Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

On the correlation of k symbols

  • In 2002 Mauduit and Sárközy started to study finite sequences of k symbols EN=(e1,e2,,eN)AN, whereA={a1,a2,,ak},  (kN,k2)is a finite set of k symbols. Bérczi estimated the pseudorandom measures for a truly random sequence EN of k symbol. In this paper, we shall study the minimal values of correlation measures for the sequences of k symbols, developing the methods similar to those introduced by Alon, Anantharam, Gyarmati, and Schmidt, among others.

    Citation: Yixin Ren, Huaning Liu. On the correlation of k symbols[J]. AIMS Mathematics, 2024, 9(8): 21455-21470. doi: 10.3934/math.20241042

    Related Papers:

    [1] Kenan Doğan, Murat Şahin, Oğuz Yayla . Families of sequences with good family complexity and cross-correlation measure. AIMS Mathematics, 2025, 10(1): 38-55. doi: 10.3934/math.2025003
    [2] Huaning Liu, Zhixiong Chen, Chenhuang Wu . Correlation measures of binary sequences derived from Euler quotients. AIMS Mathematics, 2022, 7(6): 11087-11101. doi: 10.3934/math.2022619
    [3] Yuchan Qi, Huaning Liu . Binary sequences and lattices constructed by discrete logarithms. AIMS Mathematics, 2022, 7(3): 4655-4671. doi: 10.3934/math.2022259
    [4] Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007
    [5] Bai-Ni Guo, Dongkyu Lim, Feng Qi . Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions. AIMS Mathematics, 2021, 6(7): 7494-7517. doi: 10.3934/math.2021438
    [6] Jinjin Liang, Liling Lai, Yile Zhao, Yong Chen . Commuting H-Toeplitz operators with quasihomogeneous symbols. AIMS Mathematics, 2022, 7(5): 7898-7908. doi: 10.3934/math.2022442
    [7] Moussa Benoumhani . Restricted partitions and convex topologies. AIMS Mathematics, 2025, 10(4): 10187-10203. doi: 10.3934/math.2025464
    [8] Jianying Rong, Ting Li, Rui Hua, Xuemei Wang . A class of binary sequences with two-valued cross correlations. AIMS Mathematics, 2024, 9(4): 9091-9106. doi: 10.3934/math.2024442
    [9] Qian Ding, Yong Chen . Product of H-Toeplitz operator and Toeplitz operator on the Bergman space. AIMS Mathematics, 2023, 8(9): 20790-20801. doi: 10.3934/math.20231059
    [10] Houcine Sadraoui, Borhen Halouani . Commuting Toeplitz operators on weighted harmonic Bergman spaces and hyponormality on the Bergman space of the punctured unit disk. AIMS Mathematics, 2024, 9(8): 20043-20057. doi: 10.3934/math.2024977
  • In 2002 Mauduit and Sárközy started to study finite sequences of k symbols EN=(e1,e2,,eN)AN, whereA={a1,a2,,ak},  (kN,k2)is a finite set of k symbols. Bérczi estimated the pseudorandom measures for a truly random sequence EN of k symbol. In this paper, we shall study the minimal values of correlation measures for the sequences of k symbols, developing the methods similar to those introduced by Alon, Anantharam, Gyarmati, and Schmidt, among others.


    The need for pseudorandom sequences arises in cryptographic applications and many papers have been written on this subject. In [1], Mauduit and Sárközy introduced the following measures of pseudorandomness for finite pseudorandom binary sequences:

    EN=(e1,e2,,eN){1,+1}N.

    The well-distribution measure of EN is defined by

    W(EN)=maxa,b,t|t1j=0ea+jb|,

    where the maximum is taken over all a, b, tN with

    1aa+(t1)bN.

    The correlation measure of order l of EN is defined as

    Cl(EN)=maxM,D|Mn=1en+d1en+dl|,

    where the maximum is taken over all

    D=(d1,,dl)

    and M with

    0d1<<dlNM.

    The sequence EN can be considered as a "good" pseudorandom sequence if both W(EN) and Cl(EN) (at least for small l) are "small" in terms of N. Cassaigne et al.[2,3] studied the well-distribution measures and correlation measures for the Liouville function. Fouvry et al.[4] examined pseudorandomness measures of Kloosterman sums' signs. Goubin et al.[5] introduced a construction related to the Legendre symbol for binary sequences. Gyarmati [6] utilized the concept of an index discrete logarithm to construct binary sequences with strong pseudorandom properties. Gyarmati[] studied the psedorandom properties of the power generator, which includes the RSA generator and the Blum-Blum-Shub generator. Liu et al.[8,9,10] explored pseudorandom binary sequences via multiplicative inverse, Gowers norm, and the Legendre symbol. Louboutin et al.[11] also obtained the quantitative results on the pseudorandomness of the sequence (1)n+n. Mauduit et al.[12] presented a new construction utilizing properties of additive characters. Mauduit et al.[1,13] investigated a Champernowne-type sequence, the Rudin-Shapiro sequence and the Thue-Morse sequence, extending the approach that involved Legendre symbols. The pseudorandomness of binary sequences over elliptic curves was analyzed in [14,15]. Sárközy et al.[16,17,18] studied binary sequences with strong pseudorandom properties, and utilized character sum estimates by Eichenauer-Hermann and Niederreiter. Cassaigne et al.[19] estimated W(EN) and Cl(EN) for a truly random binary lattice.

    Proposition 1.1. [19] For all ϵ>0, there are numbers

    N0=N0(ϵ)

    and

    δ=δ(ϵ)>0,

    such that for N>N0 and a random sequence EN{1,+1}N, we have

    P(W(EN)>δN12)>1ϵ,P(W(EN)>6(NlogN)12)<ϵ.

    Proposition 1.2. [19] For all lN, l2 and ϵ>0, there are numbers

    N0=N0(ϵ,l)

    and

    δ=δ(ϵ,l)>0,

    such that for N>N0 and a random sequence EN{1,+1}N, we have

    P(Cl(EN)>δN12)>1ϵ,P(Cl(EN)>5(lNlogN)12)<ϵ.

    Alon et al. extended Propositions 1.1 and 1.2 in [20] and provided the lower bound of C2l(EN) for general sequence EN{1,+1}N in [21].

    Proposition 1.3. [21] For any integers l and N such that

    1lN2

    and any EN{1,1}N, we have

    C2l(EN)12N2l+1.

    Proposition 1.4.[21] There is an absolute constant c>0 such that, for any positive integers m and N with

    mN3

    and

    max{C2(EN),C4(EN),,C2m(EN)}cmN

    for all EN{1,+1}N.

    Proposition 1.5. [21] Let l and N be positive integers with

    2lN6.

    If N is large enough, then

    max{C2l2(EN),C2l(EN)}12N3

    for all EN{1,+1}N.

    Gyarmati[22] provided lower bound for C2m+1(EN)C2l(EN) with 2m+1>2l.

    Proposition 1.6. [22] If (m,l)N2, 2m+1>2l, and NN, then for any EN{1,+1}N, we have

    C2m+1(EN)C2l(EN)N1l2m+1.

    Anantharam[23] improved Proposition 1.6 in the case m=l=1.

    Proposition 1.7.[23] For any NN big enough and EN{1,+1}N, we have

    C3(EN)C2(EN)225N.

    Gyarmati and Mauduit[24] generalized the results from [22,23].

    Proposition 1.8.[24] For any positive integers m,l and N, and any EN{1,1}N, we have

    C2m+1(EN)C2l(EN)Nc(m,l),

    where the implied constant depends on m and l, where

    c(m,l)={1,ifml,12+2m+14l,ifm<l.

    Additionally, they provided the following example showing that Proposition 1.8 is optimal:

    Example 1.1. For

    EN={+1,1,+1,1,+1,1,},

    we have

    C2m+1(EN)=1

    and

    C2l(EN)=N2l+1.

    Aistleitner[25] provided a tail characterisation of the limiting distribution of W(EN)/N. Schmidt [26] proved that the limiting distribution of

    Cl(EN)/2Nlog(Nl1)

    exists, and provided simple proofs of Propositions 1.3 and 1.4. Moreover, Schmidt[26] obtained explicit constants for Proposition 1.4.

    Proposition 1.9.[26] There exists a sequence of real numbers cr, cr>19 for each r3 and

    cr16e=0.2476

    as r, such that for all positive integers m and N with

    mN3,

    we have

    max{C2(EN),C4(EN),,C2m(EN)}cNmN

    for all EN{1,+1}N.

    In 2002, Mauduit and Sárközy[27] started to study finite sequences of k symbols

    EN=(e1,e2,,eN)AN,

    where

    A={a1,a2,,ak},  (kN,k2)

    is a finite set of k symbols. Let

    E={ε1,ε2,,εk}

    be the set of the k-th roots of unity e2πijk,j=1,2,,k. Let F denote the set of bijections φ: AE. The E-well-distribution measure of EN is defined by

    Δ(EN)=maxφ,a,b,t|t1j=0φ(ea+jb)|,

    where the maximum is taken over all φF and a, b, tN with

    1aa+(t1)bN.

    The E-correlation measure of order l of EN is defined as

    Γl(EN)=maxϕ,M,D|Mn=1φ1(en+d1)φl(en+dl)|,

    where the maximum is taken over all

    ϕ=(φ1,,φl)Fl,D=(d1,,dl)

    and M with

    0d1<<dlNM.

    The sequences of k symbol are considered as "good" pseudorandom sequences if both Δ(EN) and Γl(EN) (at least for small l) are "small" in terms of N (in particular, both are o(N) as N, and ideally it is N12+ε). Ahlswede et al.[28,29] devised "many", "good", PR sequences on k symbols by using multiplicative character and irreducible polynomials. Gomez and Winterhof[30] derived results on the pseudorandomness k symbols sequences of the Fermat quotients modulo p. Two families of sequences of k symbols were constructed using the integers modulo pq for distinct odd primes p and q in [31]. Mak[] utilized rational functions and multiplicative inverses to construct several pseudorandom sequences of k symbols. Mauduit and Sárközy[27] asked us to say something about the "average" size of the measures. Bérczi[33] estimated Δ(EN) and Γl(EN) for a truly random sequences of k symbol.

    Proposition 1.10.[33] For all ϵ>0, there are numbers

    N0=N0(ϵ)

    and

    δ=δ(ϵ)>0

    such that for N>N0 and a random sequence ENAN, we have

    P(Δ(EN)>δk32N12)>1ϵ,P(Δ(EN)>4k2(NlogN)12)<ϵ.

    Proposition 1.11.[33] For all kN, k2 and ϵ>0, there are numbers

    N0=N0(ϵ)

    and

    δ=δ(ϵ)>0

    such that for N>N0 and a random sequence ENAN, we have

    P(Γl(EN)>δk32N12)>1ϵ.

    Proposition 1.12.[33] For all even kN, lN and ϵ>0, there are numbers

    N0=N0(ϵ,k,l)

    such that for N>N0 and a random sequence ENAN, we have

    P(Γl(EN)>10(klNlogN)12)<ϵ.

    In this paper we shall develop the previous research methods to study the correlation measures of sequences of k symbols. Based on the research method of [21,23,26], we prove Theorems 1.1–1.4. Inspired by the work of Gyarmati and Mauduit[22,24], we formulate Problem 1.1. Our results are the following:

    Theorem 1.1. For any integers l and N with

    1lN2

    and any ENAN, we have

    Γ2l(EN)12N2l+1.

    Theorem 1.2. Let the sequence {cr} be defined as in Proposition 1.9. Then, for any positive integers m and N with

    mN3

    and for any ENAN, we have

    max{Γ2(EN),Γ4(EN),,Γ2m(EN)}cNmN.

    Theorem 1.3. Let l and N be positive integers with

    2lN6.

    If N is large enough, then for all ENAN, we have

    max{Γ2l2(EN),Γ2l(EN)}12N3.

    Theorem 1.4. For any NN large enough and ENAN, we have

    Γ3(EN)Γ2(EN)110N.

    Proposition 1.8 and our theorems inspire the following problem:

    Problem 1.1. Let m and l be positive integers. Is it true that for large enough N and every ENAN, we have

    Γ2m+1(EN)Γ2l(EN)m,lN.

    The rest of this paper is organized as follows. We shall introduce Welch's bound and prove Theorems 1.1–1.3 in Section 2, and we will prove Theorem 1.4 in Section 3.

    Schmidt[26] provided simple proofs for Propositions 1.3 and 1.4 by using Welch's bound on the maximal non-trivial scalar products over a set of vectors.

    Lemma 2.1.[34] Let M and L2 be positive integers, and let v1,,vL be elements of CM. For

    vi=(vi,1,,vi,M)

    and

    vj=(vj,1,,vj,M),

    we define the scalar product

    vi,vj=Mn=1vi,n¯vj,n,

    where the bar means complex conjugation. Suppose that

    vi,vi=M

    for each i. Then, for all integers r1, we have

    maxij|vi,vj|(M2rL1(L(M+r1r)1))12r.

    Lemma 2.2.[21, Lemma 2.6] Let l and n be positive integers with

    l12n.

    If n is large enough, then there is a family L of l-element subsets of {1,2,,n} with |L|=n and such that

    |LL|1

    for all distinct L and LL.

    Now we use Lemma 2.1 to prove Theorems 1.1–1.3. Let

    EN=(e1,e2,,eN)AN

    be given and let M be an integer with

    1MN1.

    We write

    N=NM.

    Next, we fix a family L of subsets of the set {1,2,,N}. Let φ be a bijection in F. For

    1i|L|

    and LiL,Li, we define the vector

    vi=(vi,1,,vi,M)

    by

    vi,n=xLiφ(en+x).

    Clearly

    vi,vi=M

    and for ij, we have

    vi,vj=Mn=1xLi(LiLj)φ(en+x)yLj(LiLj)¯φ(en+y).

    Let LΘL be the symmetric difference of the sets L and L, and let

    LΘ={LΘL: L,LL,LL},K={|S|: SLΘ}.

    We get

    max{Γl(EN): lK}max{|vi,vj|: Li,LjL,ij}.

    Then, from Lemma 2.1, we have for all integers r1,

    max{Γl(EN): lK}(M2r|L|1(|L|(M+r1r)1))12r. (2.1)

    We write

    M=N2l+1,   N=NMandt=Nl.

    Clearly, 1NN1 and

    t=Nl=NMlNN2l+1l=2N2l+12N2l+1=2M. (2.2)

    We take for L a set system of

    t=Nl

    pairwise disjoint l-element subsets L1,,Lt of {1,2,,N}. Noting that LiLj is empty for ij, and K={2l}. By (2.1) and (2.2), we get

    Γ2l(EN)(M2t1(tM1))12>MM2tM2=12N2l+1.

    This proves Theorem 1.1.

    Proof. Let m and N with

    mN3.

    Write

    M=N3andN=NM,

    we get

    N23N.

    We take for L the set system of all m-element subsets of {0,1,,N}. Hence,

    K={|S|: SLΘ}={2,4,,2m}.

    By (2.1) we get

    max{Γ2(EN),Γ4(EN),,Γ2m(EN)}(M2m|L|1(|L|(M+m1m)1))12m.

    Then, repeating the proof of Theorem 1.3 in [26]. Write

    N=3M+δ

    for some δ{0,1,2},

    (M2m|L|1)12m(M2m|L|)12m=Nδ3((2N+δ+3)/3m)12m>(mN92)12.

    Define f: {1,2,,N3}Q by

    f(m)=(NM+1m)(M+m1m).

    A standard calculation shows that f is monotonically increasing for

    m(N2M+2)/2,

    and is monotonically decreasing for

    m(N2M+2)/2.

    Therefore, the minimum value of f(m) is either f(1) or

    f(N3)=f(m).

    Moreover, we readily verify that f(1)>2 and

    f(M)(2M+1M)(2M1M)=2(2M+1)M+13.

    Hence,

    (|L|(M+m1m)1)12m>212m.

    Finally,

    max{Γ2(EN),Γ4(EN),,Γ2m(EN)}cNmN.

    This completes the proof of Theorem 1.2.

    Proof. Let l and N be positive integers with

    2lN6.

    Write

    M=N3and N=NM,

    we get

    N=NM23N2M

    and

    lN6=122N312N.

    By Lemma 2.2, we obtain a family L of l-element subsets of {1,2,,N} with

    |L|=Nand |LL|1

    for any two distinct L,LL. Then, from (2.1), we have

    max{Γ2l2(EN),Γ2l(EN)}(M2|L|1(|L|M1))12>MM2|L|M2=12N3,

    which proves Theorem 1.3.

    Proof. Let ENAN be given and let φ be a bijection in F. Let L,MN with L+MN. We get

    Ln1=1Ln2=1Ln3=1|Md=1φ(en1+d)φ(en2+d)φ(en3+d)|2=Ln1=1Ln2=1Ln3=1Md1=1Md2=1φ(en1+d1)φ(en2+d1)φ(en3+d1)¯φ(en1+d2)¯φ(en2+d2)¯φ(en3+d2)=Md1=1Md2=1(Ln=1φ(en+d1)¯φ(en+d2))3=Md=1(Ln=1φ(en+d)¯φ(en+d))3+Md1=1Md2=1d1d2(Ln=1φ(en+d1)¯φ(en+d2))3=ML3+Md1=1Md2=1d1d2(Ln=1φ(en+d1)¯φ(en+d2))3ML3M(M1)Γ2(EN)3. (3.1)

    On the other hand, we also get

    Ln1=1Ln2=1Ln3=1|Md=1φ(en1+d)φ(en2+d)φ(en3+d)|2=61n1<n2<n3L|Md=1φ(en1+d)φ(en2+d)φ(en3+d)|2+1n1,n2,n3L except for n1<n2<n3,,n3<n2<n1|Md=1φ(en1+d)φ(en2+d)φ(en3+d)|2L(L1)(L2)Γ3(EN)2+(L3L(L1)(L2))|Md=1φ(en1+d)φ(en2+d)φ(en3+d)|2L(L1)(L2)Γ3(EN)2+L(3L2)M2. (3.2)

    Combining (3.1) and (3.2), we get

    ML3M(M1)Γ2(EN)3ΛL(L1)(L2)Γ3(EN)2+L(3L2)M2, (3.3)

    where

    Λ=Ln1=1Ln2=1Ln3=1|Md=1φ(en1+d)φ(en2+d)φ(en3+d)|2.

    Switch elements on both sides of the inequality

    L3Γ3(EN)2+M2Γ2(EN)3ML33L2M2. (3.4)

    Case Ⅰ. Assume that

    Γ2(EN)17N23.

    Taking

    L=67N

    and

    M=17N

    in (3.4), we get

    Γ3(EN)115N12.

    Then, from Theorem 1.1, we immediately have

    Γ3(EN)Γ2(EN)115N1212N3110N. (3.5)

    Case Ⅱ. Suppose that

    Γ2(EN)17N23.

    If

    Γ3(EN)N13,

    then

    Γ3(EN)Γ2(EN)N1317N23=17N. (3.6)

    While if

    Γ3(EN)N13,

    then we take

    L=N2

    and

    M=4Γ3(EN)2

    in (3.4). Hence, for large enough N, we get

    M2Γ2(EN)3ML3L3Γ3(EN)2.

    Then,

    16Γ3(EN)4Γ2(EN)33Γ3(EN)2N38.

    Therefore,

    Γ3(EN)2Γ2(EN)3N364.

    Note that Γ3(EN)1. Thus, we get

    Γ3(EN)3Γ2(EN)3=Γ3(EN)Γ3(EN)2Γ2(EN)3Γ3(EN)2Γ2(EN)3N364.

    So, we have

    Γ3(EN)Γ2(EN)N4. (3.7)

    Now combining (3.5)–(3.7), we get

    Γ3(EN)Γ2(EN)110N.

    This completes the proof of Theorem 1.4.

    In this paper, our focus centered on exploring the lower bounds of correlation measures of sequences composed of k symbols. This research contributes to a deeper understanding of the sequence properties essential for various applications in mathematics and cryptography.

    Yixin Ren: writing-review and editing, writing-original draft, validation, resources, methodology, formal analysis, conceptualization. Huaning Liu: writing-review and editing, resources, methodology, supervision, validation, formal analysis, funding acquisition.

    The authors declare they have used Artificial Intelligence (AI) tools in the creation of this article.

    AI tools used: we utilize ChatGPT to implement linguistic adjustments to the first paragraph of the second page and the conclusion of the article.

    The authors express their gratitude to the referees for their nice suggestions and comments. This paper is supported by National Natural Science Foundation of China under Grant No. 12071368, the Science and Technology Program of Shaanxi Province of China under Grant No. 2024JC-JCQN-04, and Shaanxi Fundamental Science Research Project for Mathematics and Physics under Grant No. 22JSY017.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] C. Mauduit, A. Sárközy, On finite pseudorandom binary sequencs Ⅰ: measure of pseudorandomness, the Legendre symbol, Acta Arith., 82 (1997), 365–377. http://doi.org/10.4064/AA-82-4-365-377 doi: 10.4064/AA-82-4-365-377
    [2] J. Cassaigne, S. Ferenczi, C. Mauduit, J. Rivat, A. Sárközy, On finite pseudorandom binary sequencs Ⅲ: the Liouville function, Ⅰ, Acta Arith., 87 (1999), 367–390. http://doi.org/10.4064/AA-87-4-367-390 doi: 10.4064/AA-87-4-367-390
    [3] J. Cassaigne, S. Ferenczi, C. Mauduit, J. Rivat, A. Sárközy, On finite pseudorandom binary sequencs Ⅳ: the Liouville function, Ⅱ, Acta Arith., 95 (2000), 343–359. http://doi.org/10.4064/aa-95-4-343-359 doi: 10.4064/aa-95-4-343-359
    [4] E. Fouvry, P. Michel, J. Rivat, A. Sárközy, On the pseudorandomness of the signs of Kloosterman sums, J. Aust. Math. Soc., 77 (2004), 425–436. https://doi.org/10.1017/S1446788700014543 doi: 10.1017/S1446788700014543
    [5] L. Goubin, C. Mauduit, A. Sárközy, Construction of large families of pseudorandom binary sequences, J. Number Theory, 106 (2004), 56–69. https://doi.org/10.1016/j.jnt.2003.12.002 doi: 10.1016/j.jnt.2003.12.002
    [6] K. Gyarmati, On a family of pseudorandom binary sequences, Period. Math. Hung., 49 (2004), 45–63. https://doi.org/10.1007/s10998-004-0522-y doi: 10.1007/s10998-004-0522-y
    [7] K. Gyarmati, Pseudorandom sequences constructed by the power generator, Period. Math. Hung., 52 (2006), 9–26. https://doi.org/10.1007/s10998-006-0009-0 doi: 10.1007/s10998-006-0009-0
    [8] H. Liu, A family of pseudorandom binary sequences constructed by the multiplicative inverse, Acta Arith., 130 (2007), 167–180. http://doi.org/10.4064/aa130-2-6 doi: 10.4064/aa130-2-6
    [9] H. Liu, Gowers uniformity norm and pseudorandom measures of the pseudorandom binary sequences, Int. J. Number Theory, 7 (2011), 1279–1302. https://doi.org/10.1142/S1793042111004137 doi: 10.1142/S1793042111004137
    [10] H. Liu, J. Gao, Large families of pseudorandom binary sequences constructed by using the Legendre symbol, Acta Arith., 154 (2012), 103–108. http://doi.org/10.4064/aa154-1-6 doi: 10.4064/aa154-1-6
    [11] S. R. Louboutin, J. Rivat, A. Sárközy, On a problem of D. H. Lehmer, Proc. Amer. Math. Soc., 135 (2007), 969–975.
    [12] C. Mauduit, J. Rivat, A. Sárközy, Construction of pseudorandom binary sequences using additive characters, Monatsh. Math., 141 (2004), 197–208. https://doi.org/10.1007/s00605-003-0112-8 doi: 10.1007/s00605-003-0112-8
    [13] C. Mauduit, A. Sárközy, On finite pseudorandom binary sequences. Ⅱ: the Champernowne, Rudin-Shapiro, and Thue-Morse sequences, a further construction, J. Number Theory, 73 (1998), 256–276. https://doi.org/10.1006/jnth.1998.2286 doi: 10.1006/jnth.1998.2286
    [14] L. Mérai, Remarks on pseudorandom binary sequences over elliptic curves, Fund. Inf., 114 (2012), 301–308. https://doi.org/10.3233/FI-2012-630 doi: 10.3233/FI-2012-630
    [15] L. Mérai, Construction of pseudorandom binary sequences over elliptic curves using multiplicative characters, Publ. Math. Debrecen, 80 (2012), 199–213. https://doi.org/10.5486/PMD.2011.5057 doi: 10.5486/PMD.2011.5057
    [16] C. Mauduit, A. Sárközy, Construction of pseudorandom binary sequences by using the multiplicative inverse, Acta Math. Hung., 108 (2005), 239–252. https://doi.org/10.1007/s10474-005-0222-y doi: 10.1007/s10474-005-0222-y
    [17] J. Rivat, A. Sárközy, Modular constructions of pseudorandom binary sequences with composite moduli, Period. Math. Hung., 51 (2005), 75–107. https://doi.org/10.1007/s10998-005-0031-7 doi: 10.1007/s10998-005-0031-7
    [18] A. Sárközy, A finite pseudorandom binary sequence, Stud. Sci. Math. Hung., 38 (2001), 377–384. https://doi.org/10.1556/SScMath.38.2001.1-4.28 doi: 10.1556/SScMath.38.2001.1-4.28
    [19] J. Cassaigne, C. Mauduit, A. Sárközy, On finite pseudorandom binary sequences Ⅶ: the measures of pseudorandomness, Acta Arith., 103 (2002), 97–118. http://doi.org/10.4064/AA103-2-1 doi: 10.4064/AA103-2-1
    [20] N. Alon, Y. Kohayakawa, C. Mauduit, C. G. Moreira, V. Rödl, Measures of pseudorandomness for finite sequences: typical values, Proc. London Math. Soc., 95 (2007), 778–812. https://doi.org/10.1112/plms/pdm027 doi: 10.1112/plms/pdm027
    [21] N. Alon, Y. Kohayakawa, C. Mauduit, C. G. Moreira, V. Rödl, Measures of pseudorandomness for finite sequences: minimal values, Comb. Probab. Comput., 15 (2006), 1–29. https://doi.org/10.1017/S0963548305007170 doi: 10.1017/S0963548305007170
    [22] K. Gyarmati, On the correlation of binary sequences, Stud. Sci. Math. Hung., 42 (2005), 79–93. https://doi.org/10.1556/sscmath.42.2005.1.7 doi: 10.1556/sscmath.42.2005.1.7
    [23] V. Anantharam, A technique to study the correlation measures of binary sequences, Discrete Math., 308 (2008), 6203–6209. https://doi.org/10.1016/j.disc.2007.11.043 doi: 10.1016/j.disc.2007.11.043
    [24] K. Gyarmati, C. Mauduit, On the correlation of binary sequences, Ⅱ, Discrete Math., 312 (2012), 811–818. https://doi.org/10.1016/j.disc.2011.09.013 doi: 10.1016/j.disc.2011.09.013
    [25] C. Aistleitner, On the limit distribution of the well-distribution measure of random binary sequences, J. Theor. Nombr. Bordx., 25 (2013), 245–259. https://doi.org/10.5802/jtnb.834 doi: 10.5802/jtnb.834
    [26] K. U. Schmidt, The correlation measures of finite sequences: limiting distributions and minimum values, TTrans. Amer. Math. Soc., 369 (2017), 429–446. http://doi.org/10.1090/tran6650 doi: 10.1090/tran6650
    [27] C. Mauduit, A. Sárközy, On finite pseudorandom sequences of k symbols, Indagat. Math., 13 (2002), 89–101. https://doi.org/10.1016/S0019-3577(02)90008-X doi: 10.1016/S0019-3577(02)90008-X
    [28] R. Ahlswede, C. Mauduit, A. Sárközy, Large families of pseudorandom sequences of k symbols and their complexity-part Ⅰ, In: R. Ahlswede, L. Bäumer, N. Cai, H. Aydinian, V. Blinovsky, C. Deppe, et al., General theory of information transfer and combinatorics, Springer-Verlag, 2006,293–307. https://doi.org/10.1007/11889342_16
    [29] R. Ahlswede, C. Mauduit, A. Sárközy, Large families of pseudorandom sequences of k symbols and their complexity, part Ⅱ, Electron. Notes Discrete Math., 21 (2005), 199–201. https://doi.org/10.1016/j.endm.2005.07.023 doi: 10.1016/j.endm.2005.07.023
    [30] D. Gomez, A. Winterhof, Multiplicative character sums of Fermat quotients and pseudorandom sequences, Period. Math. Hung., 64 (2012), 161–168. https://doi.org/10.1007/s10998-012-3747-1 doi: 10.1007/s10998-012-3747-1
    [31] Z. Chen, X. Du, C. Wu, Pseudorandomness of certain sequences of k symbols with length pq, J. Comput. Sci. Technol., 26 (2011), 276–282. https://doi.org/10.1007/s11390-011-9434-5 doi: 10.1007/s11390-011-9434-5
    [32] K. Mak, More constructions of pseudorandom sequences of k symbols, Finite Fields Appl., 25 (2014), 222–233. https://doi.org/10.1016/j.ffa.2013.09.006 doi: 10.1016/j.ffa.2013.09.006
    [33] B. Gergely, On finite pseudorandom sequences of k symbols, Period. Math. Hung., 47 (2003), 29–44. https://doi.org/10.1023/B:MAHU.0000010809.50836.79 doi: 10.1023/B:MAHU.0000010809.50836.79
    [34] L. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Trans. Inf. Theory, 20 (1974), 397–399. https://doi.org/10.1109/TIT.1974.1055219 doi: 10.1109/TIT.1974.1055219
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(919) PDF downloads(39) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog