation} \begin{split} T_{k+1} = L^{k-1}T_2+\mathcal{R}_h^{k+1}, \end{split} \end{equation} (3.19)

    where the term \mathcal{R}_h^{k+1} is defined by

    \begin{equation} \begin{split} \mathcal{R}_h^{k+1} = L^{k-2}R_h^{2+\frac{1}{2}}+L^{k-3}R_h^{3+\frac{1}{2}}+\cdots+R_h^{k+\frac{1}{2}}. \end{split} \end{equation} (3.20)

    Now, by (3.7) and (3.14) as well as the Lemma 1, we can get

    \begin{equation} \begin{split} |T_2| = |R_h^{\frac{3}{2}}|\leq C\Delta_t^3, \end{split} \end{equation} (3.21)

    and

    \begin{equation} \begin{split} \big|\mathcal{R}_h^{k+1}\big|\leq C\Delta_t^3\big(L^{k-2}+L^{k-3}+\cdots+1\big) = C\Delta_t^3\frac{1-L^{k-1}}{1-L}. \end{split} \end{equation} (3.22)

    Noting here that L\in (0, 1) we have

    \begin{equation} \begin{split} 1-L = 1-\exp\bigg(\frac{\alpha \Delta_t}{\alpha-1}\bigg) \sim\frac{\alpha \Delta_t}{1-\alpha}\geq \frac{\alpha \Delta_t}{2(1-\alpha)}. \end{split} \end{equation} (3.23)

    Combining (3.19), (3.21)-(3.23), we obtain that

    \begin{equation} \begin{split} \big|T_{k+1}\big|\leq C\Delta_t^2. \end{split} \end{equation} (3.24)

    Now, with (3.16), (3.17), (3.24) and the Lemma 1, we complete the proof for the theorem.

    To check the second-order convergence rate and the efficiency of the fast algorithm for the novel approximation formula, we choose two fractional ordinary differential equation models with the domain I = (0, T] . Let U^k be the numerical solution for the chosen models at t_k , and define U^0 = u(0) . Define the error as Err(\Delta_t) = \max_{1\leq k \leq M}|U^k-u^k| . For the sufficiently smooth function u(t) , we have the approximation formulas for u(t_{k+\frac{1}{2}}) and its first derivative \frac{\mathrm{d}u}{\mathrm{d}t}\big|_{t = t_{k+\frac{1}{2}}} :

    \begin{equation} \begin{split} u(t_{k+\frac{1}{2}})& = \frac{1}{2}(u^k+u^{k+1})+O(\Delta_t^2), \\ \frac{\mathrm{d}u}{\mathrm{d}t}\bigg|_{t = t_{k+\frac{1}{2}}}& = \frac{u^{k+1}-u^k}{\Delta_t}+O(\Delta_t^2). \end{split} \end{equation} (4.1)

    Then, combined with results (2.5) and (3.15), the second-order convergence rate in the following tests is expected.

    First, we consider the following fractional ordinary differential equation with an initial value:

    \begin{equation} \begin{split} \left\{ \begin{aligned} &_{0}^{CF}\partial_{t}^{\alpha}u(t)+u(t) = g_{1}(t),\ t\in \bar{I}, \\ &u(0) = \varphi_{0}. \end{aligned} \right. \end{split} \end{equation} (4.2)

    Next, by taking the exact solution u(t) = t^2 and the initial value \varphi_0 = 0 , we derive the source function as follows:

    \begin{equation} \begin{split} g_{1}(t) = \frac{2t}{\alpha}+t^2-\frac{2(1-\alpha)}{\alpha^{2}}\bigg[1-\exp(-\frac{\alpha}{1-\alpha}t)\bigg]. \end{split} \end{equation} (4.3)

    Direct scheme: Based on the novel approximation formula (2.4), we derive the following discrete system at t_{k+\frac{1}{2}} :

    Case k = 0

    \begin{equation} \begin{split} \bigg(\frac{1}{2}+\frac{1-M_{0}^{\frac{1}{2}}}{\alpha\Delta_{t}}\bigg)U^{1} = \bigg(-\frac{1}{2}+\frac{1-M_{0}^{\frac{1}{2}}}{\alpha\Delta_{t}}\bigg)U^{0}+g_{1}(t_{\frac{1}{2}}), \end{split} \end{equation} (4.4)

    Case k\geq 1

    \begin{equation} \begin{split} \bigg(\frac{1}{2}+\frac{1-M_{k-\frac{1}{2}}^{k+\frac{1}{2}}}{2\alpha\Delta_{t}}\bigg)U^{k+1} = &\frac{1-M_{k-\frac{1}{2}}^{k+\frac{1}{2}}}{2\alpha\Delta_{t}}U^{k-1}-\frac{1}{2}U^{k} -\frac{M_{\frac{1}{2}}^{k+\frac{1}{2}}-M_{0}^{k+\frac{1}{2}}}{\alpha\Delta_{t}}(U^{1}-U^{0})\\ &-\frac{1}{2\alpha\Delta_{t}}\sum\limits_{j = 1}^{k-1}(U^{j+1}-U^{j-1})\big(M_{j+\frac{1}{2}}^{k+\frac{1}{2}}-M_{j-\frac{1}{2}}^{k+\frac{1}{2}}\big)+g_{1}(t_{k+\frac{1}{2}}). \end{split} \end{equation} (4.5)

    Fast scheme: Applying the fast algorithm to the equation (4.2), we can get, for k\geq 1 :

    \begin{equation} \begin{split} \bigg(\frac{1}{2}+\frac{1-M_{k-\frac{1}{2}}^{k+\frac{1}{2}}}{2\alpha\Delta_{t}}\bigg)U^{k+1} = &\frac{1-M_{k-\frac{1}{2}}^{k+\frac{1}{2}}}{2\alpha\Delta_{t}}U^{k-1}-\frac{1}{2}U^{k}+g_{1}(t_{k+\frac{1}{2}})-\mathcal{F}_h(t_{k+\frac{1}{2}}), \end{split} \end{equation} (4.6)

    where \mathcal{F}_h(t_{k+\frac{1}{2}}) is defined by (3.14). For the case k = 0 , the formula (4.4) is used to derive U^1 .

    Let T = 1 . By calculating based on the direct scheme (4.4)–(4.5) and the fast scheme (4.6), we obtain the error results by choosing changed mesh sizes time step \Delta_{t} = 2^{-10}, 2^{-11}, 2^{-12}, 2^{-13}, 2^{-14} for different fractional parameters \alpha = 0.1, 0.5, 0.9 , respectively, in Table 1. From the computed results, we can see that the convergence rate for both of the schemes is close to 2, which is in agreement with our theoretical result.

    Table 1.  Convergence results of Example 1.
    \alpha \Delta_t Direct scheme Fast scheme
    Err(\Delta_t) Rate CPU(s) Err(\Delta_t) Rate CPU(s)
    0.1 2^{-10} 4.76834890E-07 0.0625 4.76834890E-07 0.0072
    2^{-11} 1.19209015E-07 1.999996 0.2508 1.19209014E-07 1.999996 0.0067
    2^{-12} 2.98022864E-08 1.999998 0.8776 2.98022864E-08 1.999998 0.0088
    2^{-13} 7.45057174E-09 2.000000 3.3688 7.45057174E-09 2.000000 0.0100
    2^{-14} 1.86264512E-09 1.999998 13.2991 1.86264512E-09 1.999998 0.0140
    0.5 2^{-10} 4.76811290E-07 0.0716 4.76811290E-07 0.0067
    2^{-11} 1.19206056E-07 1.999961 0.2768 1.19206056E-07 1.999961 0.0083
    2^{-12} 2.98019183E-08 1.999980 0.9433 2.98019183E-08 1.999980 0.0091
    2^{-13} 7.45052997E-09 1.999990 3.6143 7.45052997E-09 1.999990 0.0098
    2^{-14} 1.86263893E-09 1.999995 14.2937 1.86263893E-09 1.999995 0.0135
    0.9 2^{-10} 8.88400608E-07 0.0834 8.88400608E-07 0.0071
    2^{-11} 2.22067159E-07 2.000214 0.2935 2.22067163E-07 2.000214 0.0074
    2^{-12} 5.55126489E-08 2.000108 1.1452 5.55126587E-08 2.000107 0.0083
    2^{-13} 1.38776781E-08 2.000050 4.3128 1.38775857E-08 2.000060 0.0099
    2^{-14} 3.46934370E-09 2.000032 17.1595 3.46943940E-09 1.999982 0.0199

     | Show Table
    DownLoad: CSV

    Moreover, we manifest the efficiency of our fast scheme in two aspects: (i) by comparing with a published second-order scheme [35] which is denoted as Scheme I and (ii) with the direct scheme (4.5). In Figure 1, we take T = 10 and plot the CPU time consumed for Scheme I and our fast scheme under the condition |Err(\Delta_t)|\leq 10^{-7} for each \alpha = 0.1, 0.2, \cdots, 0.9 . It is evident that our fast scheme is much more efficient. Further, to check the computing complexity of our direct and fast schemes, we depict in Figure 2 the CPU time in seconds needed with \alpha = 0.1 in the \log - \log coordinate system, by taking T = 1 , M = 10^3\times 2^m , m = 1, 2, \cdots, 6 . One can see that the fast scheme has reduced the computing complexity from O(M^2) to O(M) .

    Figure 1.  Comparison of CPU time between our fast method and the Scheme I with the error satisfying |Err(\Delta_t)|\leq 10^{-7} .
    Figure 2.  CPU time for Example 1 with \alpha = 0.1 .

    We next consider another initial value problem of the fractional ordinary differential equation:

    \begin{equation} \begin{split} \left\{ \begin{aligned} &\frac{du(t)}{dt}+_{0}^{CF}\partial_{t}^{\alpha}u(t) = g_{2}(t),\ t\in \bar{I},\\ &u(0) = \psi_{0}, \end{aligned} \right. \end{split} \end{equation} (4.7)

    where the exact solution is u(t) = \exp(2t) , the initial value is \psi_0 = 1 , and the source function is:

    \begin{equation} \begin{split} g_{2}(t) = \frac{2}{2-\alpha}\bigg[\exp(2t)-\exp\bigg(-\frac{\alpha}{1-\alpha}t\bigg)\bigg]+2\exp(2t). \end{split} \end{equation} (4.8)

    Direct scheme: For the model (4.7), we formulate the Crank-Nicolson scheme based on the new approximation formula (2.4) at t_{k+\frac{1}{2}} as follows:

    Case k = 0

    \begin{equation} \begin{split} \bigg(\frac{1}{\Delta_{t}}+\frac{1-M_{0}^{\frac{1}{2}}}{\alpha\Delta_{t}}\bigg)U^{1} = \bigg(\frac{1}{\Delta_{t}}+\frac{1-M_{0}^{\frac{1}{2}}}{\alpha\Delta_{t}}\bigg)U^{0}+g_{2}(t_{\frac{1}{2}}), \end{split} \end{equation} (4.9)

    Case k\geq 1

    \begin{equation} \begin{split} \bigg(\frac{1}{\Delta_{t}}+\frac{1-M_{k-\frac{1}{2}}^{k+\frac{1}{2}}}{2\alpha\Delta_{t}}\bigg)U^{k+1} = &\frac{1-M_{k-\frac{1}{2}}^{k+\frac{1}{2}}}{2\alpha\Delta_{t}}U^{k-1}+\frac{1}{\Delta_{t}}U^{k}-\frac{M_{\frac{1}{2}}^{k+\frac{1}{2}}-M_{0}^{k+\frac{1}{2}}}{\alpha\Delta_{t}}(U^{1}-U^{0})\\ &-\frac{1}{2\alpha\Delta_{t}}\sum\limits_{j = 1}^{k-1}(U^{j+1}-U^{j-1})(M_{j+\frac{1}{2}}^{k+\frac{1}{2}}-M_{j-\frac{1}{2}}^{k+\frac{1}{2}}) +g_{2}(t_{k+\frac{1}{2}}). \end{split} \end{equation} (4.10)

    Fast scheme: Applying the fast algorithm to the model (4.7), we have, for k\geq 1 :

    \begin{equation} \begin{split} \bigg(\frac{1}{\Delta_t}+\frac{1-M_{k-\frac{1}{2}}^{k+\frac{1}{2}}}{2\alpha\Delta_{t}}\bigg)U^{k+1} = &\frac{1-M_{k-\frac{1}{2}}^{k+\frac{1}{2}}}{2\alpha\Delta_{t}}U^{k-1}+\frac{U^{k}}{\Delta_t}+g_{1}(t_{k+\frac{1}{2}})-\mathcal{F}_h(t_{k+\frac{1}{2}}). \end{split} \end{equation} (4.11)

    Similarly, we also compute and list the convergence data in Table 2 to show further the effectiveness of the novel approximation and the fast algorithm.

    Table 2.  Convergence results of Example 2.
    \alpha \Delta_t Direct scheme Fast scheme
    Err(\Delta_t) Rate CPU(s) Err(\Delta_t) Rate CPU(s)
    0.2 2^{-10} 1.85604636E-06 0.0620 1.85604607E-06 0.0066
    2^{-11} 4.64007204E-07 2.000014 0.2317 4.64006418E-07 2.000016 0.0075
    2^{-12} 1.16000631E-07 2.000015 0.8691 1.16003294E-07 1.999979 0.0091
    2^{-13} 2.90011650E-08 1.999950 3.3423 2.89965145E-08 2.000214 0.0107
    2^{-14} 7.24794447E-09 2.000467 13.4227 7.25755100E-09 1.998325 0.0154
    0.4 2^{-10} 1.78086742E-06 0.0638 1.78086759E-06 0.0071
    2^{-11} 4.45204337E-07 2.000041 0.2516 4.45203661E-07 2.000043 0.0080
    2^{-12} 1.11298823E-07 2.000029 0.9043 1.11298892E-07 2.000026 0.0095
    2^{-13} 2.78237513E-08 2.000049 3.5048 2.78246395E-08 2.000004 0.0110
    2^{-14} 6.95804836E-09 1.999562 14.8677 6.95847024E-09 1.999521 0.0143
    0.8 2^{-10} 3.89820152E-07 0.0785 3.89820181E-07 0.0115
    2^{-11} 9.73901404E-08 2.000961 0.2962 9.73902248E-08 2.000960 0.0079
    2^{-12} 2.43394851E-08 2.000477 1.0595 2.43393918E-08 2.000484 0.0095
    2^{-13} 6.08529405E-09 1.999900 4.1052 6.08559336E-09 1.999823 0.0116
    2^{-14} 1.51925406E-09 2.001964 16.5226 1.51877799E-09 2.002487 0.0156

     | Show Table
    DownLoad: CSV

    From the computed data summarized in Table 2, both of the schemes have a second-order convergence rate, and the fast scheme indeed improves the efficiency of the novel approximation formula without losing too much precision. Similarly as the Example 1 , we compare in Figure 3 the times for both of the methods under different M = 10^2 \times 2^m , for \alpha = 0.9 and m = 1, 2, \cdots, 6 in the \log - \log coordinate system. One can see clearly that the computing complexity for the direct scheme is O(M^2) , and for the fast scheme it is O(M) .

    Figure 3.  CPU time for Example 2 with \alpha = 0.9 .

    In this study, we constructed a novel discrete formula for approximating the CF fractional derivative and proved the second-order convergence rate for the novel approximation formula. To overcome the nonlocal property of the derivative, we proposed a fast algorithm that tremendously improves the efficiency of the approximation formula. Moreover, we demonstrated the fast algorithm maintains the second-order convergence rate. In future works, this novel approximation formula and fast algorithm can be applied with the finite element, finite difference, or other numerical methods to specific fractional differential equation models with Caputo-Fabrizio derivatives.

    The authors are grateful to the three anonymous referees and editors for their valuable comments and good suggestions which greatly improved the presentation of the paper. This work is supported by the National Natural Science Fund (11661058, 11761053), the Natural Science Fund of Inner Mongolia Autonomous Region (2017MS0107), the program for Young Talents of Science, and Technology in Universities of the Inner Mongolia Autonomous Region (NJYT-17-A07).

    The authors declare no conflict of interest.



    [1] Q. H. Zhang, V. D. Rădulescu, Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl., 118 (2018), 159–203. http://doi.org/10.1016/j.matpur.2018.06.015 doi: 10.1016/j.matpur.2018.06.015
    [2] G. W. Dai, R. F. Hao, Existence of solutions for a p(x)-Kirchhoff-type equation, J. Math. Anal. Appl., 359 (2009), 275–284. http://doi.org/10.1016/j.jmaa.2009.05.031 doi: 10.1016/j.jmaa.2009.05.031
    [3] J. Lee, J. M. Kim, Y. H. Kim, Existence and multiplicity of solutions for Kirchhoff-Schrödinger type equations involving p(x)-Laplacian on the entire space \mathbb{R}^N, Nonlinear Anal.-Real World Appl., 45 (2019), 620–649. http://doi.org/10.1016/j.nonrwa.2018.07.016 doi: 10.1016/j.nonrwa.2018.07.016
    [4] X. C. Hu, H. B. Chen, Multiple positive solutions for a p(x)-Kirchhoff problem with singularity and critical exponent, Mediterr. J. Math., 20 (2023), 200. http://doi.org/10.1007/s00009-023-02314-4 doi: 10.1007/s00009-023-02314-4
    [5] Y. P. Zhang, D. D. Qin, Existence of solutions for a critical Choquard-Kirchhoff problem with variable exponents, J. Geom. Anal., 33 (2023), 200. http://doi.org/10.1007/s12220-023-01266-1 doi: 10.1007/s12220-023-01266-1
    [6] V. V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys., 3 (1995), 249–269.
    [7] V. Bögelein, F. Duzaar, P. Marcellini, Parabolic equations with p, q-growth, J. Math. Pures Appl., 100 (2013), 535–563. http://doi.org/10.1016/j.matpur.2013.01.012 doi: 10.1016/j.matpur.2013.01.012
    [8] V. V. Zhikov, On some variational problems, Russ. J. Math. Phys., 5 (1997), 105–116.
    [9] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izvestiya, 29 (1987), 33–66. https://doi.org/10.1070/im1987v029n01abeh000958 doi: 10.1070/im1987v029n01abeh000958
    [10] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differ. Equations, 90 (1991), 1–30. https://doi.org/10.1016/0022-0396(91)90158-6 doi: 10.1016/0022-0396(91)90158-6
    [11] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), 267–284. https://doi.org/10.1007/BF00251503 doi: 10.1007/BF00251503
    [12] P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal.-Theory Methods Appl., 121 (2015), 206–222. https://doi.org/10.1016/j.na.2014.11.001 doi: 10.1016/j.na.2014.11.001
    [13] M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215 (2015), 443–496. https://doi.org/10.1007/s00205-014-0785-2 doi: 10.1007/s00205-014-0785-2
    [14] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var., 57 (2018), 62. https://doi.org/10.1007/s00526-018-1332-z doi: 10.1007/s00526-018-1332-z
    [15] P. Baroni, M. Colombo, G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27 (2016), 347–379. https://doi.org/10.1090/spmj/1392 doi: 10.1090/spmj/1392
    [16] F. Colasuonno, M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl., 195 (2016), 1917–1959. https://doi.org/10.1007/s10231-015-0542-7 doi: 10.1007/s10231-015-0542-7
    [17] A. Azzollini, P. d'Avenia, A. Pomponio, Quasilinear elliptic equations in \mathbb{R}^N via variational methods and Orlicz-Sobolev embeddings, Calc. Var., 49 (2014), 197–213. https://doi.org/10.1007/s00526-012-0578-0 doi: 10.1007/s00526-012-0578-0
    [18] N. Chorfi, V. D. Rădulescu, Standing wave solutions of a quasilinear degenerate Schrödinger equation with unbounded potential, Electron. J. Qual. Theory Differ. Equ., 37 (2016), 1–12. https://doi.org/10.14232/ejqtde.2016.1.37 doi: 10.14232/ejqtde.2016.1.37
    [19] X. Y. Shi, V. D. Rădulescu, D. D. Repovš, Q. H. Zhang, Multiple solutions of double phase variational problems with variable exponent, Adv. Calc. Var., 13 (2020), 385–401. https://doi.org/10.1515/acv-2018-0003 doi: 10.1515/acv-2018-0003
    [20] J. J. Liu, P. Pucci, Existence of solutions for a double-phase variable exponent equation without the Ambrosetti-Rabinowitz condition, Adv. Nonlinear Anal., 12 (2023), 20220292. https://doi.org/10.1515/anona-2022-0292 doi: 10.1515/anona-2022-0292
    [21] B. Ge, D. J. Lv, J. F. Lu, Multiple solutions for a class of double phase problem without the Ambrosetti-Rabinowitz conditions, Nonlinear Anal.-Theory Methods Appl., 188 (2019), 294–315. https://doi.org/10.1016/j.na.2019.06.007 doi: 10.1016/j.na.2019.06.007
    [22] L. Gasiński, N. S. Papageorgiou, Constant sign and nodal solutions for superlinear double phase problems, Adv. Calc. Var., 14 (2021), 613–626. https://doi.org/10.1515/acv-2019-0040 doi: 10.1515/acv-2019-0040
    [23] W. L. Liu, G. W. Dai, Existence and multiplicity results for double phase problem, J. Differ. Equations, 265 (2018), 4311–4334. https://doi.org/10.1016/j.jde.2018.06.006 doi: 10.1016/j.jde.2018.06.006
    [24] L. Gasiński, P. Winkert, Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold, J. Differ. Equations, 274 (2021), 1037–1066. https://doi.org/10.1016/j.jde.2020.11.014 doi: 10.1016/j.jde.2020.11.014
    [25] I. H. Kim, Y. H. Kim, M. W. Oh, S. D. Zeng, Existence and multiplicity of solutions to concave-convex-type double-phase problems with variable exponent, Nonlinear Anal.-Real World Appl., 67 (2022), 103627. https://doi.org/10.1016/j.nonrwa.2022.103627 doi: 10.1016/j.nonrwa.2022.103627
    [26] S. D. Zeng, V. D. Rădulescu, P. Winkert, Double phase obstacle problems with variable exponent, Adv. Differential Equations, 27 (2022), 611–645. https://doi.org/10.57262/ade027-0910-611 doi: 10.57262/ade027-0910-611
    [27] Á. Crespo-Blanco, L. Gasiński, P. Harjulehto, P. Winkert, A new class of double phase variable exponent problems:existence and uniqueness, J. Differ. Equations, 323 (2022), 182–228. https://doi.org/10.1016/j.jde.2022.03.029 doi: 10.1016/j.jde.2022.03.029
    [28] F. Vetro, P. Winkert, Constant sign solutions for double phase problems with variable exponents, Appl. Math. Lett., 135 (2023), 108404. https://doi.org/10.1016/j.aml.2022.108404 doi: 10.1016/j.aml.2022.108404
    [29] K. Ho, P. Winkert, New embedding results for double phase problems with variable exponents and a priori bounds for corresponding generalized double phase problems, Calc. Var., 62 (2023), 227. https://doi.org/10.1007/s00526-023-02566-8 doi: 10.1007/s00526-023-02566-8
    [30] J. Zhang, W. Zhang, V. D. Rădulescu, Double phase problems with competing potentials: concentration and multiplication of ground states, Math. Z., 301 (2022), 4037–4078. https://doi.org/10.1007/s00209-022-03052-1 doi: 10.1007/s00209-022-03052-1
    [31] W. Zhang, J. Zhang, V. D. Rădulescu, Concentrating solutions for singularly perturbed double phase problems with nonlocal reaction, J. Differ. Equations, 347 (2023), 56–103. https://doi.org/10.1016/j.jde.2022.11.033 doi: 10.1016/j.jde.2022.11.033
    [32] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
    [33] A. Arosio, S. Panizzi, On the well-posedness of the kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305–330. https://doi.org/10.1090/S0002-9947-96-01532-2 doi: 10.1090/S0002-9947-96-01532-2
    [34] S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivées partielles, Bull. Acad. Sci. URSS. Sér. Math. [Izv. Akad. Nauk SSSR], 4 (1940), 17–26.
    [35] J. Yang, H. B. Chen, Existence of constant sign and nodal solutions for a class of (p, q)-Laplacian-Kirchhoff problems, J. Nonlinear Var. Anal., 7 (2023), 345–365. https://doi.org/10.23952/jnva.7.2023.3.02 doi: 10.23952/jnva.7.2023.3.02
    [36] X. Hu, Y. Y. Lan, Multiple solutions of Kirchhoff equations with a small perturbations, J. Nonlinear Funct. Anal., 2022 (2022), 1–11. https://doi.org/10.23952/jnfa.2022.19 doi: 10.23952/jnfa.2022.19
    [37] W. Chen, Z. W. Fu, Y. Wu, Positive solutions for nonlinear Schrödinger-Kirchhoff equations in \mathbb{R}^3, Appl. Math. Lett., 104 (2020), 106274. https://doi.org/10.1016/j.aml.2020.106274 doi: 10.1016/j.aml.2020.106274
    [38] G. Autuori, P. Pucci, M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Rational Mech. Anal., 196 (2010), 489–516. https://doi.org/10.1007/s00205-009-0241-x doi: 10.1007/s00205-009-0241-x
    [39] E. Azroul, A. Benkirane, M. Shimi, M. Srati, On a class of fractional p(x)-Kirchhoff type problems, Appl. Anal., 100 (2021), 383–402. https://doi.org/10.1080/00036811.2019.1603372 doi: 10.1080/00036811.2019.1603372
    [40] M. K. Hamdani, A. Harrabi, F. Mtiri, D. D. Repovš, Existence and multiplicity results for a new p(x)-Kirchhoff problem, Nonlinear Anal.-Theory Methods Appl., 190 (2020), 111598. https://doi.org/10.1016/j.na.2019.111598 doi: 10.1016/j.na.2019.111598
    [41] C. S. Chen, J. C. Huang, L. H. Liu, Multiple solutions to the nonhomogeneous p-Kirchhoff elliptic equation with concave-convex nonlinearities, Appl. Math. Lett., 26 (2013), 754–759. https://doi.org/10.1016/j.aml.2013.02.011 doi: 10.1016/j.aml.2013.02.011
    [42] Q. F. Zhang, H. Xie, Y. R. Jiang, Ground state solutions of Pohožaev type for Kirchhoff type problems with general convolution nonlinearity and variable potential, Math. Meth. Appl. Sci., 46 (2022), 11757–11779. https://doi.org/10.1002/mma.8559 doi: 10.1002/mma.8559
    [43] V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer, Berlin, 1994. https://doi.org/10.1007/978-3-642-84659-5
    [44] M. Chipot, J. F. Rodrigues, On a class of nonlocal nonlinear elliptic problems, ESAIM-M2AN, 26 (1992), 447–467. https://doi.org/10.1051/m2an/1992260304471 doi: 10.1051/m2an/1992260304471
    [45] M. Chipot, B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal.-Theory Methods Appl., 30 (1997), 4619–4627. https://doi.org/10.1016/S0362-546X(97)00169-7 doi: 10.1016/S0362-546X(97)00169-7
    [46] A. Fiscella, A. Pinamonti, Existence and multiplicity results for Kirchhoff type problems on a double phase setting, Mediterr. J. Math., 20 (2023), 33. https://doi.org/10.1007/s00009-022-02245-6 doi: 10.1007/s00009-022-02245-6
    [47] R. Arora, A. Fiscella, T. Mukherjee, P. Winkert, On double phase Kirchhoff problems with singular nonlinearity, Adv. Nonlinear Anal., 12 (2023), 20220312. https://doi.org/10.1515/anona-2022-0312 doi: 10.1515/anona-2022-0312
    [48] K. Ho, P. Winkert, Infinitely many solutions to Kirchhoff double phase problems with variable exponents, Appl. Math. Lett., 145 (2023), 108783. https://doi.org/10.1016/j.aml.2023.108783 doi: 10.1016/j.aml.2023.108783
    [49] Y. Cheng, Z. B. Bai, Existence and multiplicity results for parameter Kirchhoff double phase problem with Hardy-Sobolev exponents, J. Math. Phys., 65 (2024), 011506. https://doi.org/10.1063/5.0169972 doi: 10.1063/5.0169972
    [50] J. V. C. Sousa, Existence of nontrivial solutions to fractional Kirchhoff double phase problems, Comput. Appl. Math., 43 (2024), 93. https://doi.org/10.1007/s40314-024-02599-5 doi: 10.1007/s40314-024-02599-5
    [51] A. Fiscella, G. Marino, A. Pinamonti, S. Verzellesi, Multiple solutions for nonlinear boundary value problems of Kirchhoff type on a double phase setting, Rev. Mat. Complut., 37 (2024), 205–236. https://doi.org/10.1007/s13163-022-00453-y doi: 10.1007/s13163-022-00453-y
    [52] T. Isernia, D. D. Repovš, Nodal solutions for double phase Kirchhoff problems with vanishing potentials, Asymptotic Anal., 124 (2021), 371–396. https://doi.org/10.3233/ASY-201648 doi: 10.3233/ASY-201648
    [53] J. X. Cen, C. Vetro, S. D. Zeng, A multiplicity theorem for double phase degenerate Kirchhoff problems, Appl. Math. Lett., 146 (2023), 108803. https://doi.org/10.1016/j.aml.2023.108803 doi: 10.1016/j.aml.2023.108803
    [54] X. Y. Lin, X. H. Tang, Existence of infinitely many solutions for p-Laplacian equations in \mathbb{R}^N, Nonlinear Anal.-Theory Methods Appl., 92 (2013), 72–81. https://doi.org/10.1016/j.na.2013.06.011 doi: 10.1016/j.na.2013.06.011
    [55] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \mathbb{R}^N, Proc. R. Soc. Edinb. Sect. A-Math., 129 (1999), 787–809. https://doi.org/10.1017/S0308210500013147 doi: 10.1017/S0308210500013147
    [56] S. B. Liu, On ground states of superlinear p-Laplacian equations in \mathbb{R}^N, J. Math. Anal. Appl., 361 (2010), 48–58. https://doi.org/10.1016/j.jmaa.2009.09.016 doi: 10.1016/j.jmaa.2009.09.016
    [57] Z. Tan, F. Fang, On superlinear p(x)-Laplacian problems without Ambrosetti and Rabinowitz condition, Nonlinear Anal.-Theory Methods Appl., 75 (2012), 3902–3915. https://doi.org/10.1016/j.na.2012.02.010 doi: 10.1016/j.na.2012.02.010
    [58] J. M. Kim, Y. H. Kim, Multiple solutions to the double phase problems involving concave-convex nonlinearities, AIMS Math., 8 (2023), 5060–5079. https://doi.org/10.3934/math.2023254 doi: 10.3934/math.2023254
    [59] W. H. Xie, H. B. Chen, Existence and multiplicity of solutions for p(x)-Laplacian equations in \mathbb{R}^N, Math. Nachr., 291 (2018), 2476–2488. https://doi.org/10.1002/mana.201700059 doi: 10.1002/mana.201700059
    [60] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
    [61] X. H. Tang, S. T. Chen, X. Y. Lin, J. S. Yu, Ground state solutions of Nehari-Pankov type for Schrödinger equations with local super-quadratic conditions, J. Differ. Equations, 268 (2020), 4663–4690. https://doi.org/10.1016/j.jde.2019.10.041 doi: 10.1016/j.jde.2019.10.041
    [62] X. H. Tang, X. Y. Lin, J. S. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, J. Dyn. Diff. Equat., 31 (2019), 369–383. https://doi.org/10.1007/s10884-018-9662-2 doi: 10.1007/s10884-018-9662-2
    [63] S. T. Chen, X. H. Tang, Existence and multiplicity of solutions for Dirichlet problem of p(x)-Laplacian type without the Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 501 (2021), 123882. https://doi.org/10.1016/j.jmaa.2020.123882 doi: 10.1016/j.jmaa.2020.123882
    [64] Q. F. Zhang, C. L. Gan, T. Xiao, Z. Jia, Some results of nontrivial solutions for Klein-Gordon-Maxwell systems with local super-quadratic conditions, J. Geom. Anal., 31 (2021), 5372–5394. https://doi.org/10.1007/s12220-020-00483-2 doi: 10.1007/s12220-020-00483-2
    [65] B. H. Dong, Z. W. Fu, J. S. Xu, Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations, Sci. China-Math., 61 (2018), 1807–1824. https://doi.org/10.1007/s11425-017-9274-0 doi: 10.1007/s11425-017-9274-0
    [66] X. L. Fan, D. Zhao, On the spaces L^{p(x)}(\Omega) and W^{m, p(x)}(\Omega), J. Math. Anal. Appl., 263 (2001), 424–446. https://doi.org/10.1006/jmaa.2000.7617 doi: 10.1006/jmaa.2000.7617
    [67] J. F. Zhao, Structure theory of Banach spaces (in Chinese), Wuhan: Wuhan University Press, 1991.
    [68] X. L. Fan, Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal.-Theory Methods Appl., 52 (2003), 1843–1852. https://doi.org/10.1016/S0362-546X(02)00150-5 doi: 10.1016/S0362-546X(02)00150-5
    [69] C. O. Alves, S. B. Liu, On superlinear p(x)-Laplacian equations in \mathbb{R}^N, Nonlinear Anal.-Theory Methods Appl., 73 (2010), 2566–2579. https://doi.org/10.1016/j.na.2010.06.033 doi: 10.1016/j.na.2010.06.033
  • This article has been cited by:

    1. Saïd Abbas, Mouffak Benchohra, Juan J. Nieto, Caputo–Fabrizio fractional differential equations with non instantaneous impulses, 2021, 0009-725X, 10.1007/s12215-020-00591-6
    2. Zahir Shah, Rashid Jan, Poom Kumam, Wejdan Deebani, Meshal Shutaywi, Fractional Dynamics of HIV with Source Term for the Supply of New CD4+ T-Cells Depending on the Viral Load via Caputo–Fabrizio Derivative, 2021, 26, 1420-3049, 1806, 10.3390/molecules26061806
    3. Rajarama Mohan Jena, Snehashish Chakraverty, Dumitru Baleanu, Maysaa M. Alqurashi, New Aspects of ZZ Transform to Fractional Operators With Mittag-Leffler Kernel, 2020, 8, 2296-424X, 10.3389/fphy.2020.00352
    4. Fatima Si Bachir, Saïd Abbas, Maamar Benbachir, Mouffak Benchohra, Successive Approximations for Caputo-Fabrizio Fractional Differential Equations, 2022, 81, 1338-9750, 117, 10.2478/tmmp-2022-0009
    5. Zahir Shah, Ebenezer Bonyah, Ebraheem Alzahrani, Rashid Jan, Nasser Aedh Alreshidi, Mariya Gubareva, Chaotic Phenomena and Oscillations in Dynamical Behaviour of Financial System via Fractional Calculus, 2022, 2022, 1099-0526, 1, 10.1155/2022/8113760
    6. Saïd Abbas, Mouffak Benchohra, Juan J. Nieto, Caputo-Fabrizio fractional differential equations with instantaneous impulses, 2021, 6, 2473-6988, 2932, 10.3934/math.2021177
    7. Rashid Jan, Salah Boulaaras, Hussain Ahmad, Muhammad Jawad, Sulima Zubair, Mohamed Abdalla, A Robust Study of Tumor-Immune Cells Dynamics through Non-Integer Derivative, 2023, 7, 2504-3110, 164, 10.3390/fractalfract7020164
    8. Shorog Aljoudi, Existence and uniqueness results for coupled system of fractional differential equations with exponential kernel derivatives, 2022, 8, 2473-6988, 590, 10.3934/math.2023027
    9. Abdulrahman Obaid Alshammari, Imtiaz Ahmad, Rashid Jan, Sahar Ahmed Idris, Fractional-calculus analysis of the dynamics of \text {CD4}^{+} T cells and human immunodeficiency viruses, 2024, 1951-6355, 10.1140/epjs/s11734-024-01192-5
    10. Tao-Qian Tang, Rashid Jan, Hassan Ahmad, Zahir Shah, Narcisa Vrinceanu, Mihaela Racheriu, A Fractional Perspective on the Dynamics of HIV, Considering the Interaction of Viruses and Immune System with the Effect of Antiretroviral Therapy, 2023, 30, 1776-0852, 1327, 10.1007/s44198-023-00133-5
    11. Salah Boulaaras, Rashid Jan, Amin Khan, Ali Allahem, Imtiaz Ahmad, Salma Bahramand, Modeling the dynamical behavior of the interaction of T-cells and human immunodeficiency virus with saturated incidence, 2024, 76, 0253-6102, 035001, 10.1088/1572-9494/ad2368
    12. Bin Fan, Efficient numerical method for multi-term time-fractional diffusion equations with Caputo-Fabrizio derivatives, 2024, 9, 2473-6988, 7293, 10.3934/math.2024354
    13. Mubashara Wali, Sadia Arshad, Sayed M Eldin, Imran Siddique, Numerical approximation of Atangana-Baleanu Caputo derivative for space-time fractional diffusion equations, 2023, 8, 2473-6988, 15129, 10.3934/math.2023772
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1366) PDF downloads(109) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog