Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

Soliton solutions and a bi-Hamiltonian structure of the fifth-order nonlocal reverse-spacetime Sasa-Satsuma-type hierarchy via the Riemann-Hilbert approach

  • Our objective is to explore the intricacies of a nonlinear nonlocal fifth-order scalar Sasa-Satsuma equation in reverse spacetime which is rooted in a nonlocal 5×5 matrix AKNS spectral problem. Starting with this spectral problem, we derive both local and nonlocal symmetry relations through rotations within a defined group. We then formulate a specific type of Riemann-Hilbert problem, facilitating the generation of soliton solutions. These solutions are generated by utilizing vectors that reside in the kernel of the matrix Jost solutions. Under the condition where reflection coefficients are null, the jump matrix reduces to the identity, leading to soliton solutions via the corresponding Riemann-Hilbert problem. The explicit formulas of these soliton solutions enable a comprehensive exploration of their dynamics.

    Citation: Ahmed M. G. Ahmed, Alle Adjiri, Solomon Manukure. Soliton solutions and a bi-Hamiltonian structure of the fifth-order nonlocal reverse-spacetime Sasa-Satsuma-type hierarchy via the Riemann-Hilbert approach[J]. AIMS Mathematics, 2024, 9(9): 23234-23267. doi: 10.3934/math.20241130

    Related Papers:

    [1] Kedong Wang, Xianguo Geng, Mingming Chen, Ruomeng Li . Long-time asymptotics for the generalized Sasa-Satsuma equation. AIMS Mathematics, 2020, 5(6): 7413-7437. doi: 10.3934/math.2020475
    [2] Wen-Xin Zhang, Yaqing Liu . Solitary wave solutions and integrability for generalized nonlocal complex modified Korteweg-de Vries (cmKdV) equations. AIMS Mathematics, 2021, 6(10): 11046-11075. doi: 10.3934/math.2021641
    [3] Jinfang Li, Chunjiang Wang, Li Zhang, Jian Zhang . Multi-solitons in the model of an inhomogeneous optical fiber. AIMS Mathematics, 2024, 9(12): 35645-35654. doi: 10.3934/math.20241691
    [4] Mohd. Danish Siddiqi, Fatemah Mofarreh . Hyperbolic Ricci soliton and gradient hyperbolic Ricci soliton on relativistic prefect fluid spacetime. AIMS Mathematics, 2024, 9(8): 21628-21640. doi: 10.3934/math.20241051
    [5] Zh. Myrzakulova, Z. Zakariyeva, K. Suleimenov, U. Uralbekova, K. Yesmakhanova . Explicit solutions of nonlocal reverse-time Hirota-Maxwell-Bloch system. AIMS Mathematics, 2024, 9(12): 35004-35015. doi: 10.3934/math.20241666
    [6] Yanlin Li, Mohd Danish Siddiqi, Meraj Ali Khan, Ibrahim Al-Dayel, Maged Zakaria Youssef . Solitonic effect on relativistic string cloud spacetime attached with strange quark matter. AIMS Mathematics, 2024, 9(6): 14487-14503. doi: 10.3934/math.2024704
    [7] Shahroud Azami, Mehdi Jafari, Nargis Jamal, Abdul Haseeb . Hyperbolic Ricci solitons on perfect fluid spacetimes. AIMS Mathematics, 2024, 9(7): 18929-18943. doi: 10.3934/math.2024921
    [8] Hussain Gissy, Abdullah Ali H. Ahmadini, Ali H. Hakami . The solitary wave phenomena of the fractional Calogero-Bogoyavlenskii-Schiff equation. AIMS Mathematics, 2025, 10(1): 420-437. doi: 10.3934/math.2025020
    [9] Shahroud Azami, Rawan Bossly, Abdul Haseeb . Riemann solitons on Egorov and Cahen-Wallach symmetric spaces. AIMS Mathematics, 2025, 10(1): 1882-1899. doi: 10.3934/math.2025087
    [10] Chun-Ku Kuo, Dipankar Kumar, Chieh-Ju Juan . A study of resonance Y-type multi-soliton solutions and soliton molecules for new (2+1)-dimensional nonlinear wave equations. AIMS Mathematics, 2022, 7(12): 20740-20751. doi: 10.3934/math.20221136
  • Our objective is to explore the intricacies of a nonlinear nonlocal fifth-order scalar Sasa-Satsuma equation in reverse spacetime which is rooted in a nonlocal 5×5 matrix AKNS spectral problem. Starting with this spectral problem, we derive both local and nonlocal symmetry relations through rotations within a defined group. We then formulate a specific type of Riemann-Hilbert problem, facilitating the generation of soliton solutions. These solutions are generated by utilizing vectors that reside in the kernel of the matrix Jost solutions. Under the condition where reflection coefficients are null, the jump matrix reduces to the identity, leading to soliton solutions via the corresponding Riemann-Hilbert problem. The explicit formulas of these soliton solutions enable a comprehensive exploration of their dynamics.



    The exploration of integrable systems remains a captivating realm within mathematics, fascinating the interest of both mathematicians and physicists. These systems and their inherent properties serve as powerful tools for predicting a wide array of natural phenomena. They are prevalent in various fields such as nonlinear optics, plasma physics, the dynamics of ocean and water waves, gravitational fields, and fluid dynamics [1,2].

    The Korteweg-de Vries (KdV) equation, the nonlinear Schrödinger (NLS) equation, and the Kadomtsev-Petviashvili (KP) equation stand as quintessential instances of integrable systems. Within integrable systems, a diverse range of soliton solutions emerges, including breathers, lumps, and rogue waves.

    Soliton solutions are a kind of special solutions that are stable localized waves. Nonlocal PT symmetric reverse-spacetime, reverse-time, and reverse-space have been studied for the NLS and KdV equations under the inverse scattering transformation and the Riemann-Hilbert problem.

    Soliton solutions are unique, stable waveforms that remain localized. Researchers have explored nonlocal PT symmetric phenomena, including reverse-spacetime, reverse-time, and reverse-space, particularly for the NLS and KdV equations through the inverse scattering transformation and Riemann-Hilbert problem [3,4,5,6,7,8]. The Riemann-Hilbert approach offers a compelling method for examining and discovering new instances of nonlocal integrable equations and their soliton solutions [9,10,11]. In this paper, we introduce the following novel nonlocal fifth-order Sasa-Satsuma equation characterized by reverse-spacetime symmetry [12,13]:

    u(t=u(xxxxx10(|u(|2+|u((x,t)|2)u(xxx15(|u(|2+|u((x,t)|2)xu(xx+[15(|u(|2+|u((x,t)|2)xx+10(|u(x|2+|u(x(x,t)|2)+40(|u(|2+|u((x,t)|2)2]u(x+[5(|u(|2+|u((x,t)|2)xxx+5(|u(x|2+|u(x(x,t)|2)x+20((|u(|2+|u((x,t)|2)2)x]u(. (1.1)

    We establish a type of Riemann-Hilbert problem for the aforementioned integrable nonlocal Sasa-Satsuma equation, using the real line as the contour. By solving these Riemann-Hilbert problems with an identity jump matrix, we obtain soliton solutions to the integrable nonlocal Sasa-Satsuma equation (see, e.g., [14,15,16,17,18,19,20,21]).

    The paper is organized as follows: In Section 2, we develop a nonlocal Sasa-Satsuma hierarchy associated with a nonlocal 5×5 matrix AKNS spectral problem and its Hamiltonian structure. In Section 3, we address the formulation of Riemann-Hilbert problems based on the corresponding matrix spectral problems. In Section 4, we derive soliton solutions by setting the reflection coefficients to zero [22,23,24]. In Section 5, we provide explicit and exact single soliton solutions, classify the various cases for explicit two soliton solutions, and examine their dynamic behaviors. We offer a brief conclusion and some remarks in the final section.

    We consider the nonlocal 5×5 matrix AKNS spatial spectral problem [15]

    ψx=iUψ, (2.1)

    where ψ is the eigenfunction and the spectral matrix U(u(;λ) is given by

    U(u;λ)=U(x,t;λ)=(α1λu(u((x,t)u(u((x,t)u(α2λ000u((x,t)0α2λ00u(00α2λ0u((x,t)000α2λ)=λΛ+P(u(), (2.2)

    where Λ=diag(α1,α2I4), λ is a nonzero spectral parameter, α1,α2 are two distinct real constants, and u(=u((x,t) is the potential. We assume that u( and xu( belong to the L2 space and

    P=P(x,t)=(0u(u((x,t)u(u((x,t)u(0000u((x,t)0000u(0000u((x,t)0000). (2.3)

    Remark 2.1. One can see that the matrix U has the following simultaneous symmetry relations:

    {U(x,t;λ()=C0UC10=U,U(x,t;λ()=C4UC14,UT(x,t;λ()=C1UC11,UT(x,t;λ()=C5UC15,U(x,t;λ()=C2UC12,U(x,t;λ()=C6UC16,U((x,t;λ()=C3UC13,U((x,t;λ()=C7UC17, (2.4)

    where the eight 5×5 matrices are

    Ci=(1014041σi),i{0,,7}, (2.5)

    with 014, 041 being the four-component zero row and column vectors respectively, and σi are

    σ0=(1000010000100001),σ1=(0010000110000100),σ2=(0100100000010010),σ3=(0001001001001000), (2.6)

    and

    σ4=σ0,σ5=σ1,σ6=σ2,σ7=σ3. (2.7)

    Note that all Ci are symmetric and orthogonal matrices, i.e., Ci=CTi and C2i=I2, for i{0,,7}. In fact, they form an orthogonal group, G={C0,C1,C2,C3,C4,C5,C6,C7} that has two connected components. The first component G1 of all matrices where det(Ci)=1 for i{0,1,2,3}, that is, the normal subgroup component G1={C0,C1,C2,C3}. The second component is G2={C4,C5,C6,C7}, where det(Ci)=1 for i{4,5,6,7}.

    In this paper, we will consider all reductions generated by the matrices in the rotation group G1.

    In addition, since U=λΛ+P, then we can easily prove that

    {P=P,PT=C1PC11,P(x,t)=C2PC12,P((x,t)=C3PC13. (2.8)

    We start by constructing the associated Sasa-Satsuma soliton hierarchy. To achieve this, we must solve the stationary zero curvature equation.

    Wx=i[U,W], (2.9)

    for

    W=(ab1b2b3b4c1d11d12d13d14c2d21d22d23d24c3d31d32d33d34c4d41d42d43d44), (2.10)

    with the scalar components a,bi,ci,dij for i,j{1,2,3,4}. Solving the stationary zero curvature equation yields:

    a(x=i[u(b(1+u((x)b(2+u(b(3+u((x)b(4+u(c(1+u((x)c(2+u(c(3+u((x)c(4], (2.11)
    b(1,x=i[αλb(1u(a(+u(d(11+u((x)d(21+u(d(31+u((x)d(41], (2.12)
    b(2,x=i[αλb(2u((x)a(+u(d(12+u((x)d(22+u(d(32+u((x)d(42], (2.13)
    b(3,x=i[αλb(3u(a(+u(d(13+u((x)d(23+u(d(33+u((x)d(43], (2.14)
    b(4,x=i[αλb(4u((x)a(+u(d(14+u((x)d(24+u(d(34+u((x)d(44], (2.15)
    c(1,x=i[αλc(1u(a(+u(d(11+u((x)d(12+u(d(13+u((x)d(14], (2.16)
    c(2,x=i[αλc(2u((x)a(+u(d(21+u((x)d(22+u(d(23+u((x)d(24], (2.17)
    c(3,x=i[αλc(3u(a(+u(d(31+u((x)d(32+u(d(33+u((x)d(34], (2.18)
    c(4,x=i[αλc(4u((x)a(+u(d(41+u((x)d(42+u(d(43+u((x)d(44], (2.19)
    d(11,x=i[u(b(1+u(c(1],d(12,x=i[u(b(2+u((x)c(1], (2.20)
    d(21,x=i[u((x)b(1+u(c(2],d(22,x=i[u((x)b(2+u((x)c(2], (2.21)
    d(31,x=i[u(b(1+u(c(3],d(32,x=i[u(b(2+u((x)c(3], (2.22)
    d(41,x=i[u((x)b(1+u(c(4],d(42,x=i[u((x)b(2+u((x)c(4], (2.23)
    d(13,x=i[u(b(3+u(c(1],d(14,x=i[u(b(4+u((x)c(1], (2.24)
    d(23,x=i[u((x)b(3+u(c(2],d(24,x=i[u((x)b(4+u((x)c(2], (2.25)
    d(33,x=i[u(b(3+u(c(3],d(34,x=i[u(b(4+u((x)c(3], (2.26)
    d(43,x=i[u((x)b(3+u(c(4],d(44,x=i[u((x)b(4+u((x)c(4], (2.27)

    where α=α1α2. Now, we expand W in Laurent series, explicitly expressing the components of W as follows:

    a(=a((x,t;λ()=m=0a([m]λm,d(ii=d(ii(x,t;λ()=m=0d([m]iiλm,i{1,2,3,4},b(i=b(i(x,t;λ()=m=0b([m]iλm,i{1,,4},c(i=c(i(x,t;λ()=m=0c([m]iλm,i{1,,4},

    so W can be rewritten in the following form:

    W=W(x,t;λ()=m=0WmλmwithWm=(a([m]b([m]1b([m]2b([m]3b([m]4c([m]1d([m]11d([m]12d([m]13d([m]14c([m]2d([m]21d([m]22d([m]23d([m]24c([m]3d([m]31d([m]32d([m]33d([m]34c([m]4d([m]41d([m]42d([m]43d([m]44),m0. (2.28)

    As a consquence, the system (2.11)–(2.27) generates the recursive relations:

    b([0]i=c([0]i=0,i{1,,4}, (2.29)
    a([m]x=i[u(b([m]1+u((x)b([m]2+u(b([m]3+u((x)b([m]4+u(c([m]1+u((x)c([m]2+u(c([m]3+u((x)c([m]4], (2.30)
    b([m+1]1=1α[ib([m]1,x+u(a([m]u(d([m]11u((x)d([m]21u(d([m]31u((x)d([m]41], (2.31)
    b([m+1]2=1α[ib([m]2,x+u((x)a([m]u(d([m]12u((x)d([m]22u(d([m]32u((x)d([m]42], (2.32)
    b([m+1]3=1α[ib([m]3,x+u(a([m]u(d([m]13u((x)d([m]23u(d([m]33u((x)d([m]43], (2.33)
    b([m+1]4=1α[ib([m]4,x+u((x)a([m]u(d([m]14u((x)d([m]24u(d([m]34u((x)d([m]44], (2.34)
    c([m+1]1=1α[ic([m]1,xu(a([m]+u(d([m]11+u((x)d([m]12+u(d([m]13+u((x)d([m]14], (2.35)
    c([m+1]2=1α[ic([m]2,xu((x)a([m]+u(d([m]21+u((x)d([m]22+u(d([m]23+u((x)d([m]24], (2.36)
    c([m+1]3=1α[ic([m]3,xu(a([m]+u(d([m]31+u((x)d([m]32+u(d([m]33+u((x)d([m]34], (2.37)
    c([m+1]4=1α[ic([m]4,xu((x)a([m]+u(d([m]41+u((x)d([m]42+u(d([m]43+u((x)d([m]44], (2.38)
    d([m]11,x=i[u(b([m]1+u(c([m]1],d([m]12,x=i[u(b([m]2+u((x)c([m]1], (2.39)
    d([m]21,x=i[u((x)b([m]1+u(c([m]2],d([m]22,x=i[u((x)b([m]2+u((x)c([m]2], (2.40)
    d([m]31,x=i[u(b([m]1+u(c([m]3],d([m]32,x=i[u(b([m]2+u((x)c([m]3], (2.41)
    d([m]41,x=i[u((x)b([m]1+u(c([m]4],d([m]42,x=i[u((x)b([m]2+u((x)c([m]4], (2.42)
    d([m]13,x=i[u(b([m]3+u(c([m]1],d([m]14,x=i[u(b([m]4+u((x)c([m]1], (2.43)
    d([m]23,x=i[u((x)b([m]3+u(c([m]2],d([m]24,x=i[u((x)b([m]4+u((x)c([m]2], (2.44)
    d([m]33,x=i[u(b([m]3+u(c([m]3],d([m]34,x=i[u(b([m]4+u((x)c([m]3], (2.45)
    d([m]43,x=i[u((x)b([m]3+u(c([m]4],d([m]44,x=i[u((x)b([m]4+u((x)c([m]4]. (2.46)

    The first few functions involved can be explicitly determined as follows:

    {a([0]=β1,a([1]=0,a([2]=2βα2(|u(|2+|u((x,t)|2),a([3]=0,a([4]=βα4[12(|u(|2+|u((x,t)|2)2+6(|u(x|2+|u(x(x,t)|2)2(|u(|2+|u((x,t)|2)xx],a([5]=0,a([6]=βα6[80(|u(|2+|u((x,t)|2)3+80(|u(|2+|u((x,t)|2)((|u(x|2+|u(x(x,t)|2)40(|u(|2+|u((x,t)|2)(|u(|2+|u((x,t)|2)xx+10(|u(xx|2+|u(xx(x,t)|2)+2(|u(|2+|u((x,t)|2)xxxx10((|u(|2+|u((x,t)|2)x)210(|u(x|2+|u(x(x,t)|2)xx], (2.47)
    {b([0]1=0,b([1]1=βαu(,b([2]1=iβα2u(x,b([3]1=βα3[u(xx4(|u(|2+|u((x,t)|2)u(],b([4]1=iβα4[u(xxx6(|u(|2+|u((x,t)|2)u(x3(|u(|2+|u((x,t)|2)xu(],b([5]1=βα5[u(xxxx8((|u(|2+|u((x,t)|2)u(x)x+(24(|u(|2+|u((x,t)|2)2+8(|u(x|2+|u(x(x,t)|2)6(|u(|2+|u((x,t)|2)xx)u(,b([6]1=iβα6[u(xxxxx10(|u(|2+|u((x,t)|2)u(xxx15(|u(|2+|u((x,t)|2)xu(xx+[40(|u(|2+|u((x,t)|2)2+10(|u(x|2+|u(x(x,t)|2)15(|u(|2+|u((x,t)|2)xx]u(x+[20((|u(|2+|u((x,t)|2)2)x+5(|u(x|2+|u(x(x,t)|2)x5(|u(|2+|u((x,t)|2)xxx]u(], (2.48)
    {d([0]11=β2,d([1]11=0,d([2]11=βα2|u(|2,d([3]11=2βα3Im(u(u(x),d([4]11=βα4[6(|u(|2+|u((x,t)|2)|u(|2+3|u(x|2(|u(|2)xx],d([5]11=βα5[16(|u(|2+|u((x,t)|2)Im(u(u(x)+2Im(u(xxxu(u(xu(xx)],d([6]11=βα6[(10(|u(|2+|u((x,t)|2)xx10(|u(x|2+|u(x(x,t)|2)40(|u(|2+|u((x,t)|2)2)|u(|2+5(|u(|2+|u((x,t)|2)x(|u(|2)x+10(|u(|2+|u((x,t)|2)((|u(|2)xx3|u(x|2)(|u(|2)xxxx+5(|u(x|2)xx5|u(xx|2], (2.49)
    {d([0]21=0,d([1]21=0,d([2]21=βα2u(u((x,t),d([3]21=iβα3(u((x,t)u(x+u(x(x,t)u(),d([4]21=βα4[6(|u(|2+|u((x,t)|2)u(u((x,t)3u(xu(x(x,t)(u(u((x,t))xx],d([5]21=iβα5[8(|u(|2+|u((x,t)|2)(u(u(x(x,t)+u(xu((x,t))(u(u(x(x,t)+u(xu((x,t))xx2(u(xu(xx(x,t)+u(xxu(x(x,t))],d([6]21=βα6[(10(|u(|2+|u((x,t)|2)xx10(|u(x|2+|u(x(x,t)|2)40(|u(|2+|u((x,t)|2)2)u(u((x,t)+5(|u(|2+|u((x,t)|2)x(u(u((x,t))x+10(|u(|2+|u((x,t)|2)((u(u((x,t))xx+3u(xu(x(x,t))(u(u((x,t))xxxx5(u(xu(x(x,t))xx5u(xxu(xx(x,t)], (2.50)
    {d([0]31=0,d([1]31=0,d([2]31=βα2u(2,d([3]31=0,d([4]31=βα4[6(|u(|2+|u((x,t)|2)u(2+3u(2x(u(2)xx],d([5]31=0,d([6]31=βα6[(10(|u(|2+|u((x,t)|2)xx10(|u(x|2+|u(x(x,t)|2)40(|u(|2+|u((x,t)|2)2)u(2+5(|u(|2+|u((x,t)|2)x(u(2)x+10(|u(|2+|u((x,t)|2)((u(2)xx3u(2x)(u(2)xxxx+5(u(2x)xx5u(2xx], (2.51)
    {d([0]41=0,d([1]41=0,d([2]41=βα2u(u((x,t),d([3]41=iβα3(u(xu((x,t)+u(u(x(x,t)),d([4]41=βα4[6(|u(|2+|u((x,t)|2)u(u((x,t)+3u(xu(x(x,t)+(u(u((x,t))xx],d([5]41=iβα5[8(|u(|2+|u((x,t)|2)(u(u(x(x,t)+u(xu((x,t))(u(u(x(x,t)+u(xu((x,t))xx2(u(xu(xx(x,t)+u(xxu(x(x,t))],d([6]41=βα6[(10(|u(|2+|u((x,t)|2)xx10(|u(x|2+|u(x(x,t)|2)40(|u(|2+|u((x,t)|2)2)u(u((x,t)+5(|u(|2+|u((x,t)|2)x(u(u((x,t))x+10(|u(|2+|u((x,t)|2)((u(u((x,t))xx+3u(xu(x(x,t))(u(u((x,t))xxxx5(u(xu(x(x,t))xx5u(xxu(xx(x,t)], (2.52)

    where β=β1β2.

    Remark 2.2. Under the symmetry relations (2.8), one can show that W satisfies the equations:

    {W(x,t;λ()=W,WT(x,t;λ()=C1WC11,W(x,t;λ()=C2WC12,W((x,t;λ()=C3WC13, (2.53)

    for a solution W to the stationary zero curvature equation. Using the Laurent expansion (2.28) of W, we get the relations:

    a([m]=(1)m+1a([m], (2.54)
    b([m]1=(1)m+1c([m]1,b([m]2=(1)m+1c([m]2, (2.55)
    b([m]3=(1)m+1c([m]3,b([m]4=(1)m+1c([m]4, (2.56)
    d([m]11=(1)m+1d([m]11,d([m]21=(1)m+1d([m]12, (2.57)
    d([m]31=(1)m+1d([m]13,d([m]41=(1)m+1d([m]14, (2.58)
    d([m]22=(1)m+1d([m]22,d([m]32=(1)m+1d([m]23, (2.59)
    d([m]42=(1)m+1d([m]24,d([m]33=(1)m+1d([m]33, (2.60)
    d([m]43=(1)m+1d([m]34,d([m]44=(1)m+1d([m]44, (2.61)
    a([m]=(1)ma([m], (2.62)
    b([m]1=(1)mc([m]3,b([m]2=(1)mc([m]4, (2.63)
    b([m]3=(1)mc([m]1,b([m]4=(1)mc([m]2, (2.64)
    d([m]11=(1)md([m]33,d([m]21=(1)md([m]34, (2.65)
    d([m]31=(1)md([m]31,d([m]41=(1)md([m]32, (2.66)
    d([m]12=(1)md([m]43,d([m]22=(1)md([m]44, (2.67)
    d([m]42=(1)md([m]42,d([m]13=(1)md([m]13, (2.68)
    d([m]23=(1)md([m]14,d([m]24=(1)md([m]24, (2.69)

    and

    a([m](x,t)=(1)ma([m], (2.70)
    b([m]1(x,t)=(1)mc([m]2,b([m]2(x,t)=(1)mc([m]1, (2.71)
    b([m]3(x,t)=(1)mc([m]4,b([m]4(x,t)=(1)mc([m]3, (2.72)
    d([m]11(x,t)=(1)md([m]22,d([m]21(x,t)=(1)md([m]21, (2.73)
    d([m]31(x,t)=(1)md([m]24,d([m]41(x,t)=(1)md([m]23, (2.74)
    d([m]12(x,t)=(1)md([m]12,d([m]32(x,t)=(1)md([m]14, (2.75)
    d([m]42(x,t)=(1)md([m]13,d([m]33(x,t)=(1)md([m]44, (2.76)
    d([m]43(x,t)=(1)md([m]43,d([m]34(x,t)=(1)md([m]34, (2.77)

    and finally

    a([m]=a([m](x,t), (2.78)
    b([m]1=b([m]4(x,t),b([m]2=b([m]3(x,t), (2.79)
    c([m]1=c([m]4(x,t),c([m]2=c([m]3(x,t), (2.80)
    d([m]11=d([m]44(x,t),d([m]12=d([m]43(x,t), (2.81)
    d([m]13=d([m]42(x,t),d([m]14=d([m]41(x,t), (2.82)
    d([m]21=d([m]34(x,t),d([m]22=d([m]33(x,t), (2.83)
    d([m]23=d([m]32(x,t),d([m]24=d([m]31(x,t). (2.84)

    One can easily relate all the members of the set S1={b([m]1,b([m]2,b([m]3,b([m]4,c([m]1,c([m]2,c([m]3,c([m]4} directly from the above four sets of relations. Similarly, the members within each of the following sets: S2={d([m]11,d([m]22,d([m]33,d([m]44}, S3={d([m]21,d([m]34,d([m]12,d([m]43}, S4={d([m]31,d([m]24,d([m]13,d([m]42} and S5={d([m]41,d([m]23,d([m]32,d([m]14} are related to each other. As a consequence, any member in the set S1 can be expressed in terms of the independents {a([m],d([m]11,d([m]21,d([m]31,d([m]41}.

    We present the following Lax matrix:

    V[m](u(;λ)=(λmW)+=mi=0Wiλmi=mi=0(a([i]λ(mib([i]1λ(mib([i]2λ(mib([i]3λ(mib([i]4λ(mic([i]1λ(mid([i]11λ(mid([i]12λ(mid([i]13λ(mid([i]14λ(mic([i]2λ(mid([i]21λ(mid([i]22λ(mid([i]23λ(mid([i]24λ(mic([i]3λ(mid([i]31λ(mid([i]32λ(mid([i]33λ(mid([i]34λ(mic([i]4λ(mid([i]41λ(mid([i]42λ(mid([i]43λ(mid([i]44λ(mi),

    where the modification terms are set to zero. Consequently, we obtain the spatial and temporal equations of the spectral problems [15], along with the corresponding Lax pair {U,V[m]}:

    ψx=iUψ, (2.85)
    ψt=iV[m]ψ. (2.86)

    The compatibility conditions arising from Eqs (2.85) and (2.86) lead to the subsequent zero curvature equations:

    ZCE:=UtmV[m]x+i[U,V[m]]=0. (2.87)

    The comptabiltiy of the second component in the first row and the fourth component of the first column of ZCE, namely (ZCE)12 and (ZCE)41 lead to the scalar Sasa-Satsuma integrable hierarchy:

    u(tm={iαb([m+1]1,m=odd,0,m=even,m0. (2.88)

    Obtaining a hierarchy that only generates mKdV-type equations, but not NLS-type equations. More specifically, the hierarchy here gives Sasa-Satsuma-type equations due to the initial choice of the matrix U(u;λ(). Thus,

    u(tm=iαb([m+1]1,m=odd. (2.89)

    For example, the case of m=3 leads to the nonlocal reverse-spacetime Sasa-Satsuma equation [20]:

    u(t+βα3[u(xxx6(|u(|2+|u((x,t)|2)u(x3(|u(|2+|u((x,t)|2)xu(]=0. (2.90)

    This soliton hierarchy possesses a bi-Hamiltonian structure

    u(tm=iαb([2m]1=J1δH2m1δu(=J2δH2m3δu(,m{2,3,}, (2.91)

    where H2m3 are the Hamiltonian functionals and J1 and J2 are a Hamiltonian pair.

    We derive from the recursive relations (2.30)–(2.46) and the relations (2.54)–(2.84), the following recursive formula between b([m+1]1 and b([m]1:

    b([m+1]1=Ψb([m]1, (2.92)

    where the recursion operator Ψ reads:

    Ψ=iα[+((2+(1)m)u(1u(+u((x)1u((x)+(1+(1)m)u(1u(+u((x)1u((x))Γ(++((2(1)m+11)u(1u()Γ(++(((1)m+11)u(1u((x)+(1)m+1u((x)1u()Γ(+(((1)m+1)u(1u((x)+(1)mu((x)1u()Γ(], (2.93)

    and where the operators Γ(±,Γ(± are defined by

    Γ(f=f(x,t), (2.94)
    Γ(+f=f, (2.95)
    Γ(f=f(x,t), (2.96)

    for f=f(x,t), and Γ(+ being the identity operator, i.e., Γ(+f=Id(f)=f.

    To derive the one-component nonlocal Sasa-Satsuma equation, we consider the Lax matrix

    V[5]=V[5](u(;λ()=(λ(5W)+. (2.97)

    The spatial and temporal equations of the spectral problems defined by Eqs (2.85) and (2.86), along with the associated Lax pair {U,V[5]}, are as follows:

    ψx=iUψ, (2.98)
    ψt=iV[5]ψ, (2.99)

    with the zero curvature equation

    UtV[5]x+i[U,V[5]]=0, (2.100)

    that gives the scalar Sasa-Satsuma equation

    u(t=iαb([6]1. (2.101)

    Explicitly,

    u(t=u(xxxxx10(|u(|2+|u((x,t)|2)u(xxx15(|u(|2+|u((x,t)|2)xu(xx+[15(|u(|2+|u((x,t)|2)xx+10(|u(x|2+|u(x(x,t)|2)+40(|u(|2+|u((x,t)|2)2]u(x+[5(|u(|2+|u((x,t)|2)xxx+5(|u(x|2+|u(x(x,t)|2)x+20((|u(|2+|u((x,t)|2)2)x]u(, (2.102)

    and

    V[5]=V[5](x,t;λ()=(Vij)5×5,i,j{1,,5}, (2.103)

    where the components are explicitly

    V11=2i=0λ(52ia([2i],V12=5i=0λ([5i]b([i]1,V13=5i=0λ(5iΓ(b([i]1,V21=5i=0(1)i+1λ(5iΓ(+b([i]1,V22=5i=0λ(5id([i]11,V23=5i=0(1)i+1λ(5iΓ(+d([i]21,V31=5i=0(1)iλ(5iΓ(b([i]1,V32=5i=0λ(5id([i]21,V33=5i=0(1)iλ(5iΓ(d([i]11,V41=5i=0(1)iλ(5ib([i]1,V42=2i=0λ(52id([2i]31,V43=5i=0λ(5iΓ(d([i]41,V51=5i=0(1)i+1λ(5iΓ(b([i]1,V52=5i=0λ(5id([i]41,V53=2i=0λ(52iΓ(d([2i]31,
    V14=5i=0λ(5iΓ(+b([i]1,V15=5i=0λ(5iΓ(b([i]1,V24=2i=0(1)2i+1λ(52iΓ(+d([2i]31,V25=5i=0(1)i+1λ(5iΓ(+d([i]41,V34=5i=0λ(5iΓ(+d([i]41,V35=2i=0(1)2iλ(52iΓ(d([2i]31,V44=5i=0(1)iλ(5id([i]11,V45=5i=0λ(5iΓ(d([i]21,V54=5i=0λ(5iΓ(+d([i]21,V55=5i=0λ(5iΓ(d([i]11.

    The matrix V[5] exhibits the properties of symmetry:

    {V[5](x,t;λ()=V[5],V[5]T(x,t;λ()=C1V[5]C11,V[5](x,t;λ()=C2V[5]C12,V([5](x,t;λ()=C3V[5]C13. (2.104)

    We start to find a bi-Hamiltonian structures of the soliton hierarchy (2.89). To do so, we are going to use the trace identity

    δδu(tr[WUλ]dx=λγλ[λγtr(WUu()], (2.105)

    where

    γ=λ2ddλln|tr(W2)|. (2.106)

    Thus, from the matrix U, one can easily compute Uu( to obtain

    tr[WUλ]=m=0(α1a([m]+α2((1)m+1)(Γ(++Γ()d([m]11)λ(m,tr[WUu(]=m=0((1)m+1+1)Γ(+b([m]1λ(m.

    By substituting these in the trace identity formula (2.105), and matching the powers of λm1, we get

    δδu((α1a([m+1]+α2((1)m+1+1)(Γ(++Γ()d([m+1]11)dx=(γm)((1)m+1+1)Γ(+b([m]1,m1. (2.107)

    Observing when m=1 and m=3, we see that γ=2m. Hence, the Hamiltonians are given by

    Hm=1m(α1a([m+1]+α2((1)m+1+1)(Γ(++Γ()d([m+1]11)dx,m1, (2.108)
    ={1m(α1a([m+1]+2α2(Γ(++Γ()d([m+1]11)dx,m=odd,0,m=even, (2.109)
    ={αma([m+1]dx,m=odd,0,m=even, (2.110)

    since a([m+1]=((1)m+1+1)(Γ(++Γ()d([m+1]11 from (2.30), (2.39), (2.40) and finally (2.45) and (2.46). Also, we have

    δH2m1δu(=2Γ(+b([2m1]1,m{1,3,}. (2.111)

    Now since

    u(tm=iαb([2m]1=J1δH2m1δu(=J12Γ(+b([2m1]1 (2.112)
    =J2δH2m3δu(=J22Γ(+b([2m3]1,form{2,3,}, (2.113)

    where Γ(±(cΓ(±f)=c(f, and c is any complex number, therefore, we deduce the Hamiltonian pair J1 and J2 as follows:

    J1=iα2ΨoΓ(+ (2.114)

    and

    J2=J1Γ(+ΨeΨoΓ(+, (2.115)

    where Ψo=Ψ|m=odd and Ψe=Ψ|m=even. Using the matrix U, we can find the first three Hamiltonian functionals:

    H1=2βα(|u(|2+|u((x,t)|2)dx, (2.116)
    H3=2β3α3[6(|u(|2+|u((x,t)|2)2+3(|u(x|2+|u(x(x,t)|2)(|u(|2+|u((x,t)|2)xx]dx, (2.117)
    H5=β5α5[80(|u(|2+|u((x,t)|2)3+80(|u(|2+|u((x,t)|2)((|u(x|2+|u(x(x,t)|2)40(|u(|2+|u((x,t)|2)(|u(|2+|u((x,t)|2)xx+10(|u(xx|2+|u(xx(x,t)|2)+2(|u(|2+|u((x,t)|2)xxxx10((|u(|2+|u((x,t)|2)x)210(|u(x|2+|u(x(x,t)|2)xx]dx. (2.118)

    The spatial and temporal spectral problems associated with the two-component nonlocal Sasa-Satsuma equation are expressed as

    ψx=iUψ=i(λΛ+P)ψ, (3.1)
    ψt=iV[5]ψ=i(λ5Ω+Q)ψ, (3.2)

    where Λ=diag(α1,α2I4), Ω=diag(β1,β2I4), and Q=V[5]λ(5Ω. In this paper, we consistently assume that α<0 and β<0, where β1+4β2=0.

    To obtain soliton solutions, we start with an initial condition u((x,0) and evolve it over time to reach u((x,t). Assume that u( decays exponentially, i.e., u(0 as x,t±. Hence, based on spectral problems (3.1) and (3.2), the asymptotic behavior of the fundamental matrix ψ can be described as follows:

    ψ(x,t)eiλΛx+iλ(5Ωt. (3.3)

    Thus, the solution to the spectral problems can be expressed as

    ψ(x,t)=ϕ(x,t)eiλΛx+iλ(5Ωt. (3.4)

    The Jost solution of the eigenfunction (3.4) requires that [22,24]

    ϕ(x,t)I5,asx,t±, (3.5)

    where I5 is the 5×5 identity matrix. We denote

    ϕ±I5,whenx±. (3.6)

    Using Eq (3.4), the Lax pair (3.1) and (3.2) can be rewritten in terms of ϕ so that the spectral problems can be written equivalently as

    ϕx=iλ[Λ,ϕ]+iPϕ, (3.7)
    ϕt=iλ(5[Ω,ϕ]+iQϕ. (3.8)

    To formulate the Riemann-Hilbert problems and find their solutions in the reflectionless situation, we will utilize the adjoint scattering equations corresponding to the spectral problems ψx=iUψ and ψt=iV[5]ψ. Their adjoints are given by

    ˜ψx=i˜ψU, (3.9)
    ˜ψt=i˜ψV[5], (3.10)

    and the equivalent spectral adjoint equations read

    ˜ϕx=iλ([˜ϕ,Λ]i˜ϕP, (3.11)
    ˜ϕt=iλ(5[˜ϕ,Ω]i˜ϕQ. (3.12)

    Due to tr(iP)=0 and tr(iQ)=0, and by applying Liouville's formula [22], it is evident (det(ϕ))x=0, that det(ϕ) is a constant. Utilizing the boundary condition (3.5), we ascertain that

    det(ϕ)=1. (3.13)

    It follows that the Jost matrix ϕ is invertible.

    Furthermore, as ϕ1x=ϕ1ϕxϕ1, we can derive from (3.7)

    ϕ1x=iλ[ϕ1,Λ]iϕ1P. (3.14)

    The spatial adjoint equation (3.11) can thus be demonstrated to be satisfied by both (ϕ+)1 and (ϕ)1. Furthermore, both satisfy the temporal adjoint equation (3.12).

    Accordingly, if the eigenfunction ϕ solves the spectral problem (3.7), then ϕ1 solves the adjoint spectral problem (3.11).

    Because of ϕ1x=ϕ1ϕxϕ1, C1ϕ1 is also a solution of (3.11) with the same eigenvalue. As well as the nonlocal ϕT(x,t;λ()C1, solves the spectral adjoint problem (3.11). This ensures the uniqueness of the solution since both solutions have the same boundary condition as x±, therefore,

    ϕT(x,t;λ()=C1ϕ1C11. (3.15)

    Consequently, if λ is an eigenvalue of either Eq (3.7) or (3.11), then λ( would also be an eigenvalue, and the relation (3.15) holds.

    In the same way, one can prove that ϕ(x,t;λ()C2 and C2ϕ1 satisfy (3.11), while ϕ((x,t;λ()C3 and C3ϕ satisfy (3.7). Thus, using the boundary condition and by uniqueness of the solution, we can also derive

    ϕ(x,t;λ()=C2ϕ1C12, (3.16)
    ϕ((x,t;λ()=C3ϕC13. (3.17)

    We will now address the spatial spectral problem (3.7), assuming that the time is t=0. In order to simplify notation, we will use Y+ and Y to represent the boundary conditions as x and x, respectively.

    Knowing that

    ϕ±I5whenx±, (3.18)

    and from (3.4), we can write

    ψ±=ϕ±eiλΛx. (3.19)

    ψ+ and ψ both meet the requirements of the spectral spatial differential equation (3.1), making them both solutions to the equation. Consequently, they are linearly dependent, implying the existence of a scattering matrix S(λ), such that

    ψ=ψ+S(λ), (3.20)

    and substituting (3.19) into (3.20), leads to

    ϕ=ϕ+eiλΛxS(λ)eiλΛx,forλR, (3.21)

    where

    S(λ)=(sij)5×5,i,j{1,,5}. (3.22)

    With det(ϕ±)=1 being considered, we can derive

    det(S(λ))=1. (3.23)

    Furthermore, it can be demonstrated through (3.15)–(3.17) and (3.21) that S(λ) exhibits the involution relations

    ST(λ()=C1S1(λ()C11, (3.24)
    S(λ()=C2S1(λ)C12, (3.25)
    S((λ()=C3S(λ)C13. (3.26)

    We deduce from (3.24)–(3.26) that

    ˆs11(λ()=s11(λ(), (3.27)
    ˆs11(λ)=s(11(λ(), (3.28)
    s(11(λ()=s(11(λ(), (3.29)

    where the scattering matrix has an inverse denoted by S1=(ˆsij)5×5 for i,j{1,,5}. To formulate Riemann-Hilbert problems, it is necessary to examine the analytic properties of the Jost matrix ϕ±. Our solutions ϕ± to this problem can be uniquely written using the Volterra integral equations in conjunction with the spatial spectral problem (3.1):

    ϕ(x;λ)=I5+ixeiλ(xy)ΛP(y)ϕ(y;λ)eiλ(yx)Λdy, (3.30)
    ϕ+(x;λ)=I5i+xeiλ(xy)ΛP(y)ϕ+(y;λ)eiλ(yx)Λdy. (3.31)

    We denote the matrix ϕ to be

    ϕ=(ϕij)5×5,i,j{1,,5}, (3.32)

    and ϕ+ is denoted similarly. Keep in mind that α<0, in the case where Im(λ)>0 and y<x, it can be observed that Re(eiλα(xy)) exhibits exponential decay. Consequently, each integral of the first column of ϕ converges. This implies that the elements of the first column of ϕ are analytic in the upper half complex plane for λC+ and continuous for λC+R.

    Similarly, when y>x, the elements of the last four columns of ϕ+ exhibit analytic properties in the upper half plane for λC+ and maintain continuity for λC+R.

    It is important to note the scenario in which Im(λ)<0. In this case, the first column ϕ+ is analytic in the lower half plane for λC and remains continuous for λCR. Additionally, the components of the last four columns of ϕ are analytic in the lower half plane for λC and also continuous for λCR.

    Let us proceed with the construction of the Riemann-Hilbert problems. In order to build the Jost matrix within the upper-half plane, it is important to observe that

    ϕ±=ψ±eiλΛx. (3.33)

    Consider the jth columns of ϕ± to be denoted as ϕ±j, where j belongs to the set {1,2,3,4,5}. Consequently, the initial solution for the Jost matrix can be expressed as

    P(+)(x;λ)=(ϕ1,ϕ+2,ϕ+3,ϕ+4,ϕ+5)=ϕH1+ϕ+H2, (3.34)

    where H1=diag(1,0,0,0,0) and H2=diag(0,1,1,1,1).

    Hence, P(+) exhibits analyticity for λC+ and it demonstrates continuity for λC+R.

    For the lower-half plane, we can construct P()C which is the analytic counterpart of P(+)C+. We do this by utilizing the equivalent spectral adjoint equation (3.14). In the lower-half of the plane, we can create P()C as the analytic version of P(+)C+. This is achieved using the corresponding spectral adjoint equation (3.14). Because ˜ϕ±=(ϕ±)1 and ψ±=ϕ±eiλΛx, we have

    (ϕ±)1=eiλΛx(ψ±)1. (3.35)

    Let ˜ϕ±j represent the jth row of ˜ϕ±, where j belongs to the set {1,2,3,4,5}. Similar to what was mentioned earlier, we can obtain the following result:

    P()(x;λ)=(˜ϕ1,˜ϕ+2,˜ϕ+3,˜ϕ+4,˜ϕ+5)T=H1(ϕ)1+H2(ϕ+)1. (3.36)

    Hence, P() is analytic for λC and continuous for λCR.

    Given that both ϕ and ϕ+ fullfill

    ϕT(x,t;λ()=C1ϕ1C11. (3.37)

    Using (3.34), we have

    P(+)(x,t;λ()=ϕ(x,t;λ()H1+ϕ+(x,t;λ()H2 (3.38)

    or equivalently

    (P(+))T(x,t;λ()=H1(ϕ)T(x,t;λ()+H2(ϕ+)T(x,t;λ(). (3.39)

    By substituting Eq (3.37) into Eq (3.39), we obtain the following nonlocal symmetry property:

    (P(+))T(x,t;λ()=C1P()C11. (3.40)

    One can prove as well that

    (P(+))(x,t;λ()=C2P()C12, (3.41)
    P((+)(x,t;λ()=C3P(+)C13. (3.42)

    Thus, the Riemann-Hilbert problems can be formulated by leveraging the analytic properties of both P(+) and P() as follows:

    P()P(+)=J, (3.43)

    where J=eiλΛx(H1+H2S)(H1+S1H2)eiλΛx for λR.

    Replacing (3.21) in (3.34), we have

    P(+)(x;λ)=ϕ+(eiλΛxSeiλΛxH1+H2). (3.44)

    As x approaches positive infinity, the function ϕ+(x;λ) converges to the identity matrix I5. Hence, we obtain

    lim (3.45)

    Similarly, we can show that

    \begin{equation} \lim\limits_{x \rightarrow - \infty} P^{(-)} = diag \big(\hat{s}_{11}(\lambda), I_{4} \big), \quad \text{for} \quad \lambda \in \mathbb{C}_{-} \cup \mathbb{R}. \end{equation} (3.46)

    Thus, if we choose

    \begin{align} G^{(+)}(x;\lambda) & = P^{(+)}(x;\lambda) diag \big(s_{11}^{-1} (\lambda), I_{4} \big), \end{align} (3.47)
    \begin{align} (G^{(-)})^{-1}(x;\lambda) & = diag \big(\hat{s}_{11}^{-1} (\lambda), I_{4} \big) P^{(-)}(x;\lambda), \end{align} (3.48)

    the two generalized matrices G^{(+)}(x; \lambda) and G^{(-)}(x; \lambda) form the basis for constructing the matrix Riemann-Hilbert problems on the real line for the nonlocal Sasa-Satsuma equation, they are presented as

    \begin{equation} G^{(+)}(x;\lambda) = G^{(-)}(x;\lambda) G_0(x;\lambda), \quad \text{for} \quad \lambda \in \mathbb{R}, \end{equation} (3.49)

    where the jump matrix G_0(x; \lambda) can be cast as

    \begin{equation} G_0(x;\lambda) = diag \big(\hat{s}_{11}^{-1} (\lambda), I_{4} \big) \, J \, diag \big(s_{11}^{-1} (\lambda), I_{4} \big), \end{equation} (3.50)

    which reads

    \begin{equation} G_0^{}(x;\lambda) = \begin{pmatrix} s_{11}^{-1} \hat{s}_{11}^{-1} & \hat{s}_{12}\hat{s}_{11}^{-1} e^{i \lambda \alpha x} & \hat{s}_{13}\hat{s}_{11}^{-1} e^{i \lambda \alpha x} & \hat{s}_{14}\hat{s}_{11}^{-1} e^{i \lambda \alpha x} & \hat{s}_{15}\hat{s}_{11}^{-1} e^{i \lambda \alpha x} \\ s_{21} s_{11}^{-1} e^{-i \lambda \alpha x} & 1 & 0 & 0 & 0 \\ s_{31} s_{11}^{-1} e^{-i \lambda \alpha x} & 0 & 1 & 0 & 0 \\ s_{41} s_{11}^{-1} e^{-i \lambda \alpha x} & 0 & 0 & 1 & 0 \\ s_{51} s_{11}^{-1} e^{-i \lambda \alpha x} & 0 & 0 & 0 & 1 \end{pmatrix}, \end{equation} (3.51)

    and its canonical normalization conditions:

    \begin{align} G^{(+)}(x;\lambda) \rightarrow I_{5} \quad \text{as} \quad \lambda \in \mathbb{C}_{+} \cup \mathbb{R} \rightarrow \infty, \end{align} (3.52)
    \begin{align} G^{(-)}(x;\lambda) \rightarrow I_{5} \quad \text{as} \quad \lambda \in \mathbb{C}_{-} \cup \mathbb{R} \rightarrow \infty. \end{align} (3.53)

    From (3.40) along with (3.47) and (3.48) and using (3.27)–(3.29), we deduce the nonlocal involution properties

    \begin{equation} \begin{cases} (G^{(+)})^{T}(x, t;-\lambda \mathstrut_{{{}}}^{{{}}}) = C_{1} (G^{(-)})^{-1} C_{1}^{-1}, \\ (G^{(+)})^{\dagger}(-x, -t;-\overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}}) = C_{2} (G^{(-)})^{-1} C_{2}^{-1}, \\ \overset{*}{G} \mathstrut_{{{}}}^{{{(+)}}}(-x, -t;\overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}}) = C_{3} G^{(+)} C_{3}^{-1}. \end{cases} \end{equation} (3.54)

    Furthermore, from (3.49), (3.50), (3.54), and (3.27)–(3.29), the subsequent nonlocal involution properties are deduced for G_0

    \begin{equation} \begin{cases} G_0^{T}(x, t;-\lambda \mathstrut_{{{}}}^{{{}}}) = C_{1} G_0 C_{1}^{-1}, \\ G_0^{\dagger}(-x, -t;-\overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}}) = C_{2} G_0 C_{2}^{-1}, \\ \overset{*}{G} \mathstrut_{{{0}}}^{{{}}}(-x, -t;\overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}}) = C_{3} G_0 C_{3}^{-1}, \end{cases} \lambda \mathstrut_{{{}}}^{{{}}} \in \mathbb{R}. \end{equation} (3.55)

    To accomplish this, we proceed by taking the derivative of Eq (3.21) with respect to time t and by utilizing Eq (3.8), we obtain

    \begin{equation} S_{t} = i \lambda \mathstrut_{{{}}}^{{{5}}} [{\mathit{\Omega}}, S], \end{equation} (3.56)

    and thus

    \begin{equation} S_{t} = \begin{pmatrix} 0 & i \beta \lambda \mathstrut_{{{}}}^{{{5}}} s_{12} & i \beta \lambda \mathstrut_{{{}}}^{{{5}}} s_{13} & i \beta \lambda \mathstrut_{{{}}}^{{{5}}} s_{14} & \beta \lambda \mathstrut_{{{}}}^{{{5}}} s_{15} \\ -i \beta \lambda \mathstrut_{{{}}}^{{{5}}} s_{21} & 0 & 0 & 0 & 0 \\ -i \beta \lambda \mathstrut_{{{}}}^{{{5}}} s_{31} & 0 & 0 & 0 & 0 \\ -i \beta \lambda \mathstrut_{{{}}}^{{{5}}} s_{41} & 0 & 0 & 0 & 0 \\ -i \beta \lambda \mathstrut_{{{}}}^{{{5}}} s_{51} & 0 & 0 & 0 & 0 \end{pmatrix}. \end{equation} (3.57)

    As a result, we have

    \begin{equation} \begin{cases} \begin{aligned}[c] s_{12}(t;\lambda) = s_{12}(0;\lambda) e^{i \beta \lambda \mathstrut_{{{}}}^{{{3}}} t}, \\ s_{13}(t;\lambda) = s_{13}(0;\lambda) e^{i \beta \lambda \mathstrut_{{{}}}^{{{3}}} t}, \\ s_{14}(t;\lambda) = s_{14}(0;\lambda) e^{i \beta \lambda \mathstrut_{{{}}}^{{{3}}} t}, \\ s_{15}(t;\lambda) = s_{15}(0;\lambda) e^{i \beta \lambda \mathstrut_{{{}}}^{{{3}}} t}, \end{aligned} \quad \begin{aligned}[c] s_{21}(t;\lambda) = s_{21}(0;\lambda) e^{-i \beta \lambda \mathstrut_{{{}}}^{{{3}}} t}, \\ s_{31}(t;\lambda) = s_{31}(0;\lambda) e^{-i \beta \lambda \mathstrut_{{{}}}^{{{3}}} t}, \\ s_{41}(t;\lambda) = s_{41}(0;\lambda) e^{-i \beta \lambda \mathstrut_{{{}}}^{{{3}}} t}, \\ s_{51}(t;\lambda) = s_{51}(0;\lambda) e^{-i \beta \lambda \mathstrut_{{{}}}^{{{3}}} t}, \end{aligned} \end{cases} \end{equation} (3.58)

    and s_{11}, s_{2i}, s_{3i}, s_{4i}, s_{5i} are constants for i \in \{2, ..., 5\} .

    The classification of soliton solutions produced by the Riemann-Hilbert problems is determined by the determinant of the matrix G^{(\pm)} . In the case where det(G^{(\pm)}) \neq 0 , a single unique solution is obtained. However, in the non-regular scenario where det(G^{(\pm)}) = 0 , discrete eigenvalues may arise in the spectral plane. To find soliton solutions in this non-regular case, it is possible to convert it into the regular case [22].

    From (3.44) and det(\phi^{\pm}) = 1 , we can show that

    \begin{align} det(P^{(+)}(x;\lambda))& = s_{11}(\lambda), \end{align} (4.1)
    \begin{align} det(P^{(-)}(x;\lambda))& = \hat{s}_{11}(\lambda). \end{align} (4.2)

    Given that det(S(\lambda)) = 1 , it can be deduced that S^{-1}(\lambda) = \bigg(cof(S(\lambda)) \bigg)^{T} . Additionally, the expression for \hat{s}_{11} is represented by the determinant of the matrix:

    \begin{equation} \hat{s}_{11} = \begin{vmatrix} s_{22} & s_{23} & s_{24} & s_{25} \\ s_{32} & s_{33} & s_{34} & s_{35} \\ s_{42} & s_{43} & s_{44} & s_{45} \\ s_{52} & s_{53} & s_{54} & s_{55} \end{vmatrix}. \end{equation} (4.3)

    In the case where the matrix S(\lambda) is non-regular, \hat{s}_{11} should evaluate to zero.

    To generate soliton solutions, it is necessary for the determinants of P^{(+)}(x; \lambda) and P^{(-)}(x; \lambda) to be equal to zero. Specifically, we require det(P^{(+)}(x; \lambda)) = det(P^{(-)}(x; \lambda)) = 0 for this purpose. When det(P^{(+)}(x; \lambda)) = s_{11}(\lambda) = 0 , we make the assumption that s_{11}(\lambda) possesses simple zeros. These zeros correspond to discrete eigenvalues \lambda_{k} \in \mathbb{C}_{+} , where k \in \{1, 2, ..., 2N_{1} = N\} . On the other hand, when det(P^{(-)}(x; \lambda)) = \hat{s}_{11}(\lambda) = 0 , we assume that \hat{s}_{11}(\lambda) also has simple zeros. These zeros are associated with discrete eigenvalues \hat{\lambda}_{k} \in \mathbb{C}_{-} , where k \in \{1, 2, ..., 2N_{1} = N\} . These eigenvalues represent the poles of the transmission coefficients [24].

    From Eqs (3.27)–(3.29) and det(P^{(\pm)}(x; \lambda)) = 0 , one can deduce that

    \begin{equation} \text{if} \quad \lambda \mathstrut_{{{}}}^{{{}}} \in \mathbb{C}_{+}, \quad \text{then} \quad \begin{cases} - \lambda \mathstrut_{{{}}}^{{{}}} \in \mathbb{C}_{-}, \\ - \overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}} \in \mathbb{C}_{+}, \\ \overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}} \in \mathbb{C}_{-}, \end{cases} \lambda \mathstrut_{{{}}}^{{{}}} \notin {{{\rm{i}}}} \mathbb{R}. \end{equation} (4.4)

    If \lambda \mathstrut_{{{}}}^{{{}}} = {{{\rm{i}}}} m \in {{{\rm{i}}}} \mathbb{R} , for m > 0 , the couple ( \lambda \mathstrut_{{{}}}^{{{}}}, -\overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}}) \in \mathbb{C}_{+}^{2} coincide, forcing \hat{\lambda} \mathstrut_{{{}}}^{{{}}} = -\lambda \mathstrut_{{{}}}^{{{}}} = -i m \in \mathbb{C}_{-} .

    To make this more clear, we can view the choices of the eigenvalues in a more systematic way. Recall that the Riemann-Hilbert problem requires the same number of eigenvalues in the upper-half plane and in the lower-half plane. Assume \lambda \mathstrut_{{{k}}}^{{{}}} \in \mathbb{C}_{+} for all k = 1, 2, \ldots, 2N_{1} . Fix n for 1 \leq n \leq N_{1} and let \lambda \mathstrut_{{{n}}}^{{{}}} lies off the imaginary axis. The eigenvalues in the upper-half plane are given by the N_{1} -couples (\lambda \mathstrut_{{{n}}}^{{{}}}, \lambda \mathstrut_{{{N_{1}+n}}}^{{{}}}) = (\lambda \mathstrut_{{{}}}^{{{}}}, -\overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}}) \in \mathbb{C}_{+}^{2} , which are assumed to be the zeros of det(P^{(+)}(x; \lambda)) = 0 . For any \lambda \mathstrut_{{{n}}}^{{{}}} , the choice of \lambda \mathstrut_{{{N_{1}+n}}}^{{{}}} depends on \lambda \mathstrut_{{{n}}}^{{{}}} , that is, \lambda \mathstrut_{{{n}}}^{{{}}} = - \overset{*}{\lambda} \mathstrut_{{{N_{1}+n}}}^{{{}}} , where \lambda \mathstrut_{{{n}}}^{{{}}} is freely chosen. If \lambda \mathstrut_{{{n}}}^{{{}}} lies on the imaginary axis, then the pair of eigenvalues coincide.

    In the lower-half plane, the eigenvalues are determined by the choice of the eigenvalue \lambda \mathstrut_{{{n}}}^{{{}}} in the upper-half plane. We have \hat{\lambda} \mathstrut_{{{k}}}^{{{}}} \in \mathbb{C}_{-} for all k = 1, 2, \ldots, 2N_{1} and similarly the eigenvalues are given by the N_{1} -couples (\hat{\lambda} \mathstrut_{{{n}}}^{{{}}}, \hat{\lambda} \mathstrut_{{{N_{1}+n}}}^{{{}}}) = (-\lambda \mathstrut_{{{}}}^{{{}}}, \overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}}) \in \mathbb{C}_{-}^{2} , which are assumed to be the zeros of det(P^{(-)}(x; \lambda)) = 0 , and \hat{\lambda} \mathstrut_{{{n}}}^{{{}}} = - \overset{*}{\hat{\lambda}} \mathstrut_{{{N_{1}+n}}}^{{{}}} .

    In other words, if \lambda \mathstrut_{{{n}}}^{{{}}} is not pure imaginary, then the scheme of the eigenvalues take the form

    \begin{equation} (\lambda \mathstrut_{{{n}}}^{{{}}}, \lambda \mathstrut_{{{N_{1}+n}}}^{{{}}}, \hat{\lambda} \mathstrut_{{{n}}}^{{{}}}, \hat{\lambda} \mathstrut_{{{N_{1}+n}}}^{{{}}}) = (\lambda \mathstrut_{{{}}}^{{{}}}, -\overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}}, -\lambda \mathstrut_{{{}}}^{{{}}}, \overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}}). \end{equation} (4.5)

    Every Ker(P^{(+)}(x; \lambda_{k})) consists of just one column vector {\rm v} \mathstrut_{{{k}}}^{{{}}} = {\rm v} \mathstrut_{{{k}}}^{{{}}}(x, t) , while each Ker(P^{(-)}(x; \hat{\lambda}_{k})) comprises only one row vector \hat{{\rm v}} \mathstrut_{{{k}}}^{{{}}} = \hat{{\rm v}} \mathstrut_{{{k}}}^{{{}}}(x, t) , such that

    \begin{equation} P^{(+)}(x;\lambda_{k}) {\rm v} \mathstrut_{{{k}}}^{{{}}} = 0, \quad \text{for} \quad k \in \{1, 2, ..., 2N_{1}\}, \end{equation} (4.6)

    and

    \begin{equation} \hat{{\rm v}} \mathstrut_{{{k}}}^{{{}}} P^{(-)}(x;\hat{\lambda}_{k}) = 0, \quad \text{for} \quad k \in \{1, 2, ..., 2N_{1}\}. \end{equation} (4.7)

    In order to acquire explicit soliton solutions, we select G_0 = I_{5} within the framework of the Riemann-Hilbert problems. This choice will result in the reflection coefficients s_{21} = s_{31} = s_{41} = s_{51} = 0 and \hat{s}_{12} = \hat{s}_{13} = \hat{s}_{14} = \hat{s}_{15} = 0 . Consequently, the Riemann-Hilbert problems can be formulated in the following manner [25]:

    \begin{equation} G^{(+)}(x;\lambda) = I_{5}-\sum\limits_{k, j = 1}^{N} \frac{{\rm v} \mathstrut_{{{k}}}^{{{}}}(M^{-1})_{kj}\hat{{\rm v}} \mathstrut_{{{j}}}^{{{}}}}{\lambda-\hat{\lambda}_{j}}, \end{equation} (4.8)

    and

    \begin{equation} (G^{(-)})^{-1}(x;\lambda) = I_{5}+\sum\limits_{k, j = 1}^{N} \frac{{\rm v} \mathstrut_{{{k}}}^{{{}}}(M^{-1})_{kj}\hat{{\rm v}} \mathstrut_{{{j}}}^{{{}}}}{\lambda-\lambda_{k}}, \end{equation} (4.9)

    where M = (m_{kj})_{N \times N} is a matrix defined by [25]

    \begin{equation} m_{kj} = \begin{cases} \frac{\hat{{\rm v}} \mathstrut_{{{k}}}^{{{}}} {\rm v} \mathstrut_{{{j}}}^{{{}}}}{\lambda_{j}-\hat{\lambda}_{k}}, & \text{if} \quad \lambda_{j} \neq \hat{\lambda}_{k}, \\ 0, & \text{if} \quad \lambda_{j} = \hat{\lambda}_{k}, \end{cases} \quad k, j \in \{1, 2, ..., N\}. \end{equation} (4.10)

    It is possible to analyze the spatial and temporal development of the scattering vectors {\rm v} \mathstrut_{{{k}}}^{{{}}} and \hat{{\rm v}} \mathstrut_{{{k}}}^{{{}}} , since the zeros \lambda_{k} and \hat{\lambda}_{k} remain constant values and are not affected by changes in space and time.

    Taking the x -derivative of both sides of the equation

    \begin{equation} P^{(+)}(x;\lambda_{k}){\rm v} \mathstrut_{{{k}}}^{{{}}} = 0, \quad 1\leq k \leq N. \end{equation} (4.11)

    Upon recognizing that P^{(+)} satisfies the spectral spatial equivalent equation (3.7) in conjunction with (4.6), we deduce that

    \begin{equation} P^{(+)}(x;\lambda_{k}) \Bigg( \frac{d{\rm v} \mathstrut_{{{k}}}^{{{}}}}{dx}-i\lambda_{k} {\mathit{\Lambda}} {\rm v} \mathstrut_{{{k}}}^{{{}}} \Bigg) = 0, \quad \text{for} \quad k, j \in \{1, 2, ..., N\}. \end{equation} (4.12)

    Similarly, by differentiating with respect to t and utilizing the temporal equation (3.8) along with (4.6), we obtain

    \begin{equation} P^{(+)}(x;\lambda \mathstrut_{{{k}}}^{{{}}}) \Bigg( \frac{d{\rm v} \mathstrut_{{{k}}}^{{{}}}}{dt}-i \lambda \mathstrut_{{{k}}}^{{{5}}} {\mathit{\Omega}} {\rm v} \mathstrut_{{{k}}}^{{{}}} \Bigg) = 0, \quad \text{for} \quad k, j \in \{1, 2, ..., N\}. \end{equation} (4.13)

    The adjoint spectral equations (3.11) and (3.12) yield similar results

    \begin{equation} \Bigg( \frac{d\hat{{\rm v}} \mathstrut_{{{k}}}^{{{}}}}{dx}+i\hat{\lambda}_{k} \hat{{\rm v}} \mathstrut_{{{k}}}^{{{}}} {\mathit{\Lambda}} \Bigg) P^{(-)}(x;\hat{\lambda \mathstrut_{{{}}}^{{{}}}}_{k}) = 0, \end{equation} (4.14)

    and

    \begin{equation} \Bigg( \frac{d\hat{{\rm v}} \mathstrut_{{{k}}}^{{{}}}}{dt}+i\hat{\lambda}^{5}_{k} \hat{{\rm v}} \mathstrut_{{{k}}}^{{{}}} {\mathit{\Omega}} \Bigg) P^{(-)}(x;\hat{\lambda \mathstrut_{{{}}}^{{{}}}}_{k}) = 0. \end{equation} (4.15)

    Given that {\rm v} \mathstrut_{{{k}}}^{{{}}} is a unique vector in the kernel of P^{(+)} , it follows that both \frac{d {\rm v} \mathstrut_{{{k}}}^{{{}}}}{dx} -{{{\rm{i}}}} \lambda_{k} {\mathit{\Lambda}} {\rm v} \mathstrut_{{{k}}}^{{{}}} and \frac{d {\rm v} \mathstrut_{{{k}}}^{{{}}}}{dt} -{{{\rm{i}}}} \lambda^{5}_{k} {\mathit{\Omega}} {\rm v} \mathstrut_{{{k}}}^{{{}}} are proportional to {\rm v} \mathstrut_{{{k}}}^{{{}}} .

    Therefore, it is possible to assume, without loss of generality, that the space dependence of {\rm v} \mathstrut_{{{k}}}^{{{}}} is represented by

    \begin{equation} \frac{d {\rm v} \mathstrut_{{{k}}}^{{{}}}}{dx} = i\lambda_{k} {\mathit{\Lambda}} {\rm v} \mathstrut_{{{k}}}^{{{}}}, \quad 1\leq k \leq N, \end{equation} (4.16)

    while the time dependence of {\rm v} \mathstrut_{{{k}}}^{{{}}} is represented by

    \begin{equation} \frac{d {\rm v} \mathstrut_{{{k}}}^{{{}}}}{dt} = i \lambda^{5}_{k} {\mathit{\Omega}} {\rm v} \mathstrut_{{{k}}}^{{{}}}, \quad 1\leq k \leq N. \end{equation} (4.17)

    So, we can conclude that

    \begin{equation} {\rm v} \mathstrut_{{{k}}}^{{{}}} = {\rm v} \mathstrut_{{{k}}}^{{{}}}(x, t;\lambda_{k}) = e^{i\lambda_{k}{\mathit{\Lambda}} x + i\lambda^{5}_{k} {\mathit{\Omega}} t} {\rm w} \mathstrut_{{{k}}}^{{{}}}, \quad \text{for} \quad k \in \{1, 2, ..., N\}, \end{equation} (4.18)

    by solving Eqs (4.16) and (4.17). Likewise, we get

    \begin{equation} \hat{{\rm v}} \mathstrut_{{{k}}}^{{{}}} = \hat{{\rm v}} \mathstrut_{{{k}}}^{{{}}}(x, t;\hat{\lambda}_{k}) = \hat{{\rm w}} \mathstrut_{{{k}}}^{{{}}} e^{-i\hat{\lambda}_{k}{\mathit{\Lambda}} x - i\hat{\lambda}^{5}_{k} {\mathit{\Omega}} t} , \quad \text{for} \quad k \in \{1, 2, ..., N\}, \end{equation} (4.19)

    where {\rm w} \mathstrut_{{{k}}}^{{{}}} and \hat{{\rm w}} \mathstrut_{{{k}}}^{{{}}} are constant column and row vectors in \mathbb{C}^{5} , respectively. In addition, they need to satisfy the orthogonality condition:

    \begin{equation} \hat{{\rm w}} \mathstrut_{{{k}}}^{{{}}} {\rm w} \mathstrut_{{{l}}}^{{{}}} = 0, \quad \text{when} \quad \lambda \mathstrut_{{{l}}}^{{{}}} = \hat{\lambda} \mathstrut_{{{k}}}^{{{}}}, \quad 1 \leq k, l \leq N. \end{equation} (4.20)

    From (4.6) and using the formula (3.40), it is easy to see

    \begin{equation} {\rm v} \mathstrut_{{{k}}}^{{{T}}}(x, t;-\lambda \mathstrut_{{{k}}}^{{{}}}) (P^{(+)})^{T}(x, t;-\lambda \mathstrut_{{{k}}}^{{{}}}) = {\rm v} \mathstrut_{{{k}}}^{{{T}}}(x, t;-\lambda \mathstrut_{{{k}}}^{{{}}}) C_{1} P^{(-)}(x, t;\lambda \mathstrut_{{{k}}}^{{{}}}) C_{1}^{-1} = 0. \end{equation} (4.21)

    Because {\rm v} \mathstrut_{{{k}}}^{{{T}}}(x, t; -\lambda \mathstrut_{{{k}}}^{{{}}}) C_{1} P^{-}(x, t; \lambda \mathstrut_{{{k}}}^{{{}}}) can be zero and using (4.7) this leads to

    \begin{align} {\rm v} \mathstrut_{{{k}}}^{{{T}}}(x, t;-\lambda \mathstrut_{{{k}}}^{{{}}}) C_{1} P^{(-)}(x, t;\lambda \mathstrut_{{{k}}}^{{{}}}) & = {\rm v} \mathstrut_{{{k}}}^{{{T}}}(x, t;\lambda \mathstrut_{{{k}}}^{{{}}}) C_{1} P^{(-)}(x, t;-\lambda \mathstrut_{{{k}}}^{{{}}}) = 0 \end{align} (4.22)
    \begin{align} & = \hat{{\rm v}} \mathstrut_{{{k}}}^{{{}}}(x, t;\hat{\lambda}_{k}) P^{(-)}(x, t;\hat{\lambda}_{k}), \end{align} (4.23)

    thus, we can take

    \begin{equation} \hat{{\rm v}} \mathstrut_{{{k}}}^{{{}}}(x, t;\hat{\lambda}_{k}) = {\rm v} \mathstrut_{{{k}}}^{{{T}}}(x, t;\lambda \mathstrut_{{{k}}}^{{{}}}) C_{1}. \end{equation} (4.24)

    Therefore, the involution relations (4.18) and (4.19) give

    \begin{equation} {\rm v} \mathstrut_{{{k}}}^{{{}}}(x, t) = e^{i\lambda_{k} {\mathit{\Lambda}} x + i\lambda \mathstrut_{{{k}}}^{{{5}}} {\mathit{\Omega}} t} {\rm w} \mathstrut_{{{k}}}^{{{}}}, \end{equation} (4.25)
    \begin{equation} \hat{{\rm v}} \mathstrut_{{{k}}}^{{{}}}(x, t) = {\rm w} \mathstrut_{{{k}}}^{{{T}}} e^{-i\hat{\lambda}_{k} {\mathit{\Lambda}} x - i\hat{\lambda}_{k}^{5} {\mathit{\Omega}} t} C_{1}. \end{equation} (4.26)

    Now, in order to satisfy the orthogonality condition (4.20), one can notice that we require

    \begin{equation} {\rm w} \mathstrut_{{{k}}}^{{{\dagger}}} C_{2} {\rm w} \mathstrut_{{{l}}}^{{{}}} = 0, \quad \text{as} \quad \lambda \mathstrut_{{{l}}}^{{{}}} = \hat{\lambda} \mathstrut_{{{k}}}^{{{}}}, \quad 1 \leq k, l \leq N. \end{equation} (4.27)

    Due to the fact that, \hat{\lambda} \mathstrut_{{{k}}}^{{{}}} = -\overset{*}{\lambda} \mathstrut_{{{k}}}^{{{}}} = \lambda \mathstrut_{{{k}}}^{{{}}} still occurs for \lambda \mathstrut_{{{k}}}^{{{}}} \in {{{\rm{i}}}} \mathbb{R} , while \hat{\lambda} \mathstrut_{{{k}}}^{{{}}} = -\overset{*}{\lambda} \mathstrut_{{{k}}}^{{{}}} holds, when \lambda \mathstrut_{{{k}}}^{{{}}} \neq \hat{\lambda} \mathstrut_{{{k}}}^{{{}}} .

    The Riemann-Hilbert problem can be accurately resolved, leading to the determination of potentials through the calculation of the matrix P^{(+)} . Since P^{(+)} exhibits analytic properties, the expansion of G^{(+)} can be carried out as follows:

    \begin{equation} G^{(+)}(x;\lambda) = I_{5}+\frac{1}{\lambda} G^{(+)}_{1}(x)+ O \Big( \frac{1}{\lambda^{2}} \Big), \quad \text{when} \quad \lambda \rightarrow \infty. \end{equation} (4.28)

    Having established that G^{(+)} satisfies the spectral problem, by inserting it into (3.7) and equating the coefficients with the corresponding power of \frac{1}{\lambda} at order O(1) , we obtain

    \begin{equation} P = -[{\mathit{\Lambda}}, G^{(+)}_{1}]. \end{equation} (4.29)

    If we denote

    \begin{equation} G_{1}^{(+)} = (\mathsf{G} \mathstrut_{{{ij}}}^{{{}}})_{5 \times 5}, \quad i, j \in \{1, \ldots, 5\}, \end{equation} (4.30)

    then, since P satisfies the symmetry relations (2.8) simultaneously, therefore from (4.29), G_{1}^{(+)} satisfies the following symmetry relations:

    \begin{align} (G \mathstrut_{{{1}}}^{{{(+)}}})^{\dagger} & = G \mathstrut_{{{1}}}^{{{(+)}}}, \end{align} (4.31)
    \begin{align} (G \mathstrut_{{{1}}}^{{{(+)}}})^{T}(-x, -t) & = C_{1} G \mathstrut_{{{1}}}^{{{(+)}}} C_{1}^{-1}, \end{align} (4.32)
    \begin{align} (G \mathstrut_{{{1}}}^{{{(+)}}})^{\dagger}(-x, -t) & = C_{2} G \mathstrut_{{{1}}}^{{{(+)}}} C_{2}^{-1}, \end{align} (4.33)
    \begin{align} \overset{*}{G} \mathstrut_{{{1}}}^{{{(+)}}}(-x, -t) & = C_{3} G \mathstrut_{{{1}}}^{{{(+)}}} C_{3}^{-1}. \end{align} (4.34)

    Accordingly, it can be reduced to the form

    \begin{equation} G_{1}^{(+)} = \begin{pmatrix} \mathsf{G} \mathstrut_{{{11}}}^{{{}}} & \mathsf{G} \mathstrut_{{{12}}}^{{{}}} & \mathsf{G} \mathstrut_{{{12}}}^{{{}}}(-x, -t) & \overset{*}{\mathsf{G}} \mathstrut_{{{12}}}^{{{}}} & \overset{*}{\mathsf{G}} \mathstrut_{{{12}}}^{{{}}}(-x, -t) \\ \overset{*}{\mathsf{G}} \mathstrut_{{{12}}}^{{{}}} & \mathsf{G} \mathstrut_{{{22}}}^{{{}}} & \overset{*}{\mathsf{G}} \mathstrut_{{{32}}}^{{{}}} & \overset{*}{\mathsf{G}} \mathstrut_{{{42}}}^{{{}}} & \overset{*}{\mathsf{G}} \mathstrut_{{{52}}}^{{{}}}(-x, -t) \\ \overset{*}{\mathsf{G}} \mathstrut_{{{12}}}^{{{}}}(-x, -t) & \mathsf{G} \mathstrut_{{{32}}}^{{{}}} & \overset{*}{\mathsf{G}} \mathstrut_{{{22}}}^{{{}}}(-x, -t) & \overset{*}{\mathsf{G}} \mathstrut_{{{52}}}^{{{}}}(-x, -t) & \overset{*}{\mathsf{G}} \mathstrut_{{{42}}}^{{{}}}(-x, -t) \\ \mathsf{G} \mathstrut_{{{12}}}^{{{}}} & \mathsf{G} \mathstrut_{{{42}}}^{{{}}} & \mathsf{G} \mathstrut_{{{52}}}^{{{}}}(-x, -t) & \mathsf{G} \mathstrut_{{{22}}}^{{{}}} & \overset{*}{\mathsf{G}} \mathstrut_{{{32}}}^{{{}}}(-x, -t) \\ \mathsf{G} \mathstrut_{{{12}}}^{{{}}}(-x, -t) & \mathsf{G} \mathstrut_{{{52}}}^{{{}}} & \mathsf{G} \mathstrut_{{{42}}}^{{{}}}(-x, -t) & \mathsf{G} \mathstrut_{{{32}}}^{{{}}}(-x, -t) & \overset{*}{\mathsf{G}} \mathstrut_{{{22}}}^{{{}}}(-x, -t) \\ \end{pmatrix}. \end{equation} (4.35)

    Thus,

    \begin{equation} P = -[{\mathit{\Lambda}}, G_{1}^{(+)}] = \begin{pmatrix} 0 & -\alpha \mathsf{G} \mathstrut_{{{12}}}^{{{}}} & -\alpha \mathsf{G} \mathstrut_{{{12}}}^{{{}}}(-x, -t) & -\alpha \overset{*}{\mathsf{G}} \mathstrut_{{{12}}}^{{{}}} & -\alpha \overset{*}{\mathsf{G}} \mathstrut_{{{12}}}^{{{}}}(-x, -t) \\ \alpha \overset{*}{\mathsf{G}} \mathstrut_{{{12}}}^{{{}}} & 0 & 0 & 0 & 0 \\ \alpha \overset{*}{\mathsf{G}} \mathstrut_{{{12}}}^{{{}}}(-x, -t) & 0 & 0 & 0 & 0 \\ \alpha \mathsf{G} \mathstrut_{{{12}}}^{{{}}} & 0 & 0 & 0 & 0 \\ \alpha \mathsf{G} \mathstrut_{{{12}}}^{{{}}}(-x, -t) & 0 & 0 & 0 & 0 \end{pmatrix}. \end{equation} (4.36)

    Matching the components of (4.36) to the components of the P matrix, We are able to recover the potential u \mathstrut_{{{}}}^{{{}}} :

    \begin{align} u \mathstrut_{{{}}}^{{{}}} & = -\alpha \mathsf{G} \mathstrut_{{{12}}}^{{{}}}. \end{align} (4.37)

    Note that all components in (4.36) are equivalent and compatible to the components in (2.3). It can be seen from (4.28) that

    \begin{equation} G_{1}^{(+)} = \lambda \lim\limits_{\lambda \rightarrow \infty} (G^{(+)}(x;\lambda)-I_{5}), \end{equation} (4.38)

    then using Eq (4.8), we deduce

    \begin{equation} G_{1}^{(+)} = - \sum\limits_{k, j = 1}^{N} {\rm v} \mathstrut_{{{k}}}^{{{}}} (M^{-1})_{k, j} \hat{{\rm v}} \mathstrut_{{{j}}}^{{{}}}, \end{equation} (4.39)

    where

    \begin{equation} {\rm v} \mathstrut_{{{k}}}^{{{}}} = ({\rm v} \mathstrut_{{{k, 1}}}^{{{}}}, {\rm v} \mathstrut_{{{k, 2}}}^{{{}}}, {\rm v} \mathstrut_{{{k, 3}}}^{{{}}}, {\rm v} \mathstrut_{{{k, 4}}}^{{{}}}, {\rm v} \mathstrut_{{{k, 5}}}^{{{}}})^{T}, \; \hat{{\rm v}} \mathstrut_{{{k}}}^{{{}}} = (\hat{{\rm v}} \mathstrut_{{{k, 1}}}^{{{}}}, \hat{{\rm v}} \mathstrut_{{{k, 2}}}^{{{}}}, \hat{{\rm v}} \mathstrut_{{{k, 3}}}^{{{}}}, \hat{{\rm v}} \mathstrut_{{{k, 4}}}^{{{}}}, \hat{{\rm v}} \mathstrut_{{{k, 5}}}^{{{}}}). \end{equation} (4.40)

    We deduce that the specific Riemann-Hilbert problem solutions determined by (4.8)–(4.10), satisfy (3.54). Hence the matrix G_{1}^{(+)} posses the symmetry relations (4.31)–(4.34), which are generated from the non-local symmetry (2.4).

    Now, by substituting (4.39) into (4.37) and using (4.25) and (4.26), we generate the N -soliton solution to the nonlocal fifth-order Sasa-Satsuma equation

    \begin{align} u \mathstrut_{{{}}}^{{{}}} & = \alpha \sum\limits_{k, j = 1}^{N} {\rm v} \mathstrut_{{{k, 1}}}^{{{}}} (M^{-1})_{kj} \hat{{\rm v}} \mathstrut_{{{j, 2}}}^{{{}}}. \end{align} (4.41)

    For a general explicit formula for the one-soliton solution of the Sasa-Satsuma equation (1.1), i.e., when N = 1 , the eigenvalues configuration gives \lambda_{1} = {{{\rm{i}}}} m and \hat{\lambda}_{1} = -{{{\rm{i}}}} m , where m > 0 , in order to fulfill condition (4.4). Taking {\rm w} \mathstrut_{{{1}}}^{{{}}} to be the vector {\rm w} \mathstrut_{{{1}}}^{{{}}} = ({\rm w} \mathstrut_{{{11}}}^{{{}}}, {\rm w} \mathstrut_{{{12}}}^{{{}}}, -{\rm w} \mathstrut_{{{12}}}^{{{}}}, {\rm w} \mathstrut_{{{12}}}^{{{}}}, -{\rm w} \mathstrut_{{{12}}}^{{{}}})^{T} , for {\rm w} \mathstrut_{{{11}}}^{{{}}}, {\rm w} \mathstrut_{{{12}}}^{{{}}} \in \mathbb{R} \backslash \{0\} , the explicit solution yields

    \begin{align} u \mathstrut_{{{}}}^{{{}}}(x, t)& = \frac{ {{{\rm{i}}}} 2 \alpha m {\rm w} \mathstrut_{{{11}}}^{{{}}} {\rm w} \mathstrut_{{{12}}}^{{{}}} }{ {\rm w} \mathstrut_{{{11}}}^{{{2}}} e^{-\alpha m x - \beta m^{5} t} +4 {\rm w} \mathstrut_{{{12}}}^{{{2}}} e^{\alpha m x + \beta m^{5} t} }. \end{align} (5.1)

    Since this Sasa-Satsuma equation require the orthogonality condition

    \begin{equation} {\rm w} \mathstrut_{{{1}}}^{{{\dagger}}} C_{2} {\rm w} \mathstrut_{{{1}}}^{{{}}} = 0, \end{equation} (5.2)

    resulting in {\rm w} \mathstrut_{{{11}}}^{{{2}}} = 4 {\rm w} \mathstrut_{{{12}}}^{{{2}}} .

    As a consequence, the solution to the scalar nonlocal reverse-spacetime Sasa-Satsuma equation (2.90) in the one-soliton case simplifies to

    \begin{align} u \mathstrut_{{{}}}^{{{}}}(x, t)& = \pm \frac{ {{{\rm{i}}}} \alpha m }{ e^{\alpha m x + \beta m^{5} t} + e^{-\alpha m x - \beta m^{5} t} } = \pm {{{\rm{i}}}} \frac{\alpha}{2} m \, sech (\alpha m x + \beta m^{5} t). \end{align} (5.3)

    For the one-soliton, the soliton moves with constant speed V = \frac{\beta}{\alpha} m^{4} along the line x = -\frac{\beta}{\alpha} m^{4} t . In that case, the amplitude is given by |u \mathstrut_{{{}}}^{{{}}}| = \frac{1}{2} \alpha m . The amplitude of the moving soliton stays constant as seen in Figure 1.

    Figure 1.  Spectral plane alongside three-dimensional (3D) and two-dimensional (2D), and the contours plots of |u \mathstrut_{{{}}}^{{{}}}| of the travelling one-soliton with parameters (\alpha, \beta) = (-2, -5) , (\lambda_{1}, \hat{\lambda}_{1}) = (i, -i) , {\rm w} \mathstrut_{{{1}}}^{{{}}} = (2, 1, -1, 1, -1) .

    Remark 5.1. Breather case: When the parameter \lambda_{1} equals m and is a real number, a breather with a period of \frac{\pi}{|\beta m^{5}|} is obtained, as illustrated in Figure 2. The solution for this breather can be expressed as

    \begin{align} u \mathstrut_{{{}}}^{{{}}}(x, t)& = \pm \frac{ \alpha m }{ e^{{{{\rm{i}}}} (\alpha m x + \beta m^{5} t)} + e^{-{{{\rm{i}}}} (\alpha m x + \beta m^{5} t)} } = \pm \frac{\alpha}{2} m \, sec (\alpha m x+\beta m^{5} t). \end{align} (5.4)
    Figure 2.  Spectral plane alongside three-dimensional (3D) and two-dimensional (2D), and the contours plots of |u \mathstrut_{{{}}}^{{{}}}| of the one-soliton breather with parameters (\alpha, \beta) = (-2, -5) , (\lambda_{1}, \hat{\lambda}_{1}) = (-2, -5) , {\rm w} \mathstrut_{{{1}}}^{{{}}} = (1, 1, 1, 1, 1) .

    For a general explicit formula for two-soliton solutions of the Sasa-Satsuma equation (1.1), i.e., when N = 2 , the configuration of the eigenvalues for this equation is given by (\lambda \mathstrut_{{{1}}}^{{{}}}, \lambda \mathstrut_{{{2}}}^{{{}}}, \hat{\lambda} \mathstrut_{{{1}}}^{{{}}}, \hat{\lambda} \mathstrut_{{{2}}}^{{{}}}) = (\lambda \mathstrut_{{{}}}^{{{}}}, -\overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}}, -\lambda \mathstrut_{{{}}}^{{{}}}, \overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}}) . As a result, we have three distinct cases as shown in Figure 3. In all cases, the eigenvalues \lambda \mathstrut_{{{1}}}^{{{}}}, \lambda \mathstrut_{{{2}}}^{{{}}} \in \mathbb{C}_{+} \cup \mathbb{R} and \hat{\lambda}_{1}, \hat{\lambda}_{2} \in \mathbb{C}_{-} \cup \mathbb{R} are all taken to be distinct, i.e., \lambda \mathstrut_{{{1}}}^{{{}}} \neq \lambda \mathstrut_{{{2}}}^{{{}}} and \hat{\lambda}_{1} \neq \hat{\lambda}_{2} .

    Figure 3.  Spectral planes of two-soliton eigenvalues cases.

    Case Ⅰ: If all eigenvalues in the complex plane are pure imaginary, that is \lambda \mathstrut_{{{1}}}^{{{}}} = {{{\rm{i}}}} m_{1} , \lambda \mathstrut_{{{2}}}^{{{}}} = {{{\rm{i}}}} m_{2} , \hat{\lambda}_{1} = -{{{\rm{i}}}} m_{1} , \hat{\lambda}_{2} = -{{{\rm{i}}}} m_{2} , for m_{1}, m_{2} > 0 and {\rm w} \mathstrut_{{{1}}}^{{{}}} = ({\rm w} \mathstrut_{{{11}}}^{{{}}}, {\rm w} \mathstrut_{{{12}}}^{{{}}}, -{\rm w} \mathstrut_{{{12}}}^{{{}}}, {\rm w} \mathstrut_{{{12}}}^{{{}}}, -{\rm w} \mathstrut_{{{12}}}^{{{}}})^{T} , then for simplicity of the solution, we take {\rm w} \mathstrut_{{{2}}}^{{{}}} = {\rm w} \mathstrut_{{{1}}}^{{{}}} . Hence, the solution in this nonlocal reverse-spacetime case is given by

    \begin{align} u \mathstrut_{{{}}}^{{{}}}(x, t)& = \pm {{{\rm{i}}}} \alpha (m_{1}^{2}-m_{2}^{2}) \frac{\mathsf{N} \mathstrut_{{{1}}}^{{{}}}}{\mathsf{D} \mathstrut_{{{1}}}^{{{}}}}, \end{align} (5.5)

    where

    \begin{align*} \mathsf{N} \mathstrut_{{{1}}}^{{{}}}(x, t) = & m_{2} e^{(\alpha_{1}+\alpha_{2}) m_{2} x - (\beta_{1}+\beta_{2}) m_{2}^{5} t} \Big( e^{-2 (\alpha_{1} m_{1} x +\beta_{1} m_{1}^{5} t)} + e^{-2 (\alpha_{2} m_{1} x +\beta_{2} m_{1}^{5} t)} \Big) \\ & -m_{1} e^{(\alpha_{1}+\alpha_{2}) m_{1} x - (\beta_{1}+\beta_{2}) m_{1}^{5} t} \Big( e^{-2 (\alpha_{1} m_{2} x +\beta_{1} m_{2}^{5} t)} + e^{-2 (\alpha_{2} m_{2} x +\beta_{2} m_{2}^{5} t)} \Big) , \end{align*} (5.6)
    \begin{align*} \mathsf{D} \mathstrut_{{{1}}}^{{{}}}(x, t) = & (m_{1}-m_{2})^{2} \Big( e^{-2 \alpha_{1} (m_{1}+m_{2}) x -2 \beta_{1} (m_{1}^{5}+m_{2}^{5}) t} + e^{-2 \alpha_{2} (m_{1}+m_{2}) x -2 \beta_{2} (m_{1}^{5}+m_{2}^{5}) t} \Big) \\ & +(m_{1}+m_{2})^{2} \Big( e^{-2 (\alpha_{1} m_{1} +\alpha_{2} m_{2}) x -2 (\beta_{1} m_{1}^{5} +\beta_{2} m_{2}^{5}) t} + e^{-2 (\alpha_{1} m_{2} +\alpha_{2} m_{1}) x -2 (\beta_{1} m_{2}^{5} +\beta_{2} m_{1}^{5}) t} \Big) \\ & -8 m_{1} m_{2} e^{- (\alpha_{1}+\alpha_{2}) (m_{1}+m_{2}) x - (\beta_{1}+\beta_{2}) (m_{1}^{5}+m_{2}^{5}) t}. & \end{align*} (5.7)

    If the eigenvalues \lambda \mathstrut_{{{1}}}^{{{}}} = -\hat{\lambda} \mathstrut_{{{1}}}^{{{}}} and \lambda \mathstrut_{{{2}}}^{{{}}} = -\hat{\lambda} \mathstrut_{{{2}}}^{{{}}} , then the two solitons move in the same direction before and after collision, where the faster soliton overtakes the slower one. An overlay of two traveling waves is shown in Figure 4, where the faster soliton overtakes the slower one from the right. Furthermore, in the pre and post collision, the amplitude remains unchanged.

    Figure 4.  Spectral plane alongside three-dimensional (3D) and two-dimensional (2D), and the contours plots of |u \mathstrut_{{{}}}^{{{}}}| of the two solitons interaction with parameters (\alpha, \beta) = (-2, -5) , (\lambda \mathstrut_{{{1}}}^{{{}}}, \lambda \mathstrut_{{{2}}}^{{{}}}, \hat{\lambda} \mathstrut_{{{1}}}^{{{}}}, \hat{\lambda} \mathstrut_{{{2}}}^{{{}}}) = (0.5{{{\rm{i}}}}, 0.7{{{\rm{i}}}}, -0.5{{{\rm{i}}}}, -0.7{{{\rm{i}}}}) , {\rm w} \mathstrut_{{{1}}}^{{{}}} = {\rm w} \mathstrut_{{{2}}}^{{{}}} = (2, 1, -1, 1, -1) .

    Case Ⅱ: In that case, if \lambda \mathstrut_{{{1}}}^{{{}}}, \lambda \mathstrut_{{{2}}}^{{{}}} \in \mathbb{C}_{+} are not pure imaginary, then the involution property (4.4) requires that \lambda \mathstrut_{{{2}}}^{{{}}} = -\overset{*}{\lambda} \mathstrut_{{{1}}}^{{{}}} , while in the lower half-plane \hat{\lambda}_{1} = - \lambda \mathstrut_{{{1}}}^{{{}}} and \hat{\lambda}_{2} = \overset{*}{\lambda} \mathstrut_{{{1}}}^{{{}}} .

    Let {\rm w} \mathstrut_{{{1}}}^{{{}}} = ({\rm w} \mathstrut_{{{11}}}^{{{}}}, {\rm w} \mathstrut_{{{12}}}^{{{}}}, {\rm w} \mathstrut_{{{12}}}^{{{}}}, {\rm w} \mathstrut_{{{12}}}^{{{}}}, {\rm w} \mathstrut_{{{12}}}^{{{}}})^{T} and {\rm w} \mathstrut_{{{2}}}^{{{}}} = {\rm w} \mathstrut_{{{1}}}^{{{}}} . the solution in this nonlocal reverse-spacetime case is given by

    \begin{align} u \mathstrut_{{{}}}^{{{}}}(x, t)& = {{{\rm{i}}}} 4 \alpha {{{\rm{Im}}}}(\lambda \mathstrut_{{{}}}^{{{2}}}) {\rm w} \mathstrut_{{{11}}}^{{{}}} {\rm w} \mathstrut_{{{12}}}^{{{}}} \frac{\mathsf{N} \mathstrut_{{{2}}}^{{{}}}}{\mathsf{D} \mathstrut_{{{2}}}^{{{}}}}, \end{align} (5.8)

    where

    \begin{align*} \mathsf{N} \mathstrut_{{{2}}}^{{{}}}(x, t) = & 2 {\rm w} \mathstrut_{{{11}}}^{{{2}}} {{{\rm{Re}}}} \Big( \overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}} e^{{{{\rm{i}}}} \big( 2 \alpha_{1} \lambda \mathstrut_{{{}}}^{{{}}} - (\alpha_{1}+\alpha_{2}) \overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}} \big) x + {{{\rm{i}}}} \big( 2 \beta_{1} \lambda \mathstrut_{{{}}}^{{{5}}} - (\beta_{1}+\beta_{2}) \overset{*}{\lambda} \mathstrut_{{{}}}^{{{5}}} \big) t} \Big) +8 {\rm w} \mathstrut_{{{12}}}^{{{2}}} {{{\rm{Re}}}} \Big( \overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}} e^{{{{\rm{i}}}} \big( 2 \alpha_{2} \lambda \mathstrut_{{{}}}^{{{}}} - (\alpha_{1}+\alpha_{2}) \overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}} \big) x + {{{\rm{i}}}} \big( 2 \beta_{2} \lambda \mathstrut_{{{}}}^{{{5}}} - (\beta_{1}+\beta_{2}) \overset{*}{\lambda} \mathstrut_{{{}}}^{{{5}}} \big) t} \Big). & \end{align*} (5.9)
    \begin{align*} \mathsf{D} \mathstrut_{{{2}}}^{{{}}}(x, t) = & 4 ({{{\rm{Re}}}}(\lambda \mathstrut_{{{}}}^{{{}}}))^{2} {\rm w} \mathstrut_{{{11}}}^{{{4}}} e^{-4 \alpha_{1} {{{\rm{Im}}}}(\lambda \mathstrut_{{{}}}^{{{}}}) x -4 \beta_{1} {{{\rm{Im}}}}(\lambda \mathstrut_{{{}}}^{{{5}}}) t} +64 ({{{\rm{Re}}}}(\lambda \mathstrut_{{{}}}^{{{}}}))^{2} {\rm w} \mathstrut_{{{12}}}^{{{4}}} e^{ -4 \alpha_{2} {{{\rm{Im}}}}(\lambda \mathstrut_{{{}}}^{{{}}}) x -4 \beta_{2} {{{\rm{Im}}}}(\lambda \mathstrut_{{{}}}^{{{5}}}) t } \end{align*} (5.10)
    \begin{align*} & -32 ({{{\rm{Im}}}}(\lambda \mathstrut_{{{}}}^{{{}}}))^{2} {\rm w} \mathstrut_{{{11}}}^{{{2}}} {\rm w} \mathstrut_{{{12}}}^{{{2}}} {{{\rm{Re}}}} \Big( e^{{{{\rm{i}}}} 2 (\alpha_{2} \lambda \mathstrut_{{{}}}^{{{}}} -\alpha_{1} \overset{*}{\lambda} \mathstrut_{{{}}}^{{{}}}) x +{{{\rm{i}}}} 2 (\beta_{2} \lambda \mathstrut_{{{}}}^{{{5}}} -\beta_{1} \overset{*}{\lambda} \mathstrut_{{{}}}^{{{5}}}) t} \Big) \\ & +32 |\lambda \mathstrut_{{{}}}^{{{}}}|^{2} {\rm w} \mathstrut_{{{11}}}^{{{2}}} {\rm w} \mathstrut_{{{12}}}^{{{2}}} e^{ -2 (\alpha_{1}+\alpha_{2}) {{{\rm{Im}}}}(\lambda \mathstrut_{{{}}}^{{{}}}) x -2 (\beta_{1}+\beta_{2}) {{{\rm{Im}}}}(\lambda \mathstrut_{{{}}}^{{{5}}}) t}. & \end{align*} (5.11)

    In this configuration of the eigenvalues, the two solitons S_{1} and S_{2} move in the same direction as shown in Figure 5. The soliton wave S_{2} with the higher speed overtakes the wave S_{1} and after the collision, the wave S_{1} gains speed and overtakes S_{2} . Therefore, we have a continuously occurring phenomenon of periodic collisions or an oscillatory-breather. While in Figure 6, we have a two-soliton double-humped keeping the shape as it moves.

    Figure 5.  Spectral plane alongside three-dimensional (3D) and two-dimensional (2D), and the contours plots of |u \mathstrut_{{{}}}^{{{}}}| of the two solitons interaction with parameters (\alpha, \beta) = (-2, -5) , (\lambda \mathstrut_{{{1}}}^{{{}}}, \lambda \mathstrut_{{{2}}}^{{{}}}, \hat{\lambda} \mathstrut_{{{1}}}^{{{}}}, \hat{\lambda} \mathstrut_{{{2}}}^{{{}}}) = (0.1+0.4{{{\rm{i}}}}, -0.1+0.4{{{\rm{i}}}}, -0.1-0.4{{{\rm{i}}}}, 0.1-0.4{{{\rm{i}}}}) , {\rm w} \mathstrut_{{{1}}}^{{{}}} = {\rm w} \mathstrut_{{{2}}}^{{{}}} = (2, 1, 1, 1, 1) .
    Figure 6.  Spectral plane alongside three-dimensional (3D) and two-dimensional (2D), and the contours plots of |u \mathstrut_{{{}}}^{{{}}}| of the two solitons interaction with parameters (\alpha, \beta) = (-2, -5) , (\lambda \mathstrut_{{{1}}}^{{{}}}, \lambda \mathstrut_{{{2}}}^{{{}}}, \hat{\lambda} \mathstrut_{{{1}}}^{{{}}}, \hat{\lambda} \mathstrut_{{{2}}}^{{{}}}) = (0.3+0.3{{{\rm{i}}}}, -0.3+0.3{{{\rm{i}}}}, -0.3-0.3{{{\rm{i}}}}, 0.3-0.3{{{\rm{i}}}}) , {\rm w} \mathstrut_{{{1}}}^{{{}}} = {\rm w} \mathstrut_{{{2}}}^{{{}}} = (2, 1, 1, 1, 1) .

    Case Ⅲ: In that case, if \lambda \mathstrut_{{{1}}}^{{{}}} = {{{\rm{i}}}} m \in {{{\rm{i}}}} \mathbb{R}_{+} is pure imaginary and \lambda \mathstrut_{{{2}}}^{{{}}} = n \in \mathbb{R}_{+} , then the involution property (4.4) requires that \hat{\lambda} \mathstrut_{{{1}}}^{{{}}} = - {{{\rm{i}}}} m and \hat{\lambda} \mathstrut_{{{2}}}^{{{}}} = - n .

    Let {\rm w} \mathstrut_{{{1}}}^{{{}}} = {\rm w} \mathstrut_{{{2}}}^{{{}}} = ({\rm w} \mathstrut_{{{11}}}^{{{}}}, {\rm w} \mathstrut_{{{12}}}^{{{}}}, -{\rm w} \mathstrut_{{{12}}}^{{{}}}, {\rm w} \mathstrut_{{{12}}}^{{{}}}, -{\rm w} \mathstrut_{{{12}}}^{{{}}})^{T} . The solution for this nonlocal reverse-spacetime case reads

    \begin{align} u \mathstrut_{{{}}}^{{{}}}(x, t) = & -2 \alpha (m^{2}+n^{2}) {\rm w} \mathstrut_{{{11}}}^{{{}}} {\rm w} \mathstrut_{{{12}}}^{{{}}} \frac{\mathsf{N} \mathstrut_{{{3}}}^{{{}}}}{\mathsf{D} \mathstrut_{{{3}}}^{{{}}}}, \end{align} (5.12)

    where

    \begin{align*} \mathsf{N} \mathstrut_{{{3}}}^{{{}}}(x, t) = & {{{\rm{i}}}} m e^{-(\alpha_{1}+\alpha_{2}) m x -(\beta_{1}+\beta_{2}) m^{5} t} \Big( {\rm w} \mathstrut_{{{11}}}^{{{2}}} e^{{{{\rm{i}}}} 2 \alpha_{1} n x +{{{\rm{i}}}} 2 \beta_{1} n^{5} t} + 4 {\rm w} \mathstrut_{{{12}}}^{{{2}}} e^{{{{\rm{i}}}} 2 \alpha_{2} n x +{{{\rm{i}}}} 2 \beta_{2} n^{5} t} \Big) \\& - n e^{{{{\rm{i}}}} (\alpha_{1}+\alpha_{2}) n x + i (\beta_{1}+\beta_{2}) n^{5} t} \Big( {\rm w} \mathstrut_{{{11}}}^{{{2}}} e^{-2 \alpha_{1} m x - 2 \beta_{1} m^{5} t} + 4 {\rm w} \mathstrut_{{{12}}}^{{{2}}} e^{-2 \alpha_{2} m x - 2 \beta_{2} m^{5} t} \Big), & \end{align*} (5.13)
    \begin{align*} \mathsf{D} \mathstrut_{{{3}}}^{{{}}}(x, t) = & 4 ({{{\rm{i}}}} m+n)^{2} {\rm w} \mathstrut_{{{11}}}^{{{2}}} {\rm w} \mathstrut_{{{12}}}^{{{2}}} \Big( e^{ 2({{{\rm{i}}}} \alpha_{1} n -\alpha_{2} m) x + 2 ({{{\rm{i}}}} \beta_{1} n^{5} -\beta_{2} m^{5}) t} + e^{ 2({{{\rm{i}}}} \alpha_{2} n -\alpha_{1} m) x + 2 ({{{\rm{i}}}} \beta_{2} n^{5} -\beta_{1} m^{5}) t} \Big) \\ & - ({{{\rm{i}}}} m +n)^{2} {\rm w} \mathstrut_{{{11}}}^{{{4}}} e^{2 \alpha_{1} ({{{\rm{i}}}} n -m) x +2 \beta_{1} ({{{\rm{i}}}} n^{5} -m^{5}) t} - 16 ({{{\rm{i}}}} m +n)^{2} {\rm w} \mathstrut_{{{12}}}^{{{4}}} e^{2 \alpha_{2} ({{{\rm{i}}}} n -m) x +2 \beta_{2} ({{{\rm{i}}}} n^{5} -m^{5}) t} \\& -{{{\rm{i}}}} 32 mn {\rm w} \mathstrut_{{{11}}}^{{{2}}} {\rm w} \mathstrut_{{{12}}}^{{{2}}} e^{(\alpha_{1}+\alpha_{2}) ({{{\rm{i}}}} n -m) x +(\beta_{1}+\beta_{2}) ({{{\rm{i}}}} n^{5} -m^{5}) t}. & \end{align*} (5.14)

    Taking a look at this dynamics, we can observe a soliton and a breather moving in the same direction. They interact continuously while the soliton travels through the breather. This is shown in Figure 7. Another possible different dynamics is when a soliton and a breather travel together at the same speed without interacting, as seen in Figure 8, where the soliton in the latter situation keeps its shape at all times while moving with the breather as a packet.

    Figure 7.  Spectral plane alongside three-dimensional (3D) and two-dimensional (2D), and the contours plots of |u \mathstrut_{{{}}}^{{{}}}| of the continuous interaction between the soliton wave and the breather. The parameters are (\alpha, \beta) = (-4, -5) , (\lambda \mathstrut_{{{1}}}^{{{}}}, \lambda \mathstrut_{{{2}}}^{{{}}}, \hat{\lambda} \mathstrut_{{{1}}}^{{{}}}, \hat{\lambda} \mathstrut_{{{2}}}^{{{}}}) = (0.5 {{{\rm{i}}}}, 0.4, -0.5 {{{\rm{i}}}}, -0.4) , {\rm w} \mathstrut_{{{1}}}^{{{}}} = {\rm w} \mathstrut_{{{2}}}^{{{}}} = (2, 4, -4, 4, -4) .
    Figure 8.  Spectral plane alongside three-dimensional (3D) and two-dimensional (2D), and the contours plots of |u \mathstrut_{{{}}}^{{{}}}| of the soliton wave and the breather. The parameters are (\alpha, \beta) = (-2, -10) , (\lambda \mathstrut_{{{1}}}^{{{}}}, \lambda \mathstrut_{{{2}}}^{{{}}}, \hat{\lambda} \mathstrut_{{{1}}}^{{{}}}, \hat{\lambda} \mathstrut_{{{2}}}^{{{}}}) = (0.6 {{{\rm{i}}}}, 0.6, -0.6 {{{\rm{i}}}}, -0.6) , {\rm w} \mathstrut_{{{1}}}^{{{}}} = {\rm w} \mathstrut_{{{2}}}^{{{}}} = (2, 2.5, -2.5, 2.5, -2.5) .

    Two soliton breather: In this particular case, the configuration (4.5) compels a two-soliton breather to behave as a one-soliton breather if all eigenvalues are real. That is, since \lambda \mathstrut_{{{1}}}^{{{}}} \neq \lambda \mathstrut_{{{2}}}^{{{}}} and \hat{\lambda}_{1} \neq \hat{\lambda}_{2} , then \lambda \mathstrut_{{{2}}}^{{{}}} and \hat{\lambda} \mathstrut_{{{2}}}^{{{}}} are redundant, as seen in Figure 9, and we take \lambda \mathstrut_{{{2}}}^{{{}}} = \hat{\lambda} \mathstrut_{{{2}}}^{{{}}} = 0 . Consequently, it reduces to the breather solution, previously illustrated in Figure 2.

    Figure 9.  Spectral plane of the two-soliton breather.

    To summarize, in this paper, we investigated a nonlocal reverse-spacetime scalar Sasa-Satsuma equation. This equation is derived from a nonlocal integrable hierarchy, where the nonlocal nature is embodied within the hierarchy's structure. The latter construction allows nonlocal systems to be constructed without using reductions and guarantees integrability. Moreover, the hierarchy provides mKdV-type nonlocal integrable equations and eliminate NLS-type ones. Further, a kind of soliton solutions was generated, and the Hamiltonian structure was derived for the resulting nonlocal Sasa-Satsuma equation.

    For fundamental soliton solutions, Solitons in local equations exhibit elastic interactions in a superposition fashion, whereas in nonlocal equations, this behavior may not always hold true. Additionally, soliton solutions in nonlocal equations may develop singularities at a specific time, a phenomenon that does not occur in the presented Sasa-Satsuma equation.

    Moreover, reverse-spacetime equations exhibit very different dynamical behaviors than reverse-time and reverse-space equations [26]. For instance, it can be seen from the plotted figures that the one-soliton to the reverse-spacetime Sasa-Satsuma equation is a moving soliton, while there is a stationary one-soliton in the reverse-time and reverse-space NLS equation [27].

    Finally, we remark that it remains intriguing to solve nonlocal integrable equations in the cases of reverse-spacetime, reversespace, and reverse-time by different techniques such as Darboux transformations and the Hirota bilinear method [28,29,30].

    Ahmed M. G. Ahmed, Alle Adjiri and Solomon Manukure: Conceptualization, Formal analysis, Investigation, Methodology, Resources, Software, Validation, Visualization, Writing-original draft, Writing-review & editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Dr. Solomon Manukure is a Guest Editor of special issue “Emerging Trends in Algebra, Geometry, and Topology of Soliton Systems” for AIMS Mathematics. Dr. Solomon Manukure was not involved in the editorial review and the decision to publish this article. The authors declare that they have no conflicts of interest.



    [1] Z. Z. Kang, T. C. Xia, Construction of multi-soliton solutions of the N-coupled Hirota equations in an optical fiber, Chinese Phys. Lett., 36 (2019), 110201. https://doi.org/10.1088/0256-307X/36/11/110201 doi: 10.1088/0256-307X/36/11/110201
    [2] A. R. Osborne, Nonlinear ocean waves and the inverse scattering transform, Academic Press, 2010.
    [3] M. J. Ablowitz, Z. H. Musslimani, Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation, Nonlinearity, 29 (2016), 915. https://doi.org/10.1088/0951-7715/29/3/915 doi: 10.1088/0951-7715/29/3/915
    [4] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., 53 (1974), 249–315. https://doi.org/10.1002/sapm1974534249 doi: 10.1002/sapm1974534249
    [5] M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, 1991.
    [6] M. J. Ablowitz, H. Segur, Solitons and the inverse scattering transform, Philadelphia: SIAM, 1981.
    [7] W. X. Ma, Y. H. Huang, F. D. Wang, Inverse scattering transforms and soliton solutions of nonlocal reverse-space nonlinear Schrodinger hierarchies, Stud. Appl. Math., 145 (2020), 563–585. https://doi.org/10.1111/sapm.12329 doi: 10.1111/sapm.12329
    [8] L. M. Ling, W. X. Ma, Inverse scattering and soliton solutions of nonlocal complex reverse-spacetime modified Korteweg-de Vries hierarchies, Symmetry, 13 (2021), 1–17. https://doi.org/10.3390/sym13030512 doi: 10.3390/sym13030512
    [9] J. Yang, Physically significant nonlocal nonlinear Schrödinger equation and its soliton solutions, Phys. Rev. E, 98 (2018), 042202.
    [10] M. J. Ablowitz, A. S. Fokas, Complex variables: introduction and applications, Cambridge University Press, 2003.
    [11] W. X. Ma, Nonlocal PT-symmetric integrable equations and related Riemann-Hilbert problems, Partial Differ. Equ. Appl. Math., 4 (2021), 100190. https://doi.org/10.1016/j.padiff.2021.100190 doi: 10.1016/j.padiff.2021.100190
    [12] X. G. Geng, M. M. Chen, K. D. Wang, Application of the nonlinear steepest descent method to the coupled Sasa-Satsuma equation, East Asian J. Appl. Math., 11 (2021), 181–206. https://doi.org/10.4208/eajam.220920.250920 doi: 10.4208/eajam.220920.250920
    [13] Y. H. Li, R. M. Li, B. Xue, X. G. Geng, A generalized complex mKdV equation: Darboux transformations and explicit solutions, Wave Motion, 98 (2020), 102639. https://doi.org/10.1016/j.wavemoti.2020.102639 doi: 10.1016/j.wavemoti.2020.102639
    [14] Z. K. Kang, T. C. Xia, W. X. Ma, Riemann-Hilbert approach and N-soliton solution for an eighth-order nonlinear Schrödinger equation in an optical fiber, Adv. Differ. Equ., 2019 (2019), 1–14. https://doi.org/10.1186/s13662-019-2121-5 doi: 10.1186/s13662-019-2121-5
    [15] W. X. Ma, Riemann-Hilbert problems of a six-component fourth-order AKNS system and its soliton solutions, Comput. Appl. Math., 37 (2018), 6359–6375. https://doi.org/10.1007/s40314-018-0703-6 doi: 10.1007/s40314-018-0703-6
    [16] W. X. Ma, Riemann-Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction, Math. Methods Appl. Sci., 42 (2019), 1099–1113. https://doi.org/10.1002/mma.5416 doi: 10.1002/mma.5416
    [17] W. X. Ma, Y. Zhou, Reduced D-Kaup-Newell soliton hierarchies from sl(2, \mathbb{R}) and so(3, \mathbb{R}), Int. J. Geom. Methods Modern Phys., 13 (2016), 1650105. https://doi.org/10.1142/S021988781650105X doi: 10.1142/S021988781650105X
    [18] W. X. Ma, Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations, Appl. Math. Lett., 102 (2020), 106161. https://doi.org/10.1016/j.aml.2019.106161 doi: 10.1016/j.aml.2019.106161
    [19] W. X. Ma, Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system, J. Geom. Phys., 132 (2018), 45–54. https://doi.org/10.1016/j.geomphys.2018.05.024 doi: 10.1016/j.geomphys.2018.05.024
    [20] W. X. Ma, Riemann-Hilbert problems and soliton solutions of type (\lambda^{*}, -\lambda^{*}) reduced nonlocal integrable mKdV hierarchies, Mathematics, 10 (2022), 1–21. https://doi.org/10.3390/math10060870 doi: 10.3390/math10060870
    [21] W. X. Ma, Riemann-Hilbert problems and soliton solutions of nonlocal reverse-time NLS hierarchies, Acta Math. Sci., 42 (2022), 127–140. https://doi.org/10.1007/s10473-022-0106-z doi: 10.1007/s10473-022-0106-z
    [22] J. Yang, Nonlinear waves in integrable and non-integrable systems, Philadelphia: SIAM, 2010.
    [23] T. Trogdon, S. Olver, Riemann-Hilbert problems, their numerical solution, and the computation of nonlinear special functions, Philadelphia: SIAM, 2015.
    [24] P. G. Drazin, R. S. Johnson, Solitons: an introduction, Cambridge University Press, 1989.
    [25] W. X. Ma, Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations, Proc. Amer. Math. Soc., 149 (2021), 251–263.
    [26] J. K. Yang, General N-solitons and their dynamics in several nonlinear Schrödinger equations, Phys. Lett. A, 383 (2019), 328–337. https://doi.org/10.1016/j.physleta.2018.10.051 doi: 10.1016/j.physleta.2018.10.051
    [27] A. Adjiri, A. M. G. Ahmed, W. X. Ma, Riemann-Hilbert problems of a nonlocal reverse-time six-component AKNS system of fourth order and its exact soliton solutions, Int. J. Modern Phys. B, 35 (2021), 2150035. https://doi.org/10.1142/S0217979221500351 doi: 10.1142/S0217979221500351
    [28] V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Springer, 1991.
    [29] R. Hirota, The direct method in soliton theory, Cambridge University Press, 2004.
    [30] Y. L. Sun, W. X. Ma, J. P. Yu, N-soliton solutions and dynamic property analysis of a generalized three-component Hirota-Satsuma coupled KdV equation, Appl. Math. Lett., 120 (2021), 107224. https://doi.org/10.1016/j.aml.2021.107224 doi: 10.1016/j.aml.2021.107224
  • This article has been cited by:

    1. Yanlin Li, H. S. Abdel-Aziz, H. M. Serry, F. M. El-Adawy, M. Khalifa Saad, Geometric visualization of evolved ruled surfaces via alternative frame in Lorentz-Minkowski 3-space, 2024, 9, 2473-6988, 25619, 10.3934/math.20241251
    2. Ibrahim Alraddadi, Faisal Alsharif, Sandeep Malik, Hijaz Ahmad, Taha Radwan, Karim K. Ahmed, Innovative soliton solutions for a (2+1)-dimensional generalized KdV equation using two effective approaches, 2024, 9, 2473-6988, 34966, 10.3934/math.20241664
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1290) PDF downloads(87) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog