Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

Notes on the generalized Perron complements involving inverse N0-matrices

  • In the context of inverse N0-matrices, this study focuses on the closure of generalized Perron complements by utilizing the characteristics of M-matrices, nonnegative matrices, and inverse N0-matrices. In particular, we illustrate that the inverse N0-matrix and its Perron complement matrix possess the same spectral radius. Furthermore, we present certain general inequalities concerning generalized Perron complements, Perron complements, and submatrices of inverse N0-matrices. Finally, we provide specific examples to verify our findings.

    Citation: Qin Zhong, Ling Li. Notes on the generalized Perron complements involving inverse N0-matrices[J]. AIMS Mathematics, 2024, 9(8): 22130-22145. doi: 10.3934/math.20241076

    Related Papers:

    [1] Huizhen Qu, Jianwen Zhou . S-asymptotically ω-periodic dynamics in a fractional-order dual inertial neural networks with time-varying lags. AIMS Mathematics, 2022, 7(2): 2782-2809. doi: 10.3934/math.2022154
    [2] Yuehong Zhang, Zhiying Li, Wangdong Jiang, Wei Liu . The stability of anti-periodic solutions for fractional-order inertial BAM neural networks with time-delays. AIMS Mathematics, 2023, 8(3): 6176-6190. doi: 10.3934/math.2023312
    [3] Hongmei Zhang, Xiangnian Yin, Hai Zhang, Weiwei Zhang . New criteria on global Mittag-Leffler synchronization for Caputo-type delayed Cohen-Grossberg Inertial Neural Networks. AIMS Mathematics, 2023, 8(12): 29239-29259. doi: 10.3934/math.20231497
    [4] Ivanka Stamova, Gani Stamov . Impulsive control strategy for the Mittag-Leffler synchronization of fractional-order neural networks with mixed bounded and unbounded delays. AIMS Mathematics, 2021, 6(3): 2287-2303. doi: 10.3934/math.2021138
    [5] Yang Xu, Zhouping Yin, Yuanzhi Wang, Qi Liu, Anwarud Din . Mittag-Leffler projective synchronization of uncertain fractional-order fuzzy complex valued neural networks with distributed and time-varying delays. AIMS Mathematics, 2024, 9(9): 25577-25602. doi: 10.3934/math.20241249
    [6] Dan-Ning Xu, Zhi-Ying Li . Mittag-Leffler stabilization of anti-periodic solutions for fractional-order neural networks with time-varying delays. AIMS Mathematics, 2023, 8(1): 1610-1619. doi: 10.3934/math.2023081
    [7] Pratap Anbalagan, Evren Hincal, Raja Ramachandran, Dumitru Baleanu, Jinde Cao, Michal Niezabitowski . A Razumikhin approach to stability and synchronization criteria for fractional order time delayed gene regulatory networks. AIMS Mathematics, 2021, 6(5): 4526-4555. doi: 10.3934/math.2021268
    [8] Wei Liu, Qinghua Zuo, Chen Xu . Finite-time and global Mittag-Leffler stability of fractional-order neural networks with S-type distributed delays. AIMS Mathematics, 2024, 9(4): 8339-8352. doi: 10.3934/math.2024405
    [9] Mohammed D. Kassim . A fractional Halanay inequality for neutral systems and its application to Cohen-Grossberg neural networks. AIMS Mathematics, 2025, 10(2): 2466-2491. doi: 10.3934/math.2025115
    [10] Tiecheng Zhang, Liyan Wang, Yuan Zhang, Jiangtao Deng . Finite-time stability for fractional-order fuzzy neural network with mixed delays and inertial terms. AIMS Mathematics, 2024, 9(7): 19176-19194. doi: 10.3934/math.2024935
  • In the context of inverse N0-matrices, this study focuses on the closure of generalized Perron complements by utilizing the characteristics of M-matrices, nonnegative matrices, and inverse N0-matrices. In particular, we illustrate that the inverse N0-matrix and its Perron complement matrix possess the same spectral radius. Furthermore, we present certain general inequalities concerning generalized Perron complements, Perron complements, and submatrices of inverse N0-matrices. Finally, we provide specific examples to verify our findings.



    In 1986, Babcock and Westervelt [1] first introduced an inertial term into neural networks. Second-order inertial neural networks are an extension of traditional neural networks that include a second-order term in their update formula. In the practical application of neural networks, such addition of inertial terms can lead to more complicated dynamical behaviors, such as bifurcation and chaos [2]. In the past decade, researchers have applied second-order inertial neural networks to various tasks, including recommendation systems, image recognition, and natural language processing. They have shown that these networks can achieve faster convergence and better generalization compared to traditional neural networks. Many efforts have been devoted for stability analysis of the inertial neural networks, and many interesting results have been established, such as [3,4,5].

    Fuzzy cellular neural networks are combined with fuzzy logic and neural networks, which were initially introduced by Yang and Yang [6] in 1996. For neural networks, fuzzy logic can be used to handle uncertain inputs or outputs by defining fuzzy membership functions, which enables the network to make decisions based on partial or ambiguous information. Since fuzzy neural networks are more suitable and potential to tackle practical general problems, during the past few decades, a lot of results on the stability behaviors for fuzzy neural networks with delay have been obtained, see [7,8,9,10,11,12,13,14] and the references therein.

    As we all know, compared with integer-order derivative, fractional-order derivatives provide a magnificent approach to describe memory and hereditary properties of various processes. Thus, it becomes more convenient and accurate to neural networks using fractional-order derivatives than integer-order ones. Dynamical behavior analysis, as well as existence, uniqueness, and stability of the equilibrium point of fractional order neural networks, has concerned growing interest in the past decades. Recently, the various kinds of stability problems for fractional-order neural networks, including Mittag-Leffler stability, asymptotic stability and uniform stability have been widely discussed, and some excellent results were obtained in both theory and applications. See, for example, previous works [15,16,17,18,19,20,21,22,23], and the references therein.

    Fractional-order fuzzy cellular neural networks (FOFCNNs) are a type of neural network that combines the concepts of fuzzy logic and fractional calculus. They have been applied in various fields, including image processing, control systems, and pattern recognition. The analysis of stability for fractional-order fuzzy cellular neural networks requires the use of specialized methods, such as the fractional Lyapunov method and the Lyapunov function based on fuzzy sets to verify global, asymptotic and finite-time stability. For example, by using the fractional Barbalats lemma, Riemann-Liouville operator and Lyapunov stability theorem, Chen et.al. in [24] studied the asymptotic stability of delayed fractional-order fuzzy neural networks with fixed-time impulse. Zhao et.al. [25] investigated the finite-time synchronization for a class of fractional-order memristive fuzzy neural networks with leakage and transmission delays. In [26], Yang et.al. studied the finite-time stability for fractional-order fuzzy cellular neural networks involving leakage and discrete delays. By applying Lyapunov stability theorem and inequality scaling skills, Syed Ali et.al. [27] considered the impulsive effects on the stability equilibrium solution for Riemann-Liouville fractional-order fuzzy BAM neural networks with time delay. Recently, Hu et.al. [28] studied the finite-time stabilization of fractional-order quaternion-valued fuzzy NNs.

    To the best of our knowledge, there is no paper on the global Mittag-Leffler stability of the fractional order fuzzy inertial neural networks with delays in the literature. There are several difficulties in handling fractional-order fuzzy inertial neural networks (FOFINNs). First, designing the structure and parameters of FOFINNs is challenging because of the high dimensionality of the network. Second, training FOFINNs is computationally intensive and requires specialized optimization algorithms. Finally, the interpretability and explainability of FOFINNs can be difficult, as the fuzzy logic, fractional calculus components and inertial terms can make it difficult to understand the underlying mechanisms of the model.

    Motivated by the previous works mentioned above, we first propose a class of new Capoto fractional-order fuzzy inertial neural networks (CFOFNINND) with delays. The primary contributions of this paper can be summarized as follows:

    (1) The global fractional Halanay inequalities and Lyapunov functional approach for studying the global Mittag-Leffler stability (MLS) of Caputo fractional-order fuzzy neural-type inertial neural networks with delay (CFOFNINND) are introduced;

    (2) A new sufficient condition of the existence and uniqueness of the equilibrium solution for an CFOFNINND is established by means of Banach contraction mapping principle;

    (3) The GMLS conditions are established, which are concise and easy to verify.

    The remaining of this paper is structured as follows. In section 2, we will provide some lemmas that will help us to prove our main results. In section 3, the existence and uniqueness of equilibrium point of CFOFNINND are proved by using contraction mapping principle. Moreover, by constructing suitable Lyapunov functional, using the global fractional Halanay inequalities, the global Mittag-Leffler stability of CFOFNINND is derived. Additionally, a numerical example is provided to show the feasibility of the approaches in section 4. Finally, this article is concluded in Section 5.

    In this paper, we consider the following fractional-order fuzzy neural-type inertial neural networks with delay (FOFNINND):

    CDβ(CDβxi)(t)=ai CDβxi(t)cixi(t)+nj=1aijfj(xj(t))+nj=1bijμj+nj=1cijgj(xj(tτ))+nj=1αijfj(xj(tτ))+nj=1βijgj(xj(tτ))+nj=1Tijμj+nj=1Hijμj+Ii, (2.1)

    where CDβxi(t)=1Γ(1β)t0(tτ)βxi(τ)dτ denotes the Caputo fractional derivative of order β (0<β1), n is the amount of units in the neural networks, xi(t) represents the state of ith neuron, ai>0, ci>0 are constants, τ>0 is the time delay, fj(xj(t)) represents the output of neurons at time t, gj(xj(tτ)) represents the output of neurons at time tτ, aij responds to the synaptic connection weight of the unit j to the unit i at time t, cij responds to the synaptic connection weight of the unit j to the unit i at time tτj, and represent the fuzzy OR and fuzzy AND mapping, respectively; αij, βij, Tij and Hij denote the elements of fuzzy feedback MIN template, fuzzy feedback MAX template, fuzzy feed-forward MIN template and fuzzy feed-forward MAX template, respectively; μij denotes the external input; Ii represents the external bias of ith neuron.

    The initial conditions for system (2.1) is

    xi(s)=ϕi(s),CDβxi(s)=ψi(s),s[τ,0]. (2.2)

    Remark 2.1. If β=1, then system (2.1) is reduce to the following delayed fuzzy inertial neural networks :

    xi(t)=aixi(t)cixi(t)+nj=1aijfj(xj(t))+nj=1bijμj+nj=1cijgj(xj(tτ))+nj=1αijfj(xj(tτ))+nj=1βijgj(xj(tτ))+nj=1Tijμj+nj=1Hijμj+Ii.

    In this section, we present some definitions and lemmas about Caputo fractional calculus, which will be used in the subsequent theoretical analysis.

    Definition 2.1 [29]. The fractional integral of order α>0 for a function x(t) is defined as

    Dαx(t)=1Γ(α)t0(tτ)α1x(τ)dτ.

    Definition 2.2 [30]. The Caputo derivative with fractional order α for a continuous function x(t) is denotes as

    CDαx(t)=1Γ(mα)t0(tτ)mα1x(m)(τ)dτ,

    in which m1<α<m, mZ+. Particularly, when 0<α<1

    CDαx(t)=1Γ(1α)t0(tτ)αx(τ)dτ.

    According to Definition 2.2, we have

    CDα(kx(t)+ly(t))=kCDαx(t)+lCDαy(t),k,lR.

    Definition 2.3 [31]. The equilibrium point x=(x1,x2,,xn)T of CFOFNINND (2.1) is said to be globally Mittag-Leffler stable, if there exists positive constant γ, such that for any solution x(t)=(x1(t),x2(t),,xn(t)) of (2.1) with initial value (2.2), we have

    x(t)xM(ϕ,ψ)Eα(γtα),t0,

    where

    x(t)x=ni=1|xi(t)xi|,ϕ=sup

    M(\|\phi\|, \|\psi\|) \ge 0 and E_{\alpha}(\cdot) is a Mittag-Leffler function.

    Remark 2.2. The global Mittag-Leffler stability implies global asymptotic stability.

    Lemma 2.1 [31]. Let 0 < \alpha < 1 . If G(t) \in C^1[t_0, +\infty) , then

    \mbox{}^C D^{\alpha} |G(t)| \le {\rm sgn}(G(t)) \mbox{}^C D^{\alpha} G(t), \quad t \ge t_0.

    Lemma 2.2 [32]. Assume x(t) and y(t) be two states of system (2.1), then we have

    \left|\bigwedge \limits_{j = 1}^n \alpha_{ij} f_j(x_j(t)) - \bigwedge \limits_{j = 1}^n \alpha_{ij} f_j(y_j(t))\right| \le \sum \limits_{j = 1}^n |\alpha_{ij}| |f_j(x_j(t)) - f_j(y_j(t)))|,
    \left|\bigvee \limits_{j = 1}^n \beta_{ij} g_j(x_j(t)) - \bigvee \limits_{j = 1}^n \beta_{ij} g_j(y_j(t))\right| \le \sum \limits_{j = 1}^n |\beta_{ij}| |g_j(x_j(t)) - g_j(y_j(t)))|.

    Lemma 2.3 [33]. Let a, b, c, \rho : [0, \infty) \to \mathbb{R} be continuous functions and b, c, \rho be nonnegative. Assume that

    \sup \limits_{t \ge 0} [a(t) + b(t)] = \Lambda < 0, \quad \sup \limits_{t \ge 0} \frac{-c(t)}{a(t) + b(t)} < + \infty, \quad \rho(t) \le h \ for \ all \ t \ge 0.

    If a nonnegative continuous function u: [-h, T] \to \mathbb{R} satisfies the following fractional inequality

    \mbox{}^C D^{\alpha} u(t) \le a(t) u(t) + b(t) u(t - \rho(t)) + c(t), \quad t \ge 0,
    u(\theta) = \varphi(\theta), \quad - h \le \theta \le 0,

    then

    u(t) \le E_{\alpha}(\lambda^* t^{\alpha}) \sup \limits_{-h \le \theta \le 0} |\varphi(\theta)| + \sup \limits_{0 \le T} \frac{-c(t)}{a(t) + b(t)}, \quad t \ge 0,

    where \lambda^* = \inf \limits_{\lambda} \left\{\lambda - a(t) - \frac{b(t)}{E_{\alpha}(\lambda h^{\alpha})} \ge 0, \ \forall t \ge 0\right\} .

    In particular, if b(t) and c(t) are bounded functions, namely 0 \le b(t) \le \bar{b} and 0 \le c(t) \le \bar{c} for all t > 0 , then

    u(t) \le E_{\alpha}(\bar{\lambda} t^{\alpha}) \sup \limits_{-h \le \theta \le 0} |\varphi(\theta)| - \frac{\bar{c}}{\Lambda}, \quad for \ all \ t \ge 0,

    where \bar{\lambda} = (1+ \Gamma(1-\alpha) \bar{b} h^{\alpha})^{-1} \Lambda .

    From Lemma 2.3, we obtain

    Corollary 2.4. If a nonnegative continuous function u: [-h, T] \to \mathbb{R} satisfies the following fractional inequality

    \mbox{}^C D^{\alpha} u(t) \le - \mu u(t) + \gamma u(t - \rho(t)), \quad t \ge 0,
    u(\theta) = \varphi(\theta), \quad - h \le \theta \le 0,

    where \mu > \gamma > 0 and \rho(t) \le h , then

    u(t) \le E_{\alpha}(\bar{\lambda} t^{\alpha}) \sup \limits_{-h \le \theta \le 0} |\varphi(\theta)|, \quad for \ all \ t \ge 0,

    where \bar{\lambda} = - (1+ \Gamma(1-\alpha) \gamma h^{\alpha})^{-1} (\mu - \gamma) < 0 .

    In this section, we will study the existence, uniqueness and globally Mittag-Leffler stability of the equilibrium point for delayed Caputo fractional-order fuzzy inertial neural networks (2.1).

    For \beta > 0 , we know that \mbox{}^C D^{\beta} a = 0 for a constant a . Thus, we have the following definition.

    Definition 3.1. A constant vector x^* = (x_1^*, x_2^*, ..., x_n^*)^T is an equilibrium point of system (2.1) if and only if x^* is a solution of the following equations:

    \begin{equation} \begin{aligned} & - c_i x_i^* + \sum \limits_{j = 1}^n a_{ij} f_j(x_j^*) + \sum \limits_{j = 1}^n b_{ij} \mu_j + \sum \limits_{j = 1}^n c_{ij} g_j(x_j^*) + \bigwedge \limits_{j = 1}^n \alpha_{ij} f_j(x_j^*) \\ & \quad \quad + \bigvee \limits_{j = 1}^n \beta_{ij} g_j(x_j^*) + \bigwedge \limits_{j = 1}^n T_{ij} \mu_j + \bigvee \limits_{j = 1}^n H_{ij} \mu_j + I_i = 0, \quad i = 1, 2, \cdots n. \end{aligned} \end{equation} (3.1)

    Theorem 3.1. Assume that

    ( H_1 ) The functions f_j, g_j ( j = 1, 2, ..., n ) are Lipschitz continuous. That is, there exist positive constants F_j, G_j such that

    |f_j(x) - f_j(y)| \le F_j |x-y|, \quad |g_j(x) - g_j(y)| \le G_j |x-y|, \quad \forall x, y \in \mathbb{R}.

    hold. If there exist constants m_i ( i = 1, 2, ..., n ) such that the following inequality holds

    \begin{equation} m_i c_i - \sum \limits_{j = 1}^n [m_j F_i (|a_{ji}| + |\alpha_{ji}|) + m_j G_i (|c_{ji}| + |\beta_{ji}|)] > 0, \quad i = 1, 2, ... , n, \end{equation} (3.2)

    then CFOFNINND (2.1) has a unique equilibrium point.

    Proof. \forall u = (u_1, u_2, ..., u_n)^T , we constructing a mapping P(u) = (P_1(u), P_2(u), ..., P_n(u))^T as follows

    \begin{equation} \begin{aligned} P_i(u) & = m_i \sum \limits_{j = 1}^n a_{ij} f_j \left(\frac{u_j}{c_j m_j}\right) + m_i \sum \limits_{j = 1}^n b_{ij} \mu_j + m_i \sum \limits_{j = 1}^n c_{ij} g_j \left(\frac{u_j}{c_j m_j}\right) + m_i \bigwedge \limits_{j = 1}^n \alpha_{ij} f_j \left(\frac{u_j}{c_j m_j}\right) \\ & \quad + m_i \bigvee \limits_{j = 1}^n \beta_{ij} g_j \left(\frac{u_j}{c_j m_j}\right) + m_i \bigwedge \limits_{j = 1}^n T_{ij} \mu_j + m_i \bigvee \limits_{j = 1}^n H_{ij} \mu_j + m_i I_i. \end{aligned} \end{equation} (3.3)

    Let u = (u_1, u_2, ..., u_n)^T and v = (v_1, v_2, ..., v_n)^T . From (H_1) and Lemma 2.2, we obtain that

    { |P_i(u) - P_i(v)| \le \left| m_i \sum \limits_{j = 1}^n a_{ij}\left[f_j \left(\frac{u_j}{c_j m_j}\right) - f_j \left(\frac{v_j}{c_j m_j}\right)\right] \right| } \\ { + \left|m_i \sum \limits_{j = 1}^n c_{ij}\left[g_j \left(\frac{u_j}{c_j m_j}\right) - g_j \left(\frac{v_j}{c_j m_j}\right)\right]\right| } \\ { + m_i \left|\bigwedge \limits_{j = 1}^n \alpha_{ij} f_j \left(\frac{u_j}{c_j m_j}\right) - \bigwedge \limits_{j = 1}^n \alpha_{ij} f_j \left(\frac{v_j}{c_j m_j}\right)\right|} \\ { + m_i \left|\bigvee \limits_{j = 1}^n \beta_{ij} g_j \left(\frac{u_j}{c_j m_j}\right) - \bigvee \limits_{j = 1}^n \beta_{ij} g_j \left(\frac{v_j}{c_j m_j}\right)\right| } \\ {\le m_i \sum \limits_{j = 1}^n \frac{|a_{ij}| F_j}{c_j m_j} |u_j - v_j| + m_i \sum \limits_{j = 1}^n \frac{|c_{ij}| G_j}{c_j m_j} |u_j - v_j| } \\ {+ m_i \sum \limits_{j = 1}^n \frac{|\alpha_{ij}| F_j}{c_j m_j} |u_j - v_j| + m_i \sum \limits_{j = 1}^n \frac{|\beta_{ij}| G_j}{c_j m_j} |u_j - v_j| } \\ { = m_i \sum \limits_{j = 1}^n \frac{1}{c_j m_j}[F_j (|a_{ij}| + |\alpha_{ij}|) + G_j (|c_{ij}| + |\beta_{ij}|)] |u_j - v_j|. }

    Moreover, we obtain by (3.2) that

    { \sum \limits_{i = 1}^n |P_i(u) - P_i(v)| \le \sum \limits_{i = 1}^n m_i \sum \limits_{j = 1}^n \frac{1}{c_j m_j}[F_j (|a_{ij}| + |\alpha_{ij}|) + G_j (|c_{ij}| + |\beta_{ij}|)] |u_j - v_j| } \\ { = \sum \limits_{i = 1}^n \sum \limits_{j = 1}^n \frac{1}{c_j m_j}[m_i F_j (|a_{ij}| + |\alpha_{ij}|) + m_i G_j (|c_{ij}| + |\beta_{ij}|)] |u_j - v_j| } \\ { = \sum \limits_{i = 1}^n \left(\sum \limits_{j = 1}^n \frac{1}{c_i m_i}[m_j F_i (|a_{ji}| + |\alpha_{ji}|) + m_j G_i (|c_{ji}| + |\beta_{ji}|)]\right) |u_i - v_i| } \\ { < \sum \limits_{i = 1}^n |u_i - v_i|, }

    which implies that \|P(u) - P(v)\| < \|u - v\| . That is, P is a contraction mapping on R^n . So, we can conclude that there exists a unique fixed pint u^* such that P(u^*) = u^* , i.e.,

    {u_i^* = m_i \sum \limits_{j = 1}^n a_{ij} f_j \left(\frac{u_j^*}{c_j m_j}\right) + m_i \sum \limits_{j = 1}^n b_{ij} \mu_j + m_i \sum \limits_{j = 1}^n c_{ij} g_j \left(\frac{u_j^*}{c_j m_j}\right) + m_i \bigwedge \limits_{j = 1}^n \alpha_{ij} f_j \left(\frac{u_j^*}{c_j m_j}\right) } \\ { + m_i \bigvee \limits_{j = 1}^n \beta_{ij} g_j \left(\frac{u_j^*}{c_j m_j}\right) + m_i \bigwedge \limits_{j = 1}^n T_{ij} \mu_j + m_i \bigvee \limits_{j = 1}^n H_{ij} \mu_j + m_i I_i. }

    Assume x_i^* = \frac{u_i^*}{c_i m_i} , we can get

    \begin{equation*} \begin{aligned} & - c_i x_i^* + \sum \limits_{j = 1}^n a_{ij} f_j(x_j^*) + \sum \limits_{j = 1}^n b_{ij} \mu_j + \sum \limits_{j = 1}^n c_{ij} g_j(x_j^*) + \bigwedge \limits_{j = 1}^n \alpha_{ij} f_j(x_j^*) \\ & \quad \quad + \bigvee \limits_{j = 1}^n \beta_{ij} g_j(x_j^*) + \bigwedge \limits_{j = 1}^n T_{ij} \mu_j + \bigvee \limits_{j = 1}^n H_{ij} \mu_j + I_i = 0, \end{aligned} \end{equation*}

    which indicates that x_i^* is a unique solution of (3.1). So, x^* is the unique equilibrium point of system (2.1). This proof is completed.

    By using the transformation x_i(t) = y_i(t) + x_i^* , the equilibrium point of (2.1) can be shifted to the origin, that is, system (2.1) can be transformed into

    \begin{equation} \begin{aligned} ^C D^{\beta}(^C D^{\beta} y_i)(t) & = - a_i \ ^C D^{\beta} y_i(t) - c_i y_i(t) + \sum \limits_{j = 1}^n a_{ij} [f_j(y_j(t) + x_j^*) - f_j(x_j^*)] \\ & \quad + \sum \limits_{j = 1}^n c_{ij} [g_j(y_j(t-\tau_j) + x_j^*) - g_j(x_j^*)] + \bigwedge \limits_{j = 1}^n \alpha_{ij} [f_j(y_j(t-\tau_j) + x_j^*) - f_j(x_j^*)] \\ & \quad + \bigvee \limits_{j = 1}^n \beta_{ij} [g_j(y_j(t-\tau_j) + x_j^*) - g_j(x_j^*)], \quad i = 1, 2, \cdots, n. \end{aligned} \end{equation} (3.4)

    In (3.4), we adopt a variable transformation : z_i(t) = D^{\beta} y_i(t) + k_i y_i(t) . Then system (3.4) can be rewritten as follows:

    \begin{equation} \left\{ \begin{aligned} D^{\beta} z_i(t) & = -(a_i-k_i) z_i(t) - (c_i - (a_i - k_i)k_i) y_i(t) + \sum \limits_{j = 1}^n a_{ij} [f_j(y_j(t) + x_j^*) - f_j(x_j^*)] \\ & \quad + \sum \limits_{j = 1}^n c_{ij} [g_j(y_j(t-\tau_j) + x_j^*) - g_j(x_j^*)] + \bigwedge \limits_{j = 1}^n \alpha_{ij} [f_j(y_j(t-\tau_j) + x_j^*) - f_j(x_j^*)] \\ & \quad + \bigvee \limits_{j = 1}^n \beta_{ij} [g_j(y_j(t-\tau_j) + x_j^*) - g_j(x_j^*)], \quad t \ge 0, \\ D^{\beta} y_i(t) & = z_i(t) - k_i y_i(t). \end{aligned} \right. \end{equation} (3.5)

    The initial conditions for system (3.5) is

    \begin{equation} y_i(s) = \phi_i(s) - x_i^*, \quad z_i(s) = \psi_i(s) + k_i(\phi_i(s) - x_i^*), \quad - \tau \le s \le 0. \end{equation} (3.6)

    Theorem 3.2. Let 0 < \beta \le 1 . Assume that (H_1) holds. If there exist proper positive parameters m_i and p_i , satisfying (3.2) and the following inequality :

    \begin{equation} \begin{aligned} & \min \limits_{1 \le i \le n} \left\{k_i - \frac{F_i}{m_i} \sum \limits_{j = 1}^n p_j |a_{ji}| - \frac{p_i}{m_i} |c_i - (a_i - k_i)k_i|, \quad (a_i - k_i) - \frac{m_i}{p_i}\right\} \\ & \quad \quad > \max \limits_{1 \le i \le n} \left\{ \frac{F_i}{m_i} \sum \limits_{j = 1}^n p_j |\alpha_{ji}| + \frac{G_i}{m_i} \sum \limits_{j = 1}^n p_j (|c_{ji}| + |\beta_{ji}|)\right\}, \end{aligned} \end{equation} (3.7)

    then CFOFNINND (2.1) has a unique equilibrium point which is globally Mittag-Leffler stable.

    Proof. By Theorem 3.1 we know that (2.1) has a unique equilibrium point (x_1^*, x_2^*, ..., x_n^*) . Construct the Lyapunov function candidate defined by

    V(t) = \sum \limits_{i = 1}^n m_i |y_i(t)| + \sum \limits_{i = 1}^n p_i |z_i(t)|,

    where m_i , p_i are unknown positive constants, which need to be determined. Based on Lemma 2.1 and (3.5), calculating the fractional-order derivative of V(t) :

    \begin{equation} \begin{aligned} \mbox{}^C D^{\alpha} V(t) & = \sum \limits_{i = 1}^n m_i {\rm sgn} (y_i(t)) \mbox{}^C D^{\alpha} y_i(t) + \sum \limits_{i = 1}^n p_i {\rm sgn}(z_i(t)) \mbox{}^C D^{\alpha} z_i(t) \\ & = \sum \limits_{i = 1}^n p_i {\rm sgn}(z_i(t)) \big\{-(a_i-k_i) z_i(t) - (c_i - (a_i - k_i)k_i) y_i(t) + \sum \limits_{j = 1}^n a_{ij} (f_j(y_j(t) + x_j^*) - f_j(x_j^*)) \\ & \quad + \sum \limits_{j = 1}^n c_{ij} [g_j(y_j(t-\tau_j) + x_j^*) - g_j(x_j^*)] + \bigwedge \limits_{j = 1}^n \alpha_{ij} [f_j(y_j(t-\tau_j) + x_j^*) - f_j(x_j^*)] \\ & \quad + \bigvee \limits_{j = 1}^n \beta_{ij} [g_j(y_j(t-\tau_j) + x_j^*) - g_j(x_j^*)] \big\} + \sum \limits_{i = 1}^n m_i {\rm sgn}(y_i(t)) (z_i(t) - k_i y_i(t)] \\ & \le \sum \limits_{i = 1}^n p_i \big\{-(a_i-k_i) |z_i(t)| + |c_i - (a_i - k_i)k_i| |y_i(t)| + \sum \limits_{j = 1}^n |a_{ij}| F_j |y_j(t)| \\ & \quad + \sum \limits_{j = 1}^n |c_{ij}| G_j |y_j(t-\tau_j)| + \sum \limits_{j = 1}^n |\alpha_{ij}| F_j |y_j(t-\tau_j)| \\ & \quad + \sum \limits_{j = 1}^n |\beta_{ij}| G_j |y_j(t-\tau_j)|\big\} + \sum \limits_{i = 1}^n m_i(|z_i(t)| - k_i |y_i(t)|) \\ & = - \sum \limits_{i = 1}^n m_i \left[k_i - \frac{F_i}{m_i} \sum \limits_{j = 1}^n p_j |a_{ji}| - \frac{p_i}{m_i} |c_i - (a_i - k_i)k_i|\right] |y_i(t)| \\ & \quad - \sum \limits_{i = 1}^n p_i \left[(a_i - k_i) - \frac{m_i}{p_i}\right] |z_i(t)| \\ & \quad + \sum \limits_{i = 1}^n m_i\left[\frac{F_i}{m_i} \sum \limits_{j = 1}^n p_j |\alpha_{ij}| + \frac{G_i}{m_i} \sum \limits_{j = 1}^n p_j (|c_{ji}| + |\beta_{ij}|)\right] |y_i(t-\tau_i)| \\ & \le - \mu V(t) + \gamma V(t-\tau), \end{aligned} \end{equation} (3.8)

    where

    \mu = \min \limits_{1 \le i \le n} \left\{k_i - \frac{F_i}{m_i} \sum \limits_{j = 1}^n p_j |a_{ji}| - \frac{p_i}{m_i} |c_i - (a_i - k_i)k_i|, \quad (a_i - k_i) - \frac{m_i}{p_i}\right\},

    and

    \gamma = \max \limits_{1 \le i \le n} \left\{ \frac{F_i}{m_i} \sum \limits_{j = 1}^n p_j |\alpha_{ji}| + \frac{G_i}{m_i} \sum \limits_{j = 1}^n p_j (|c_{ji}| + |\beta_{ji}|)\right\}.

    Based on Corollary 2.4, one can infer that

    V(t) \le E_{\alpha}(\bar{\lambda} t^{\alpha}) \sup \limits_{-\tau \le \theta \le 0} |V(\theta)|,

    where \bar{\lambda} = - (1+\Gamma(1-\alpha) \gamma \tau^{\alpha})^{-1} (\mu - \gamma) , and

    V(\theta) = \sum \limits_{i = 1}^n m_i |\phi_i(s) - x_i^*| + \sum \limits_{i = 1}^n p_i |\psi_i(s) + k_i(\phi_i(s) - x_i^*)|.

    Obviously, we have

    \begin{equation*} \begin{aligned} \sup \limits_{-\tau \le \theta \le 0} |V(\theta)| & \le \max \limits_{1 \le i \le n} \left\{m_i + k_i p_i, \ p_i\right\} (\|\phi\| + \|\psi\|) + \max \limits_{1 \le i \le n} (m_i + k_i p_i) \|x^*\| \\ & = L_1 (\|\phi\| + \|\psi\|) + L_2, \end{aligned} \end{equation*}

    where L_1 = \max \limits_{1 \le i \le n} \left\{m_i + k_i p_i, \ p_i\right\} > 0 and L_2 = \max \limits_{1 \le i \le n} (m_i + k_i p_i) \|x^*\| > 0 . Thus, one obtain

    \begin{equation*} \begin{aligned} \|y(t)\| + \|z(t)\| & \le \frac{1}{\min\limits_{1 \le i \le n}\{m_i, p_i\}} \left(\sum \limits_{i = 1}^n m_i |y_i(t)| + \sum \limits_{i = 1}^n p_i |z_i(t)| \right) \\ & \le \Omega (L_1 (\|\phi\| + \|\psi\|) + L_2) E_{\alpha}(\bar{\lambda} t^{\alpha}), \end{aligned} \end{equation*}

    where \Omega = \frac{1}{\min_{1 \le i \le n}\{m_i, p_i\}} > 0 , which implies that the unique equilibrium point (x_1^*, x_2^*, ..., x_n^*) of CFOFNINND (2.1) is globally Mittag-Leffler stable. The theorem 3.2 is proved.

    Example 4.1. Consider a two-dimensional Caputo fractional fuzzy inertial neural network with delay:

    \begin{equation} \begin{aligned} ^C D^{\beta}(^C D^{\beta} x_i)(t) & = - a_i \ ^C D^{\beta} x_i(t) - c_i x_i(t) + \sum \limits_{j = 1}^2 a_{ij} \tanh(x_j(t)) + \sum \limits_{j = 1}^2 b_{ij} \mu_j \\ & \quad + \sum \limits_{j = 1}^2 c_{ij} \sin(x_j(t-\tau_j)) + \bigwedge \limits_{j = 1}^2 \alpha_{ij} \tanh(x_j(t-\tau_j)) + \bigvee \limits_{j = 1}^2 \beta_{ij} \tanh(x_j(t-\tau_j)) \\ & \quad + \bigwedge \limits_{j = 1}^2 T_{ij} \mu_j + \bigvee \limits_{j = 1}^2 H_{ij} \mu_j + I_i, \quad t \ge 0, \quad i = 1, 2. \end{aligned} \end{equation} (4.1)

    Two initial values of system (4.1) are given by

    \begin{equation} x_1(s) = 0.8, \quad x_2(s) = -0.1, \quad ^C D^{\beta} x_1(s) = - 1.8, \quad ^C D^{\beta} x_2(s) = 1.2, \quad - 1 \le s \le 0, \end{equation} (4.2)

    and

    \begin{equation} x_1(s) = 1.0, \quad x_2(s) = 0.5, \quad ^C D^{\beta} x_1(s) = - 2.0, \quad ^C D^{\beta} x_2(s) = -1.3, \quad - 1 \le s \le 0. \end{equation} (4.3)

    The parameters of system (4.1) are set as \beta = 0.85 , \tau_1 = \tau_2 = 1 , a_1 = 7 , a_2 = 6 , c_1 = 11.3 , c_2 = 8.7 , a_{11} = 0.3 , a_{12} = -0.2 , c_{11} = -0.4 , c_{12} = 0.1 , \alpha_{11} = 0.2 , \alpha_{12} = -0.6 , \beta_{11} = 0.1 , \beta_{12} = 0.3 , a_{21} = - 0.2 , a_{22} = 0.3 , c_{21} = 0.1 , c_{22} = -0.2 , \alpha_{21} = -0.35 , \alpha_{22} = 0.2 , \beta_{21} = -0.2 , \beta_{22} = 0.3 , I_1 = 3.4490 , I_2 = 3.3377 , \mu_i = 0.3 ( i = 1, 2 ), and

    (b_{ij})_{2 \times 2} = (T_{ij})_{2 \times 2} = (H_{ij})_{2 \times 2} = \begin{bmatrix} 0.2 & 0 \\ 0 & 0.3 \end{bmatrix}.

    The Lipchitz constants F_j = 1 for f_j(\cdot) = \tanh(\cdot) and G_j = 1 for g_j(\cdot) = \sin(\cdot) ( j = 1, 2 ). Let parameters m_i = p_i = 1 ( i = 1, 2 ). Then,

    m_1 c_1 - \sum \limits_{j = 1}^2 [m_j F_1 (|a_{j1}| + |\alpha_{j1}|) + m_j G_1 (|c_{j1}| + |\beta_{j1}|)] = 9.45 > 0,

    and

    m_2 c_2 - \sum \limits_{j = 1}^2 [m_j F_2 (|a_{j2}| + |\alpha_{j2}|) + m_j G_2 (|c_{j2}| + |\beta_{j2}|)] = 6.5 > 0,

    which implies that (3.2) holds. Thus, by Theorem 3.1, the equilibrium point (x_1^*, x_2^*) of system (4.1) is the unique solution of the following system:

    \begin{equation*} \begin{aligned} & - c_i x_i^* + \sum \limits_{j = 1}^2 a_{ij} \tanh(x_j^*) + \sum \limits_{j = 1}^2 b_{ij} \mu_j + \sum \limits_{j = 1}^2 c_{ij} \sin(x_j^*) + \bigwedge \limits_{j = 1}^2 \alpha_{ij} \tanh(x_j^*) \\ & \quad \quad + \bigvee \limits_{j = 1}^2 \beta_{ij} \sin(x_j^*) + \bigwedge \limits_{j = 1}^2 T_{ij} \mu_j + \bigvee \limits_{j = 1}^2 H_{ij} \mu_j + I_i = 0, \quad i = 1, 2. \end{aligned} \end{equation*}

    By matlab, we easy to get that x_1^* = 0.3 and x_2^* = 0.4 . Obviously, the conditions (H_1) hold. Moreover, letting parameters k_1 = 4 and k_2 = 3 , one has

    k_1 - \frac{F_1}{m_1} \sum \limits_{j = 1}^2 p_j |a_{j1}| - \frac{p_1}{m_1} |c_1 - (a_1 - k_1)k_1| = 2.8,
    k_2 - \frac{F_2}{m_2} \sum \limits_{j = 1}^2 p_j |a_{j2}| - \frac{p_2}{m_2} |c_2 - (a_2 - k_2)k_2| = 2.2,
    (a_1 - k_1) - \frac{m_1}{p_1} = 2, \quad (a_2 - k_2) - \frac{m_2}{p_2} = 2,
    \frac{F_1}{m_1} \sum \limits_{j = 1}^2 p_j |\alpha_{j1}| + \frac{G_1}{m_1} \sum \limits_{j = 1}^2 p_j (|c_{j1}| + |\beta_{j1}|) = 1.35,

    and

    \frac{F_2}{m_2} \sum \limits_{j = 1}^2 p_j |\alpha_{j2}| + \frac{G_2}{m_2} \sum \limits_{j = 1}^2 p_j (|c_{j2}| + |\beta_{j2}|) = 1.7.

    Thus \mu = 2 > \gamma = 1.7 , that is the inequality (3.7) holds. Thus, by Theorem 3.2, the unique equilibrium point (0.3, 0.4) of the system (4.1) is globally Mittag-Leffler stable (see Figures 1 and 2).

    Figure 1.  Behavior of the solutions of system (4.1) with initial value (4.2).
    Figure 2.  Behavior of the solutions of system (4.1) with initial value (4.3).

    The theoretical research on the fractional-order neural-type inertial neural networks is still relatively few. In this paper, we first propose and investigate a class of delayed fractional-order fuzzy inertial neural networks. With the help of contraction mapping principle, the sufficient condition is obtained to ensure the existence and uniqueness of equilibrium point of system (2.1). Based on the global fractional Halanay inequalities, and by constructing suitable Lyapunov functional, some sufficient conditions are obtained to ensure the global Mittag-Leffler stability of system (2.1). These conditions are relatively easy to verify. Finally, a numerical example is presented to show the effectiveness of our theoretical results.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    We are really thankful to the reviewers for their careful reading of our manuscript and their many insightful comments and suggestions that have improved the quality of our manuscript. This work is supported by Natural Science Foundation of China (11571136).

    The authors declare that there are no conflicts of interest.



    [1] M. Fiedler, T. L. Markham, A classification of matrices of class Z, 173 (1992), 115–124. https://doi.org/10.1016/0024-3795(92)90425-A
    [2] G. Windisch, M-matrices in Numerical Analysis, Berlin: Springer-Verlag, 2013. https://doi.org/10.1007/978-3-663-10818-4
    [3] C. R. Johnson, Inverse M-matrices, Linear Algebra Appl., 47 (1982), 195–216. https://doi.org/10.1016/0024-3795(82)90238-5
    [4] D. V. Ouellette, Schur complements and statistics, Linear Algebra Appl., 36 (1981), 187–295. https://doi.org/10.1016/0024-3795(81)90232-9 doi: 10.1016/0024-3795(81)90232-9
    [5] E. Golpar Raboky, On generalized Schur complement of matrices and its applications to real and integer matrix factorizations, J. Math. Model., 10 (2022), 39–51. https://doi.org/10.22124/JMM.2021.19495.1675 doi: 10.22124/JMM.2021.19495.1675
    [6] C. D. Meyer, Uncoupling the Perron eigenvector problem, Linear Algebra Appl., 114/115 (1989), 69–94. https://doi.org/10.1016/0024-3795(89)90452-7 doi: 10.1016/0024-3795(89)90452-7
    [7] L. Z. Lu, Perron complement and Perron root, Linear Algebra Appl., 341 (2002), 239–248. https://doi.org/10.1016/S0024-3795(01)00378-0 doi: 10.1016/S0024-3795(01)00378-0
    [8] M. Neumann, Inverses of Perron complements of inverse M-matrices, Linear Algebra Appl., 313 (2000), 163–171. https://doi.org/10.1016/S0024-3795(00)00128-2 doi: 10.1016/S0024-3795(00)00128-2
    [9] Z. M. Yang, Some closer bounds of Perron root basing on generalized Perron complement, J. Comput. Appl. Math., 235 (2010), 315–324. https://doi.org/10.1016/j.cam.2010.06.012 doi: 10.1016/j.cam.2010.06.012
    [10] G. X. Huang, F. Yin, K. Guo, The lower and upper bounds on Perron root of nonnegative irreducible matrices, J. Comput. Appl. Math., 217 (2008), 259–267. https://doi.org/10.1016/j.cam.2007.06.034 doi: 10.1016/j.cam.2007.06.034
    [11] M. Adm, J. Garloff, Total nonnegativity of the extended Perron complement, Linear Algebra Appl., 508 (2016), 214–224. https://doi.org/10.1016/j.laa.2016.07.002 doi: 10.1016/j.laa.2016.07.002
    [12] L. L. Wang, J. Z. Liu, S. Chu, Properties for the Perron complement of three known subclasses of H-matrices, J. Inequal. Appl., 2015 (2015), 1–10. https://doi.org/10.1186/s13660-014-0531-1 doi: 10.1186/s13660-014-0531-1
    [13] L. Zeng, M. Xiao, T. Z. Huang, Perron complements of diagonally dominant matrices and H-matrices, Appl. Math. E-Notes, 9 (2009), 289–296.
    [14] G. A. Johson, A generalization of N-matrices, Linear Algebra Appl., 48 (1982), 201–217. https://doi.org/10.1016/0024-3795(82)90108-2 doi: 10.1016/0024-3795(82)90108-2
    [15] G. A. Johson, Inverse {{N}_{0}}-matrices, Linear Algebra Appl., 64 (1985), 215–222. https://doi.org/10.1016/0024-3795(85)90278-2 doi: 10.1016/0024-3795(85)90278-2
    [16] Z. G. Ren, T. Z. Huang, X. Y. Cheng, A note on generalized Perron complements of Z-matrices, Electron. J. Linear Algebra, 15 (2006), 8–13. https://doi.org/10.13001/1081-3810.1217 doi: 10.13001/1081-3810.1217
    [17] S. W. Zhou, T. Z. Huang, On Perron complements of inverse {{N}_{0}}-matrices, Linear Algebra Appl., 434 (2011), 2081–2088. https://doi.org/10.1016/j.laa.2010.12.004 doi: 10.1016/j.laa.2010.12.004
    [18] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Philadelphia: Society for Industrial and Applied Mathematics, 1994. https://doi.org/10.1137/1.9781611971262
    [19] C. S. Yang, H. B. Wang, Y. F. Jiang, Some properties of (inverse) {{N}_{0}}-Matrices with its applications, Appl. Mech. Mater., 590 (2014), 795–798. https://doi.org/10.4028/www.scientific.net/AMM.590.795 doi: 10.4028/www.scientific.net/AMM.590.795
    [20] Y. Chen, Notes on {{F}_{0}}-matrices, Linear Algebra Appl., 142 (1990), 167–172. https://doi.org/10.1016/0024-3795(90)90265-E doi: 10.1016/0024-3795(90)90265-E
    [21] T. Ando, Inequalities for M-matrices, Linear Multil. Algebra., 8 (1980), 291–316. https://doi.org/10.1080/03081088008817334 doi: 10.1080/03081088008817334
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(905) PDF downloads(36) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog